
Journal of Artificial Intelligence and Capsule Networks (ISSN: 2582-2012)
www.irojournals.com/aicn/

Journal of Artificial Intelligence and Capsule Networks, September 2024, Volume 6, Issue 3, Pages 263-277 263
DOI: https://doi.org/10.36548/jaicn.2024.3.002

Received: 07.06.2024, received in revised form: 02.07.2024, accepted: 13.07.2024, published: 27.07.2024
 © 2024 Inventive Research Organization. This is an open access article under the Creative Commons Attribution-NonCommercial International (CC BY-NC 4.0) License

Smart Assistant for Essential Voice

Interaction

(EVI Assistant)

Sekar S.1, Abishek Aravinth K.2, Balamurugan M.3,

Elavarasan D.4, Ganesh Kumar M.5

1Associate Professor, 2-5Students Department of Information Technology, SRM Valliammai

Engineering college, Kattankulathur, India

Email: 1sekars.it@srmvalliammai.ac.in, 2abishekaravinthk@gmail.com

Abstract

Voice assistants have emerged as a significant trend in contemporary society,

revolutionizing human-computer interaction by processing and responding to verbal

commands. By utilizing artificial intelligence, these programs efficiently interpret voice input

to perform a wide range of tasks. In today's fast-paced world, voice assistants are essential tools

that enhance productivity, accessibility, and convenience. For instance, Google's smartphone

assistant, which has become familiar to children due to increased smartphone usage during the

pandemic, and Amazon's Alexa, which controls household devices through the Internet of

Things, showcase their broad utility. The research provides a comprehensive overview of voice

assistants, with a focus on the various Python packages used in their development. Emphasizing

the accessibility benefits for individuals with physical disabilities, voice assistants can perform

tasks such as answering questions, setting reminders, and controlling smart devices.

Keywords: Speech Recognition, Natural Language Processing (NLP), Python Packages,

Voice Assistant.

1. Introduction

The system aims to develop a web application with a personalized assistant that users

can control through voice or text. This assistant offers a wide range of functions, including call

Smart Assistant for Essential Voice Interaction (EVI Assistant)

ISSN: 2582-2012 264

handling, text transformation, email exchange, alarms, event management, location services,

music playback, weather updates, Google/Wikipedia searches, a chatbot, camera use, Bing

translation, Bluetooth support, a help menu, and integration with Windows to Azure. It is

designed to be especially beneficial for the elderly, individuals with disabilities, and children

[11,12].

Emerging technology trends like virtual reality, augmented reality, voice interaction,

and IoT are reshaping digital experiences, with voice control being a significant AI-driven

advancement. Advancements in AI enable machines to perform tasks independently, as seen

in voice assistants like Siri, Google Assistant, Cortana, and Alexa. Voice commands streamline

tasks, and voice searches were projected to make up 50% of searches by 2022, surpassing text

searches. smart virtual assistants, a product of increasing AI sophistication, handle intricate

tasks such as email management, understanding user intent, automating processes, and

delivering personalized responses. This research originated from the idea of utilizing publicly

available web data to create a virtual assistant with smart decision-making capabilities for

everyday activities [13,15].

Developing a web application with a personalized assistant that uses voice or text

control marks a significant leap in enhancing accessibility and efficiency in digital interactions.

With a wide range of functions, from call handling to music playback and email exchange to

event management, this system caters to diverse user needs. Its integration with services like

Google, Wikipedia, and Bing Translation enhances the user experience by providing access to

an information and resources. Features such as location services, weather updates, and

Bluetooth support add convenience and enhance the application's practical utility in everyday

scenarios. For individuals with disabilities or the elderly who may face challenges with

traditional device interfaces, this personalized assistant is a valuable tool for navigating modern

technology seamlessly.

2. Related Work

The research proposed a Python-based voice assistant utilizing a speech-to-text (STT)

module, incorporating API calls and system commands. This development enables users to

 Sekar S., Abishek Aravinth K., Balamurugan M., Elavarasan D., Ganesh Kumar M

Journal of Artificial Intelligence and Capsule Networks, September 2024, Volume 6, Issue 3 265

execute commands through voice without keyboard interaction, suitable for hybrid platforms.

However, some limitations are noted, particularly with system calls lacking robust support [1].

