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Abstract 

There is a high need for an automated system to detect fabric defects, as the current 

manual methods used in the garment industries in Nepal are unreliable and costly. Previous 

research has focused on specific fabric defects rather than overall fabric defects efficiently. 

This research employs two autoencoder models to identify different defects across different 

types of knitted fabrics, utilizing two datasets: the SFDG dataset and a custom dataset prepared 

from Butwal’s garment industries. The models benefit from a carefully designed Gabor filter 

bank to examine fabric compositions. This filter bank is fine-tuned by modifying parameters, 

wavelength, and orientation to detect varieties of defects in knitted fabrics. These models get 

feature representations from the Gabor filter bank’s outputs and help the system adapt to 

different types of defect patterns, making defect detection more reliable and accurate. 

The nearest neighbor density estimator finds possible defects and marks on the fabric 

images. The model's effectiveness and strength are shown by validating it on different types of 

knitted fabrics, including plain and patterned fabrics, using evaluation metrices like cTPR and 
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ROC AUC. The first model achieves a cTPR of 0.879 and an AUC score of 0.947, while the 

second model achieves a cTPR of 0.899 and an AUC score of 0.958. 

Keywords: Autoencoder, Knitted Fabric Defect Detection, Gabor Filter, Nearest Neighbor 

Density Estimator 

1. Introduction 

The garment industry plays a significant role in Nepal's economic development. 

However, there is a notable gap in integrating Nepalese manufacturing industries with Industry 

4.0 concepts, which needs urgent attention. In the garment industry, maintaining fabric quality 

is paramount as it directly impacts the brand's reputation. It is essential to mention that the 

scope of the research only includes knitted fabrics used for clothing in the garment industries. 

1.1 Problem Definition 

The garment industries in Nepal heavily rely on manual inspection for fabric defect 

detection, a process that is not only tedious and highly effortful but also prone to 

inconsistencies and human error. Existing automated systems often fall short due to their 

limited ability to detect a wide range of defects across different fabric textures. These systems 

are typically designed to identify specific types of defects, making them unsuitable for general 

application across various knitted fabrics. It is known that fabric defect detection during early 

stages of manufacturing is of much importance. This research focuses about early stage knitted 

fabric defect detection. The implementation of efficient and accurate fabric defect detection 

methods is essential for the Nepalese garment industry. This work proposes a solution to the 

problem of detecting defects in knitted fabrics using a combination of Gabor filter banks and 

machine learning techniques. Automatic fabric defect detection is inevitable but implementing 

such a system is a technical challenge due to two reasons. Firstly, fabric defects are of varying 

sizes and shapes. Additionally, there are significantly more error-free fabrics than error-prone 

fabrics. To address the variety of defects, multi-class detection systems have been developed. 

But these methods cannot work beyond certain classes of defects with good accuracy and have 

issues of unbalanced datasets. Secondly, background textures also vary in the patterns and they 

are of more than 70 kinds which depend on the weaving or knitting methods [13]. 



                                                                                                                                                               Shiva Bhandari, Shashidhar Ram Joshi, Sanjivan Satyal. 

Journal of Artificial Intelligence and Capsule Networks, September 2024, Volume 6, Issue 3 243 

 

 

This research presents a novel approach to knitted fabric defect detection by combining 

optimized Gabor filter banks (by optimizing the orientation and bandwidth of the filter) with 

autoencoder architectures and nearest neighbor density estimator. Unlike previous works, such 

as (Zhou 2022), which focused on general fabric defects using a single Gabor filter and 

autoencoder mode [l5], our study introduces a dual autoencoder architecture tailored 

specifically for the diverse textures and defect patterns found in knitted fabrics. This dual 

approach enhances defect detection accuracy and reliability, particularly for complex knitted 

structures. Additionally, we provide a detailed analysis of parameter optimization for the Gabor 

filters, including a comprehensive exploration of wavelength and orientation adjustments, 

which has not been extensively covered in existing literature. Also, this research includes 

effectiveness of the approach by utilizing two different datasets.  

