
Journal of Artificial Intelligence and Capsule Networks (ISSN: 2582-2012)
www.irojournals.com/aicn/

Journal of Artificial Intelligence and Capsule Networks, December 2024, Volume 6, Issue 4, Pages 494-511 494
DOI: https://doi.org/10.36548/jaicn.2024.4.008

Received: 15.11.2024, received in revised form: 23.12.2024, accepted: 11.01.2025, published: 24.01.2025
 © 2024 Inventive Research Organization. This is an open access article under the Creative Commons Attribution-NonCommercial International (CC BY-NC 4.0) License

Malware Classification using Static

Analysis Approaches

Dikshyant Dhungana1, Ashish Sapkota2, Sabigya Pokharel3,

Sudarshan Devkota4, Bishnu Hari Paudel5

Department of Electronics and Computer Engineering, Institute of Engineering (IOE) Pashchimanchal

Campus, Tribhuvan University, Pokhara, Gandaki, Nepal

Email: 1dikshyantdhungana@gmail.com, 2asissapkota42@gmail.com, 3sabigyapokharel@gmail.com,

4sudarshandevkota22@gmail.com, 5bishnuhari@wrc.edu.np

Abstract

Malware threats are becoming increasingly complex, thereby posing greater challenges

to effective mitigation efforts. It has become more essential than ever to address the malware,

as it poses significant threats to individuals, organizations, and governments worldwide.

Therefore, effective and more advanced malware classification techniques are necessary to

address these malware threats. This proposed study presents an advanced approach to malware

classification using static analysis which examines files without executing them. A structured

framework was developed for systematic classification which involves gathering raw malware

samples from various sources. Raw malware samples were deconstructed and information,

such as the frequency of the opcode and the size of the section were collected. Experiments

were carried out to assess the effectiveness of several classifiers in terms of accuracy, precision,

recall, and F1 score across distinct malware classifications. Random Forest emerged as the best

model in the examined dataset, with an accuracy of over 85.0%. These results demonstrate the

effectiveness of Random Forest based on extracted datasets. The proposed research focuses on

malware detection and classification, thereby enhancing cybersecurity in modern computing

environments.

Keywords: Malware, Opcodes, Static Analysis, Unigram Analysis, Multiclass Classifier.

 Dikshyant Dhungana, Ashish Sapkota, Sabigya Pokharel, Sudarshan Devkota, Bishnu Hari Paudel

Journal of Artificial Intelligence and Capsule Networks, December 2024, Volume 6, Issue 4 495

1. Introduction

With rapid advancement in the field of computers, different technologies involved in

the system have reached the horizon. Software is one of the examples. To begin with, it is the

set of instructions used to perform specific tasks on the computer. Some software is useful,

whereas some may affect the system. Those that affect the system are termed malware.

Malware is a software program designed to gain access to a computer system without the

owner’s permission. The advancement in malware causes it to be smarter, that is, it can toy

with our information without getting noticed and harm us in the worst way possible. Different

malware, such as viruses, worms, Trojans, ransomware, spyware, and adware are classified

based on payload, vulnerability exploitation method and propagation methods [1]. A study

suggests that more than 100,000,000 malware were registered in 2022 alone [2]. In recent

years, there has been the emergence of new malware such as WannaCry, a ransomware that

uses encryption to hold victim data to demand ransom [3]. Similarly, REvil stands for

Ransomware Evil, which appeared first in 2021, a ransomware, exploits systems using remote

access vulnerabilities, turns off blacklisted processes, encrypts files, and infiltrates information

[4]. These attacks highlight the sophistication and scale of modern malware campaigns. As

cybercriminals constantly develop new techniques and obfuscation methods, the traditional

approach fails to detect the malware. However, these approaches fail against the obfuscated

malware, which changes its structure to avoid detection. Therefore, a completely new type of

automated system is needed for the classification of new types of malware i.e., static analysis;

particularly, opcode analysis. Static analysis is a process of analysing a program's binary code

without executing it [5]. For this, the malware needs to be in a controlled sandbox environment

where we can observe its behaviour. Opcode analysis focuses on the low-level machine

instructions that drive program execution so it will be difficult for the malware to disguise itself

and reveal its true behaviour. Compared to dynamic analysis, static analysis is faster but also

more efficient for large-scale, real-time malware detection.