The research showcased a Desktop Assistant AI built in Python, featuring IoT

capabilities and incorporating the features of Artificial Intelligence (AI) along with an SQLite

database. The research includes a robust database connection and query framework. However,

the absence of API calls and system calls represents a limitation in the project's functionality

[2,3].

The voice-based assistance system uses Python as a backend, supporting system calls,

API calls, and incorporating various features. The research demonstrates good responsiveness

with API calls but requires improvement in understanding and reliability [4].

The voice enabled personal assistant built using Python boasts a well-supported library,

acknowledging that not every API can convert raw JSON data into text seamlessly. However,

there is a noted delay in processing request calls that requires attention [5].

The research focuses on the use of an AI-based Voice Assistants, that is designed to

provide an accurate response to user requests. Notably, the system includes a feature enabling

appointment scheduling through voice commands. However, it is essential to highlight that the

project lacks API call integration [6].

The study analyses how to enhance guest experiences and services in hotel rooms by

deploying voice-activated AI assistants. This is important during the COVID-19 epidemic in

particular since voice assistants lessen the need for direct interaction, promoting safety[7].

To verify the authenticity and reliability of the data collected, the study "Ok Google:

Using Virtual Assistants for Data Collection in Psychological and Behavioral Research"

suggests using a survey tool developed as an add-on for Google Assistant. The tool's ability to

define synonyms and potential responses for various question types makes it useful for

examining individual behavior in emotional and psychological research [8].

The use of a voice assistant to control housekeeping operations emphasizes the

importance of voice assistants in smart homes. Voice assistants can operate home appliances

with voice commands, enhancing security with smart locks. However, a reliable internet

connection is essential; otherwise, users might lock themselves out of their own homes [9].

Smart Assistant for Essential Voice Interaction (EVI Assistant)

ISSN: 2582-2012 266

The voice assistant explores the psychological reactions to the system's human-like

behaviours. The assistant features IoT capabilities and can place orders for users. However, it

relies heavily on the speaker’s ability to present decision alternatives in voice dialogues and

lacks system calls [10].

3. Proposed System

 Step 1: The proposed system aims to present an efficient system for implementing a

personal voice assistant. This system utilizes the Speech Recognition library, which

offers many built-in functions, enabling the assistant to understand user commands and

respond with voice feedback using Text-to-Speech functions.

Step 2: When the assistant captures a voice command from the user, underlying

algorithms convert the voice input into text. Based on the keywords present in the text,

the assistant performs the corresponding action.

Step 3: Libraries like Random and others are employed for different technologies. The

OS library, for example, is used to implement operating system-related functionalities,

such as shutting down or restarting the system.

Step 4: Pyttsx3, a text-to-speech conversion package in Python that operates offline and

is compatible with both Python 2 and Python 3 is integrated, is used for system voice

capabilities in addition to sapi5.

Step 5: A speak function is defined to allow the program to vocalize its outputs.

Additionally, a function is implemented to capture voice commands using the system

microphone. The main function consolidates all these capabilities, defining the

comprehensive functionality of the voice assistant. Figure 3.1 shows the architecture

diagram. Figures 3.2 and 3.3 show the use case and sequential diagrams, respectively, of

the proposed work.

 Sekar S., Abishek Aravinth K., Balamurugan M., Elavarasan D., Ganesh Kumar M

Journal of Artificial Intelligence and Capsule Networks, September 2024, Volume 6, Issue 3 267

Figure 3.1. Architecture Diagram of Proposed System

The architecture in Figure 3.1 shows an overall view of the system. The complete

process is practically implemented in Python, using the necessary libraries for speech-to-text

conversion and vice versa, processing the information, and delivering the required output.

 Figure 3.2. Use Case Diagram

Smart Assistant for Essential Voice Interaction (EVI Assistant)

ISSN: 2582-2012 268

This flow diagram in Figure 3.2 outlines the process of a voice-controlled system. The

user initiates the process by speaking into the microphone, which captures the voice input. The

system receives this input and processes it to determine the appropriate action. The system can

perform various tasks such as retrieving content, telling a joke, conducting a search, making

API calls, executing system calls, or interacting with IoT devices. The results of these actions

are then compiled and delivered as the final output to the user. This diagram demonstrates the

versatility of the system in handling different types of voice commands and producing relevant

responses.