1.2 Objectives 

• To generate custom dataset as well as compare the performance of two different models 

for fabric defect detection. 

• To develop a model that uses optimized Gabor filter bank, autoencoder and nearest 

neighbor density estimator for knitted fabrics inspection. 

• To analyze the efficiency of the proposed approach in improving defect detection 

accuracy by comparing with other popular techniques used in fabric defect detection 

task. 

1.3 Contribution of Research Work 

This research work focuses on implementing model that uses Gabor filter bank as 

feature extraction and then applies autoencoder architecture network as feature learning step 

and finally uses nearest neighbour density estimator to detect defects in knitted fabrics only. 

Moreover analysis of two models only differing in autoencoder architecture network are done 

in standard dataset as well as self-prepared dataset from garment industries in Butwal city 

located in Terai region of Nepal. Performance of the model is done through two evaluation 

metrices cTPR and AUC (Area Under Curve). Similarly, effectiveness of the model is 

interpreted by comparing with other popular techniques implemented in fabric defect detection. 
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This research finds its scope in quality control during manufacturing process and helps to cover 

up huge economic loss. 

2. Related Work 

Over the years, efforts have been made to automate fabric defect detection. These works 

are extensively classified into four types: statistical, structural, model-based, and spectral 

approaches. The statistical approaches (D. a. Chetverikov 2002) (Latif-Amet 2000) hold first 

(mean or standard deviation) or second order statistics(correlation) for representing color 

information of the fabrics. However, relying solely on statistical data derived from unprocessed 

images, whether in color or grey-scale, proves insufficient in capturing the complete 

characteristics of fabric. This approach falls short in discerning between the distinct attributes 

of fabric and identifying defects, especially in instances involving patterns. The other approach 

structural one (D. Chetverikov 2000) is applicable for plain fabrics due to its simple patterns 

are easier to analyze and retrieve. Spectral methods analyze fabric textures based on frequency, 

which are less sensitive than methods that analyze textures based on spatial details. Machine 

vision-based techniques are also used in the fabric defect detection. Jing et al. [8] utilized a 

texture features extracted using Gabor filter and then utilized golden subtraction in order to 

segment the defects. In this technique, the patterned fabrics defects were not accurately 

segmented. Li et al.[12] proposed a low rank representation-based fabric detection method for 

the repeated texture structure of fabrics. However, the time complexity is a significant 

limitation in the method. It means computational complexity is also to be considered. Likewise, 

a fabric defect segmentation method by basic image and the Elo-algorithm is presented by 

Kang et al. [10] A novel method called IIER integrates the concept of the integral image into 

the Elo-rating algorithm to quickly detect defects in various types of fabric. Moreover, Guan 

et al. [5] proposed a method to detect fabric defects based on visual saliency, but it doesn't 

work for detecting defects in red-green-blue colored fabrics. Likewise, Ashraf et al. [1] 

proposed an image processing technique with CNN based GoogleNet that classifies defective 

and non-defective woven fabrics. Similarly, an automatic fabric defect detection method was 

proposed based on YOLOv5 algorithm (Jin 2021). A teacher-student architecture is defined to 

handle the shortage of fabric defect images. Zhou et al. [15] proposed a novel one class 

classification model for detecting variety of fabric defects based on applying optimized Gabor 
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filter banks in SFDG dataset (Incorporated n.d.). This research is motivated by the works of 

Zhou et al. in order to detect defects in the knitted fabrics which uses optimized gabor filter 

bank and simple autoencoder architecture for fabric defect detection. The research is based on 

improving the performance of the method and application into optimizing the knitted fabric 

defect detection with custom dataset generated locally. 

3. Proposed Work 

The model works in two main stages: training and testing. It uses two types of fabric 

image datasets: the Standard Fabric Defect Glossary (SFDG) dataset and a custom dataset from 

garment industries in Butwal. During training, normal fabric images are inputted into the 

model. A Gabor filter bank with various orientations and bandwidths is applied to these images 

to create filtered images, which are then cropped into smaller patches. These patches undergo 

feature selection using an autoencoder architecture, generating D-dimensional feature vectors 

that are saved for later use in the testing stage. 