1.1 Information Related to Malware Families

With evolving cybersecurity and extensive digitization, malware is also evolving and

posing new threats. The dataset that is taken into consideration in the study is relatively new,

dated 2020. The in-depth study of this relatively new malware or its characteristics comparison

has not been studied previously. This section includes a short description of the malware

Malware Classification using Static Analysis Approaches

ISSN: 2582-2012 496

families that were studied. These malware families are the only classes considered in this

research.

Loki is a malware that steals information, which was first detected in February 2015.

This spyware arrives as an attachment in emails. Loki does not have a downloading capability.

Loki tries to steal usernames and passwords from web browsers such as Chromium, Apple

Safari, Google Chrome, Internet Explorer, Opera, etc. Loki creates a backdoor that allows

hackers to install additional software.[6] As its name suggests, Formbook malware is a type of

spyware that steals data from HTML forms as well as from the autofill feature of browsers

before the information reaches the secure server. [7] Amadey is a type of dropper malware that

is capable of stealing sensitive information and installing additional malware after receiving

the command from the attacker. The first appearance of this malware was in 2018. [8]

The njRAT malware family is a widespread remote access trojan (RAT). It allows

attackers to steal passwords, log keystrokes, activate webcam and microphone, give access to

the command line and allows attackers to remotely execute and manipulate files and system

registry. [9] Smokeloader is a type of malicious program that can gain access to user’s systems

and install other malware programs. Its existence dates back to 2011, and has been active since

then. It performs tasks such as stealing data and launching distributed denial of service

attacks.[10]

Understanding the various research done by various researchers on the said topic, we

get an overview of the use of machine learning to classify malware using various approaches.

Moreover, analyzing the different malware families provided us with an in-depth insight into

their characteristics and features. Taking into account all the factors, this research aims to use

various static analysis approaches for feature selection and evaluate the performance and

capabilities of various classification models.

2. Related Work

An appreciable amount of work has been done in the field of malware detection and

classification, using various technologies and algorithms. Malware detection and classification

can be carried out based on static and dynamic analysis. Here we have used the static analysis

approach as it is more efficient, early detection of malware is possible, detection of dormant

 Dikshyant Dhungana, Ashish Sapkota, Sabigya Pokharel, Sudarshan Devkota, Bishnu Hari Paudel

Journal of Artificial Intelligence and Capsule Networks, December 2024, Volume 6, Issue 4 497

malware is possible and can be scaled to analyze large numbers of files easily and efficiently

than dynamic analysis and the process overhead is not possible in static approach [11].

The authors in [12] compared the different static feature extraction techniques for

malware detection. They used Byte n-gram features, opcode n-grams and Portable Executables

analysis to highlight the different malware signature capture and its impact on improving

detection rates by providing statistical difference between legitimate and malicious files.

However, this study did not address the dimensionality challenges that arise from high-

dimensional data. In [11], Hassen et al. focused on opcode n-grams and control flow graphs to

enhance malware accuracy. The authors explored control statement shingling, where the

malware code is structured into function and control blocks, to provide additional context in

feature representation as well as reduction techniques to tackle dimensionality issues and

improve computational efficiency. However, this approach introduced computational overhead

due to the complexity of control flow graph analysis. In [13], Islam et al. focus on static analysis

methods using string and function features extracted from executable files. They serve as

indicators of signatures that can help identify and differentiate malware from legitimate

software. This study emphasizes the utility of text-based string matching to identify malware

signatures. Although this study identified specific malware signatures, it struggles against

obfuscated malwares. In [14], Schultz et al. extracted the features that represented features

contained within each binary. They examined the subset of PE executables using LibBFD and

extracted various characteristics of the file such as header information, file sections, import and

export functions, code and instructions, entropy, and metadata.

The modelling of extracted features plays a pivotal role in malware detection and

classification, with various authors exploring different techniques. In [14], Schultz et al.

proposed a data mining framework for malware detection, utilizing algorithms such as Decision

Trees, Random Forests, and Support Vector Machines (SVM) to analyze executable files and

identify malicious patterns. In [15], Singh et al. expanded on this by evaluating the

effectiveness of data mining methods like Naive Bayes and the rule-based RIPPER algorithm.