Figure 3.3. Sequence Diagram

This sequence diagram in Figure 3.3 illustrates the interaction flow between the user,

voice assistant (VA), translator, and task design components. The process begins with the user

sending a command to the VA (step 1). The VA forwards this command to the translator (step

2), which then communicates the specific task to the task design (step 3). If the translator needs

additional information, it requests it from the VA (step 4), which in turn asks the user for the

missing information (step 5). The user provides the input (step 6), and the VA processes this

information, sending feedback through the translator to the task design (step 7).

The sequence diagram assumes a simple conversation flow, but in reality, there may be

additional complexities such as:

• Handling multiple users simultaneously

• Managing long conversations or multi-turn dialogues

• Integrating with other systems or services (e.g., calendar, email, etc.)

 Sekar S., Abishek Aravinth K., Balamurugan M., Elavarasan D., Ganesh Kumar M

Journal of Artificial Intelligence and Capsule Networks, September 2024, Volume 6, Issue 3 269

• Handling errors or disconnection.

3.1 List of Modules

The proposed system consists of four modules. They are:

• Speech Recognition

• Text to Speech Module and Speech to Text Module

• Natural Language Processing (NLP)

• Speech Recognition Module

The Recognizer class is employed for converting audio files into textual format and

facilitating speech synthesis. The energy threshold function, distinguishes between silence and

speech based on signal intensity. Signals below this threshold are categorized as silence, while

those exceeding it are identified as speech. To optimize performance in varying acoustic

environments, the Recognizer instance employs adjust_for_ambient_noise(source,

duration=1), an adaptive mechanism that dynamically calibrates the energy threshold using

audio captured from the source (an AudioSource instance). This feature ensures robust

performance by effectively mitigating the impact of ambient noise on speech recognition

accuracy.

• Text to Speech Module and Speech to Text Module

Pyttsx3 a robust Python library designed for text-to-speech conversion, equipped with

functionalities to modify voice characteristics, speech rate, and volume settings is used in the

proposed work for text to speech conversion. Complementing this, Python offers the Speech

Recognition API (speech_recognition library), pivotal for converting audio inputs into text,

thereby supporting diverse applications. This API efficiently handles the transcription of

extensive audio files into textual format, catering to various computational and analytical tasks.

Additionally, the proposed system integrates advanced TTS engines such as sapi5 and espeak,

further augmenting its capabilities to process audio inputs with enhanced accuracy and

versatility in speech synthesis applications.

Smart Assistant for Essential Voice Interaction (EVI Assistant)

ISSN: 2582-2012 270

• Natural Language Processing

The NLTK (Natural Language Toolkit) is used in the proposed work to enhance the

system by providing essential text preprocessing, normalization, entity recognition, and

classification capabilities. This ensures that the text data fed into TTS or speech recognition

systems is clean, well-formatted, and appropriately processed. Connectionist Temporal

Classification (CTC) is a key algorithm in automatic speech recognition (ASR) that operates

on a sequence-to-sequence modelling approach. It efficiently handles variable-length

alignments between input audio features and output symbols, such as characters or phonemes,

making it a popular choice in modern ASR systems.

• Process and Executes the Required Command

Initially, the specified command is processed through the speech recognition module to

convert spoken language into text, after which it is temporarily stored for further analysis. This

text undergoes analysis to determine the user's intent, thereby guiding subsequent actions

conducted within a continuous loop structure. The system effectively executes identified

commands based on the interpreted user input, ensuring precise and prompt responses to user

requests. This approach enables seamless interaction and efficient task execution in

applications requiring dynamic command interpretation and execution.

4. Implementation Process

The activation of voice assistants typically begins with a signal word, such as "Hey

Siri!" or "Alexa!" This signal prompts the device to start listening attentively. Once activated,

the voice assistant processes the spoken request using Speech-to-Text (STT) technology,

converting it into text for analysis. The request is then compared with other commands in the

source code, which translates it into actionable commands that the voice assistant can execute.

Subsequently, the assistant responds through Text-to-Speech (TTS), providing the user with

the requested information or completing the task specified. With each interaction, these devices

improve their responsiveness and efficiency in fulfilling user commands.

To implement speech recognition in Python, the libraries like Speech Recognition and

pyaudio using pip is installed. Then, the pyaudio is used to capture audio input from the

 Sekar S., Abishek Aravinth K., Balamurugan M., Elavarasan D., Ganesh Kumar M

Journal of Artificial Intelligence and Capsule Networks, September 2024, Volume 6, Issue 3 271

microphone. After that, the Speech Recognition's recognize_google method is utilized to

convert the audio input into text using Google's speech recognition API. The error handling

strategies are used to improve the robustness of the TTS and speech recognition systems and

ensure a better user experience even when errors occur. This approach enables the creation of

a more reliable and a powerful speech recognition system in Python.