In the testing stage, the model takes a raw image (either normal or defective) as input. 

It applies the same Gabor filter bank to this image, crops the filtered images into patches, and 

applies the same feature selection process as during training. The saved feature vectors from 

training are compared with the new feature vectors using a nearest neighbor density estimator 

to determine whether each patch is normal or defective. Finally, the identified defective patches 

are highlighted on the raw image. The Figure 1 shows the proposed system block diagram.  

 

Figure 1. System Block Diagram 
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3.1 Related Theory 

3.1.1 Gabor Filter Banks 

A Gabor filter (Jones 1987) can be represented in the spatial domain as a product of a 

complex sinusoid and a Gaussian envelope. The sinusoidal component provides frequency 

selectivity, while the Gaussian envelope controls the spatial extent and orientation selectivity 

of the filter. The Gabor filter equation is given by:  

G (x, y, λ, θ, ψ, σ, y) = exp((−x’² + γ²y’²)/2σ²) cos((2 π x’)/λ +  ψ)………  (1) 

• where x’ =  xcosθ +  ysinθ and  y’ =  −xsinθ +  ycosθ  

• λ is the wavelength, θ is the angle of Gabor kernel direction, i.e., orientation parameter, 

ψ is the phase offset, 𝛾 is the spatial aspect ratio, σ is the standard deviation of the 

gaussian envelope,  

In the fabric defect detection problem, the wavelength λ and orientation θ are crucial 

due to the varying orientations of fabrics and different yarn widths. The primary design 

challenge lies in identifying an optimal pair of λ and θ for knitted fabrics. This task is 

particularly demanding as it involves developing filter banks that perform effectively across 

various types of knitted fabrics. The wavelength λ in Gabor filters impacts the filter bank by 

influencing the frequency response and sensitivity to different spatial frequencies in the image. 

The orientation θ parameter in Gabor filters specifies the direction of the sinusoidal wave 

within the filter, influencing how the filter reacts to different features in an image.  

3.1.2 Nearest Neighbor Density Estimator 

This research applies a Nearest Neighbor Density Estimator (NNDE) designed to detect 

defective fabric patches during testing using feature vectors saved from the training phase. The 

nearest neighbor density estimator is a technique commonly used in fabric defect detection to 

estimate the density of defects or anomalies present in a fabric sample.  

𝑠𝑖 =  
𝐷𝑖𝑠𝑡(𝑓𝑖

′,   𝐹′) 

𝐷𝑖𝑠𝑡(𝑓𝑗,   𝐹)
, 𝑓𝑖

′ ∈ 𝐹′, 𝑓𝑗 ∈ 𝐹 ………                                                              (2) 
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where, 𝑓𝑖
′ represents feature vector of input image in testing phase whose feature vector 

set is F', 𝑓𝑗 represents feature vector from training phase whose saved feature vector set is F, 

Dist() returns the distance between feature vector and its nearest neighbor in F. 

Further the feature vector 𝑓𝑖
′ is to be classified into defective or non-defective based on 

the threshold τ as follows: 

𝑓𝑖
′ = {

𝐷𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒, 𝑖𝑓 𝑠𝑖 ≥ τ 
𝑁𝑜𝑟𝑚𝑎𝑙, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

………                                                                     (3) 

• where, τ must be greater than or equal to one. 

We divide the overall fabric defect detection process into following phases: 

3.2 Collection of Knitted Fabric Data 

 

Figure 2. Various Fabric Images in SDFG Dataset 

The collection of data for the model is done through two sources: one is from Standard 

Fabric Defect Glossary (SFDG) dataset and other is knitted fabric data collected from garment 

industries. The Figure 2 consists of images from SFDG dataset contains more complex fabric 

images compared to other simple datasets like the TILDA Textile Texture Database (University 

of Freiburg. Tilda Textile Texture Database. n.d.). It is a publicly available dataset. Each fabric 

image is a 512 x 512 size image. Differences between each image are seen in terms of fabric 

backgrounds, defects, colors, etc. Both plain and patterned fabric images are included. It 

consists of 1940 image samples in TIF format including rotated as well as non-rotated images. 

In case of custom dataset (Figure 3), fabric image collection is done through visiting 

various garment industries in Butwal, Nepal. The images are captured. There are 1156 images 

in custom dataset. It is important to notice that most of the collected images do not contain 

defects. 
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Figure 3. Various Fabric Images from Industrial Custom Dataset 

The captured images are taken during knitting process but not after they are being 

manufactured. It is obvious that data collected from this method needs more preprocessing. In 

order to simulate defects present in real world scenarios and help in training to classify the 

image patches as normal or defective, synthetic dataset is generated using image processing 

techniques to create synthetic defects such as blobs (circular defects with random radius), 

scratches (line defects of various thickness) and noise on the fabric image as in Figure 4. 

 

Figure 4. Various Fabric Images Generated via Synthetic Method 

3.3 Data Preprocessing 

Data preprocessing is an essential step to prepare raw fabric images for defect detection. 

Several preprocessing techniques, as shown in Figure 5 were employed to prepare the fabric 

images for defect detection:  

• Resizing: The industrial custom data that was collected is first converted to fixed size 

of 512 x 512 pixels. This is done as the standard dataset is used in this very size. Images 

are then resized to the patch size specified (i.e., 32x32 pixels).  
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• Normalization: Pixel values are normalized to the range [0, 1] to standardize the input 

data. 

• Patch Extraction: Large images are divided into smaller patches to focus on localized 

defects. Patches are extracted with a specific size (32) and stride (10) to ensure all areas 

are covered. 

• Gabor Filter Application: Gabor filters are created with specific parameters (lambda, 

theta, gamma, sigma, psi). These filters are applied to the images to extract texture 

features. The detailed explanation is explained in subsection 3.1.1. 

• Feature Vector Generation: Feature vectors are generated from the filtered images 

using mean and standard deviation values. 

• Randomization and Splitting: The patches are shuffled to ensure randomization. Then 

the dataset is split into training set (80%) and testing set (20%). 

 

Figure 5. Data Preprocessing steps of Datasets used 

3.4 Gabor Filter Bank Optimization 

In the problem of detecting defects in knitted fabrics, the wavelength (λ) and orientation 

(θ) are crucial factors. The challenge lies in identifying an optimal pair of λ and θ suitable for 

all types of knitted fabrics. During the feature selection phase, the magnitude response of the 

Gabor filter is especially important. 
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Figure 6. Flow of Gabor Filter Bank Optimization 

A gabor filter bank is selected based on different wavelengths and bandwidths that can 

almost cover all types of knitted fabrics. To apply the Gabor filter bank, we implemented 

various functions. The optimization flow of the Gabor filter bank is depicted in Figure 6. To 

determine the optimal orientation parameter, a range of angles is considered to be from 0 and 

180 degrees and intervals are set as mentioned in Figure 15. Similarly, various wavelengths are 

chosen and evaluated for performance as depicted in Figure 14. The number of filters in the 

filter bank is the product of the number of wavelengths and orientations used. This method 

creates a Gabor filter bank applied to detect defects in knitted fabrics. Experiments with 

different wavelengths and orientations were conducted and their performances was evaluated. 

3.5 Feature Selection: Use of Autoencoder Architecture 

Autoencoders are not directly applicable to fabric images due to the lack of large-scale 

datasets. Therefore, two different types of autoencoder models were implemented and 

compared. The selected features included texture patterns captured by the Gabor filters. Each 

feature vector consisted of the magnitude responses from the filtered images. The model was 

implemented using Python and the PyTorch library. Performance was evaluated using metrics 

such as Conditioned True Positive Rate (cTPR) and Area Under the Curve (AUC) from 

Receiver Operating Characteristic (ROC) analysis. Each model consists of two different 
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architecture based on the boolean value of gabor parameter. The two architecture serve 

different purposes: 

3.5.1 Gabor Features + Fully Connected Layers 

This architecture is designed to work with feature vectors extracted using Gabor filters. 