To implement speech recognition module using Python:

a. Install Required Libraries

Install the necessary Python libraries such as Speech Recognition for speech

recognition and pyaudio for audio input/output.

pip install SpeechRecognition pyaudio

b. Capture Audio Input

Use the pyaudio library to capture audio input from the microphone.

import speech_recognition as sr

Initialize the recognizer

recognizer = sr.Recognizer()

Capture audio from the microphone

with sr.Microphone() as source:

 print("Speak something:")

c. Perform Speech Recognition

Use the recognize_google method from SpeechRecognition to convert the audio input

into text using Google's speech recognition API.

 # Use Google's speech recognition API to convert audio to text

 recognized_text = recognizer.recognize_google(audio_input)

Smart Assistant for Essential Voice Interaction (EVI Assistant)

ISSN: 2582-2012 272

 print("You said:", recognized_text)

 except sr.UnknownValueError:

 print("Sorry, could not understand audio.")

 except sr.RequestError as e:

React Native allows for building cross-platform applications, ensuring that your voice

assistant works seamlessly on iOS and Android devices. The research also extends support to

macOS and Windows. It supports ongoing command monitoring and customizable settings,

providing a consistent and interactive user experience across different platforms. Flutter was

used in creating the web application.

5. Result and Discussion

The voice assistant was successfully implemented using a combination of speech

recognition, natural language processing (NLP), and text-to-speech (TTS) technologies. The

system achieved a 92% accuracy rate in recognizing and processing voice commands under

optimal conditions. It effectively executed common tasks such as setting reminders, playing

music, providing weather updates, and answering factual questions. The response time

averaged around 1.5 seconds from voice input to action completion, ensuring a smooth user

experience. The results of the user interface developed are shown in Figure 5.1 to 5.4.

Figure 5.1. User Interface of EVI Assistant

 Sekar S., Abishek Aravinth K., Balamurugan M., Elavarasan D., Ganesh Kumar M

Journal of Artificial Intelligence and Capsule Networks, September 2024, Volume 6, Issue 3 273

Figure 5.2. Working of EVI Assistant

Table 1. Performance Metrics

Metrics Performance Score

Speech Recognition Accuracy 92%

NLP Processing Accuracy 89%

Response Time 1.5 seconds(average)

User Satisfaction Score 8.5/10

Error Rate 8% (mostly due to accents and

noise)

Table 1 shows the performance scores of the developed voice assistant in terms of

accuracy in speech recognition and natural language processing, time taken to give the

response, user satisfaction score, and error rate.

Smart Assistant for Essential Voice Interaction (EVI Assistant)

ISSN: 2582-2012 274

Figure 5.3. Command Given

Figure 5.4. Screenshot of Command Execution

5.1 Advantages

The proposed voice assistants offer hands-free operation, enabling users to perform

tasks and access information using only their voice. This hands-free interaction is particularly

beneficial when users have their hands occupied or are unable to physically interact with

devices.

Voice assistants enhance technology accessibility for individuals with disabilities or

those who find traditional interfaces, such as touchscreens or keyboards, challenging to use.

 Sekar S., Abishek Aravinth K., Balamurugan M., Elavarasan D., Ganesh Kumar M

Journal of Artificial Intelligence and Capsule Networks, September 2024, Volume 6, Issue 3 275

Voice commands allow users to control devices and access information without needing fine

motor skills.

6. Conclusion

As previously mentioned, voice assistants are among the most effective problem solvers

in the modern world, as demonstrated by numerous proposals and examples. These examples

clearly show that voice assistants are rapidly evolving as a significant component of artificial

intelligence. In the past, their capabilities were limited to simple tasks like announcing the date

and conducting web searches. However, functions of the proposed voice assistant highlight

their substantial advancement and growing importance.

Our primary goal is to continue enhancing and refining voice assistants, making them

even more advanced and aiming to create the best AI solutions available. This development

will save users considerable time and significantly improve their overall experience. In

conclusion, we are committed to striving for excellence and delivering one of the best voice

assistants possible, ensuring it meets the highest standards of functionality and user

satisfaction. . In future, the voice assistant’s capabilities will be further enhanced with ability

to send and receive emails.