It captures more complex relationships between features by using multiple fully connected 

layers. This is suitable for datasets where Gabor features effectively highlight defects. 

3.5.2 Convolutional Layers 

This architecture uses 1D convolutional layers to process raw data directly. 

Convolutions are particularly effective in capturing spatial hierarchies and local patterns, 

making this model suitable for datasets where spatial relationships within the data are critical 

for detecting defects. 

3.5.3 Model 1 

The autoencoder class is initialized with two key parameters: dim_in, representing the 

dimension of the input data, and gabor, a boolean indicating whether Gabor filters will be used 

in the encoder. Within the constructor, dim_in is stored as both the input and output dimension, 

and the gabor flag is retained for future reference. The Figure 7 depicts the model summary of 

autoencoder when Gabor parameter is True. 

 

 

 

 

 

 

Figure 7. The Model Summary of Autoencoder Architecture when Gabor Parameter 

is True 
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If Gabor is set to False, the encoder uses 1D convolutional layers followed by ReLU 

activations and max-pooling and decoder uses transposed 1D convolutional layers followed by 

ReLU activations. The Figure 8 depicts the model summary of autoencoder when Gabor 

parameter is False. 

 

Figure 8. The Model Summary of Autoencoder Architecture when Gabor Parameter 

is False 

3.5.4 Model 2 

The Figure 9 depicts the model summary of autoencoder when Gabor parameter is True.  

 

 

 

 

 

 

Figure 9. The Model Summary of Autoencoder Architecture when Gabor Parameter 

is True 

The forward method in both Model 1 and Model 2 defines the forward pass through the 

autoencoder. It takes an input x. The input is passed through the encoder to obtain the code. 
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The code is then passed through the decoder to reconstruct the input. The reconstructed input 

and the code are returned as output. 

If Gabor is set to False, the encoder uses 1D convolutional layers followed by ReLU 

activations and max-pooling and the decoder consists of transposed 1D convolutional layers 

followed by ReLU activations. The Figure 10 depicts the model summary of autoencoder when  

Gabor parameter is False. 

 

 

 

 

 

 

Figure 10. The Model Summary of Autoencoder Architecture when Gabor Parameter 

is False 

3.6 Training Phase 

Here, the model takes normal images as input and applies the aforementioned Gabor 

filter bank. The filtered images are then cropped into small patches, and feature selection based 

on the previously described autoencoder architecture is applied to these patches. Feature 

vectors are generated and saved for the testing phase. The autoencoder's goal during training is 

to minimize the reconstruction error between the input data and the reconstructed data, 

achieved by optimizing mean squared error (MSE) loss. The Adam optimizer updates the 

model parameters based on the computed loss. The training process involves iterating over the 

training dataset, performing forward and backward passes, and updating the model parameters 

until convergence is reached. 
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3.7 Testing Phase 

Here, a raw image (either defective or normal image) is taken by the model and same 

Gabor filter bank is applied and filtered images are cropped and then same autoencoder 

architecture is applied to the image for feature selection. Finally, the nearest neighbor density 

estimator method is utilized which takes the saved feature vector and new feature vector to 

determine an image patch is either normal or defective.  

4. Results and Discussion 

To ensure the effectiveness of the two models proposed in this paper, various 

experiments are conducted on widely used public dataset of SDFG as well as custom dataset. 

The datasets are knitted fabric images of size 512 x 512 pixels. The complete experiment were 

carried on a local PC. The operating system (OS) was Windows 10 Enterprise Edition, and the 

hardware was Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz, NVIDIA GeForce and 8 GB 

RAM. 