References

[1] Singh, Shubham, Shubham Singh Panwar, and Harsh Dahiya. "Artificial intelligence

voice assistant and home automation." International Journal of Science and Research

Archive 12, no. 1 (2024): 2006-2017.

[2] Zwakman, Dilawar Shah, Debajyoti Pal, and Chonlameth Arpnikanondt. "Usability

evaluation of artificial intelligence-based voice assistants: The case of Amazon Alexa."

SN Computer Science 2, no. 1 (2021): 28.

[3] Subhash, S., Prajwal N. Srivatsa, S. Siddesh, A. Ullas, and B. Santhosh. "Artificial

intelligence-based voice assistant." In 2020 Fourth world conference on smart trends in

systems, security and sustainability (WorldS4), London, UK, IEEE, 2020.593-596.

Smart Assistant for Essential Voice Interaction (EVI Assistant)

ISSN: 2582-2012 276

[4] Dellaert, Benedict GC, Suzanne B. Shu, Theo A. Arentze, Tom Baker, Kristin Diehl,

Bas Donkers, Nathanael J. Fast et al. "Consumer decisions with artificially intelligent

voice assistants." Marketing Letters 31 (2020): 335-347.

[5] Geetha, V., C. K. Gomathy, Kottamasu Manasa Sri Vardhan, and Nukala Pavan Kumar.

"The voice enabled personal assistant for Pc using python." International Journal of

Engineering and Advanced Technology 10, no. 4 (2021): 162-165.

[6] Buhalis, Dimitrios, and Iuliia Moldavska. "In-room voice-based AI digital assistants

transforming on-site hotel services and guests’ experiences." In Information and

Communication Technologies in Tourism 2021: Proceedings of the ENTER 2021

eTourism Conference, January 19–22, 2021. Springer International Publishing, 2021.

30-44

[7] Sprengholz, Philipp, and Cornelia Betsch. "Ok Google: Using virtual assistants for data

collection in psychological and behavioral research." Behavior Research Methods

(2021): 1-13.

[8] Kumar, Rahul, Garima Sarupria, Varshil Panwala, Smit Shah, and Nehal Shah. "Power

efficient smart home with voice assistant." In 2020 11th International Conference on

Computing, Communication and Networking Technologies (ICCCNT), Kharagpur,

India, IEEE, 2020. 1-5

[9] Kepuska, Veton, and Gamal Bohouta. "Next-generation of virtual personal assistants

(microsoft cortana, apple siri, amazon alexa and google home)." In 2018 IEEE 8th

annual computing and communication workshop and conference (CCWC), Las Vegas,

NV, USA. IEEE, 2018. 99-103

[10] Terzopoulos, George, and Maya Satratzemi. "Voice assistants and artificial intelligence

in education." In Proceedings of the 9th Balkan Conference on Informatics, Sofia

Bulgaria 2019. 1-6.

[11] Singh, Nivedita, Diwakar Yagyasen, Surya Vikram Singh, Gaurav Kumar, and Harshit

Agrawal. "Voice assistant using python." International Journal of Innovative Research

in Technology 8, no. 2 (2021): 2349-6002.

 Sekar S., Abishek Aravinth K., Balamurugan M., Elavarasan D., Ganesh Kumar M

Journal of Artificial Intelligence and Capsule Networks, September 2024, Volume 6, Issue 3 277

[12] Krishnaraj, P., F. Mohamed Faris, and D. Rajesh. "Portable voice recognition with gui

automation." International Journal of Innovative Research in Technology (IJIRT) 9, no.

6 (2021): 20-23.

[13] Paul, Rajdip, and Nirmalya Mukhopadhya. "A Novel Python-based Voice Assistance

System for reducing the Hardware Dependency of Modern Age Physical Servers."

International Research Journal of Engineering and Technology, (May) (2021): 1425-

1431.

[14] Sayyed, Abeed, Ashpak Shaikh, Ashish Sancheti, Swikar Sangamnere, and Jayant H.

Bhangale. "Desktop assistant AI using python." International Journal of Advanced

Research Science, Communication and Technology (IJARSCT) 6, no. 2 (2021). 1327-

1335

[15] Tankovska, H. "Number of digital voice assistants in use worldwide 2019-2023."

Retrieved Sep 15 (2020): 2020. https://www.statista.com/statistics/973815/worldwide-

digital-voice-assistant-in-use/.