4.1 Model 1 Results and Analysis 

The Figure 11 output shows the input defective images and how the knitted fabrics 

defects are overlayed on the input image for plain as well as patterned knitted fabrics using 

model 1. Here the dataset used is SDFG dataset. This output is from the model having best 

attained evaluation metrices. The Figure 12 output shows the input defective images and how 

the knitted fabrics defects are overlayed on the input image for plain as well as patterned knitted 

fabrics using model 1 on the custom dataset. Similarly for the case of custom made knitted 

fabrics images, the defect detection performance is similar in effectiveness as in using SDFG 

dataset. This can also be validated using evaluation metrices comparison for plain and patterned 

cases. 
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Figure 11. Output of Plain and Patterned Image Knitted Fabric Defect Detection 

using Model 1 on SFDG Dataset 

 

Figure 12. Output of Plain and Patterned Image Knitted Fabric Defect Detection 

using Model 1 on Custom Dataset 

As from Table 1, it can be deduced that the model performs better for SFDG dataset 

than custom dataset. It is also observable that model performance for plain knitted fabrics while 

it slightly degrades for patterned knitted fabrics images. The cTPR and AUC values are 

comparatively higher for plain knitted fabrics while the values of cTPR and AUC are slightly 

less for patterned knitted fabrics. The Figure 13 demonstrates visualization of evaluation 

metrices instance in the model 1. 
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Figure 13. Evaluation of Model Indicating cTPR and AUC for Particular Image in 

Model 1 

Table 1. Performance Impact of Number of Epochs and Patch Size on Evaluation 

Metrices taken from SDFG Dataset as well as Custom Dataset for Model 1 

 
Epochs = 1000, 

Patch size = 32 

Epochs = 1000, 

Patch size = 16 

Epochs = 1000, 

Patch size = 64 

cTPR knitted (SFDG) 0.879 0.778 0.815 

AUC knitted (SFDG) 0.941 0.872 0.901 

cTPR knitted (Custom) 0.871 0.768 0.806 

AUC knitted (Custom) 0.943 0.866 0.898 

 

From the above Figure 13 and Table 1 it is clear that both parameters, i.e., cTPR and 

ROC AUC both have significant impact and when both scores are high then defects are better 

detected in image. Similarly, the effect of parameters like patch size and number of epochs 

have significant effects in the performance of the model. It can be illustrated from the Table 1. 

4.2 Model 2 Results and Analysis 

The visual outputs from this model are similar in both types of datasets used with that 

of model 1. It is to be known that model 2 has comparatively better performance than model 1 
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which will be illustrated in upcoming sections. Quantitatively, this can be validated using 

evaluation metrices comparison for plain and patterned cases. Additionally, from Table 2, it 

can be deduced that the model 2 has similar trends as in model 1 for SFDG and custom datasets. 

The cTPR and AUC values are comparatively higher for plain knitted fabrics while the values 

of cTPR and AUC are slightly less for patterned knitted fabrics. Similarly the effect of 

parameters like patch size and number of epochs have significant effects in the performance of 

the model. It can be illustrated from the Table 2.  

Table 2. Performance Impact of Number of Epochs and Patch Size on Evaluation 

Metrices taken from SDFG Dataset as well as Custom Dataset for Model 2 

 
Epochs = 1000, 

Patch size = 32 

Epochs = 1000, 

Patch size = 16 

Epochs = 1000, 

Patch size = 64 

cTPR all knitted 

(SDFG) 
0.899 0.789 0.869 

AUC all knitted 

(SDFG) 
0.958 0.878 0.910 

cTPR all knitted 

(Custom) 
0.875 0.778 0.801 

AUC all knitted 

(Custom) 
0.953 0.873 0.890 

 

4.3 Comparison between the Two Models Implemented 

In order to compare the two models used, we summarize the cTPR and AUC metrices 

of the models after they are fined tuned and tested. The following Table 3 summarizes the 

comparison between the two models. It is clear from the table that cTPR and AUC obtained 

from model 2 is higher than those obtained from model 1. This suggests that comparatively 

model 2 has better fabric defect detection capabilities than model 1. 
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4.4 Comparison of Models with Other Feature Learning Techniques 

The effectiveness of the models is compared with two other popular feature learning 

techniques used in fabric defect detection system. One of them is the Handcrafted model (D. a. 

Chetverikov 2002) that takes features from mean and standard deviation of the provided data. 

Next is the Principal Component Analysis (PCA) method (Beirão 2004). The evaluation 

metrices are generated and recorded for comparison between the applied model in this thesis 

work and these two techniques. The Table 3 provides insight of comparison between the two 

different models used with other feature learning techniques. 

Table 3. Performance Comparison among Various Feature Learning Techniques 

 Model 1 Model 2 PCA Handcrafted Model 

cTPR (SDFG) 0.879 0.899 0.789 0.790 

AUC (SDFG) 0.947 0.958 0.921 0.926 

cTPR (Custom) 0.870 0.875 0.776 0.782 

AUC (Custom) 0.943 0.953 0.918 0.921 

 

4.5 Impact of Gabor Filter Parameters 

As number of wavelengths and orientations are increased the number of gabor filters in 

filter bank increases. It will be clear in following subsections that increasing the number of 

wavelengths and orientations increase the cTPR metrics but it also increase the processing time 

of the system. 

4.5.1 Impact of Wavelength Parameter 

It is important to note that changing a single value of the wavelength parameter alters 

the total number of filters by the number of orientations used. For example, if 5 wavelengths 

and 20 orientations are used, there will be 100 Gabor filters. Reducing the number of 
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wavelengths to 4 decreases the total filters by 20. Increasing the number of wavelengths 

improves the cTPR of the model but also raises the processing time, creating a trade-off 

between cTPR and processing speed. Figure 14 illustrates the impact of wavelengths on the 

system's cTPR. Increasing more number of wavelengths, there is also increase in cTPR of the 

model but it also has impact in time complexity as processing time increases. Thus there is 

trade-off between cTPR and processing speed. After performing a number of experiments 

where the wavelength parameter was varied while keeping the orientation parameter constant, 

a total of 5 wavelengths were selected for use. 

 

Figure 14. Performance Impact of Gabor Filter Bank Parameter: Wavelength on 

cTPR 

4.5.2 Impact of Orientation Parameter 

It is to be noted that changing single value of orientation parameter changes the total 

number of filters used by the number of wavelengths used. For instance if total number of 

orienations used is 20 and number of wavelengths used is 5 then total number of gabor filters 

used will be 100. When we change this number of orientations to 19 then total filters used will 

be reduced by 5. Increasing more number of orientations, there is also increase in cTPR of the 

model but it also has impact in time complexity as processing time increases. Thus there is 

trade-off between cTPR and processing speed. The following Figure 15 illustrates the impact 

of orientations in cTPR of the system. After number of experiments performed changing 

orientation parameter but keeping wavelength parameter constant, total number of orientation 

used is selected to be 20. 
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Figure 15. Performance Impact of Gabor Filter Bank Parameter: Orientation on cTPR 

5. Conclusion 

The research demonstrates that implemented models are effective in knitted fabric 

defect detection. In this research work, we proposed two different models each one having 

separate autoencoder architecture for feature learning and similar yet specially designed Gabor 

filter bank and nearest neighbor density estimator that detects knitted fabric defects. One of the 

advantage with our system is that it does not require defective samples for detection purpose. 

In order to illustrate the effectiveness of the system, we used two separate datasets for the 

research, one being SDFG dataset and another being custom dataset from images taken from 

local garment industries. The two different autoencoder architectures are implemented for 

comparison purpose. The overall performance of the system is measured by cTPR and AUC 

scores. The results obtained from Model 2 are better in knitted fabric defect detection as 

indicated by evaluation metrices used. Similarly, we compared our work or models 

implemented with other two popular methods for feature learning i.e., Handcrafted model and 

PCA method. The comparison shows that even though Model 1 and Model 2 have slightly 

higher AUC scores than other two methods, there is significant improvement of cTPR scores 

for model 1 and model 2 than other techniques. To further illustrate the applicability of the 

models implemented, they are analyzed for various types of knitted fabrics including plain, 

patterne4.  
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