Their approach involved extracting features such as program byte sequences, printed text, and

DLL imports to classify new binaries as harmful or benign. However, byte sequence analysis

faces challenges from binary packing techniques like UPX, which obscure raw code,

complicating detection [16]. To address this limitation, opcode sequences and n-gram features

have been proposed as alternatives. These techniques analyse disassembled binary instructions,

Malware Classification using Static Analysis Approaches

ISSN: 2582-2012 498

enabling robust clustering of malware samples and mitigating the impact of code obfuscation

[17]. This evolution highlights the continuous refinement of feature modelling to counter

sophisticated malware strategies effectively by focusing on binary-level unpacking techniques.

However, this technique causes computational overhead, and sometimes the binary-level

unpacking does not show the original code of malware when they are largely obfuscated or

dynamically packed.

To fill the gap, we have utilized a dataset of over 200,000 malware samples from 870

unique families ensuring a thorough analysis of malware types unlike earlier studies. By using

opcode unigram analysis and portable executables, we have extracted features that effectively

captures the malware behaviour, even against obfuscation. We have made use of a custom

count vectorizer to analyse specific sections of the PE headers of the executables and opcodes

from the disassembled code, which increases the computational efficiency by almost 50%.

Among the different classifiers evaluated, Random Forest emerges as the best-performing

classifier achieving a validation accuracy of 85%. Furthermore, the static analysis approach

used in this experiment offers a scalable and efficient approach to malware detection which is

critical for real-time malware detection.

While earlier studies have contributed significantly to malware detection, there were

limitations such as computational overhead, high dimensionality, and vulnerability to

obfuscation. All these limitations are addressed by this study through robust datasets, feature

extraction, and optimized classifier performance, increasing the efficiency of malware

classification using static analysis approaches.

3. Proposed Model

The proposed model outlines a comprehensive approach to malware classification,

detailing each step from data acquisition to performance evaluation. This includes the dataset,

pre-processing, model description, and performance metrics.

3.1 Dataset

A well-structured and quantitative dataset is crucial for effective analysis and accurate

predictions in any classification process. For this research, we utilized a dataset of malware

samples sourced from Malware Bazaar [18], a widely respected repository known for its

 Dikshyant Dhungana, Ashish Sapkota, Sabigya Pokharel, Sudarshan Devkota, Bishnu Hari Paudel

Journal of Artificial Intelligence and Capsule Networks, December 2024, Volume 6, Issue 4 499

extensive and diverse collection of up-to-date malware samples. The dataset acquired from

Malware Bazaar was the raw executables that were in the form of password-protected zip.

We acquired 291 GB of malware samples from Malware Bazaar, covering the period

from 2020-02-25 to 2022-08-20. The password-protected zip was extracted using a bash script

to get the Windows executable files. Using the Malware Bazaar API, the samples were

extracted, labelled, and classified into 231,015 samples, spanning 870 unique malware

families. Out of these, 33 families contained more than 1,000 samples. For focused analysis,

we selected five prominent malware families— Amadey, Loki, njrat, SmokeLoader, and

Formbook—along with a non-malicious class. After preprocessing, the dataset size was

reduced to 16 GB, containing 25,522 samples across the six classes. The class distribution of

the dataset is shown in the Table.1 below.

Table 1. Class Distribution of the Dataset

Class Sample Count

Amadey 2703

Formbook 6215

Loki 5686

Njrat 3763

SmokeLoader 5500

Non-malicious 1655

3.2 Data Pre-processing

After collecting the data from various sources, we have to perform a set of steps to

make the data suitable for machine learning models.

1. Data Cleaning: We have removed the corrupted data, null values, and missing values

and eliminated the redundant values as well.

2. Class Balancing: To address the class imbalance, we employed the Synthetic Minority

Over-sampling Technique (SMOTE), a widely used method for oversampling. SMOTE

ensures more balanced class distributions by interpolating between existing samples to

Malware Classification using Static Analysis Approaches

ISSN: 2582-2012 500

create synthetic samples for the minority classes. SMOTE was used for our dataset's

underrepresented classes, Amadey, Njrat, and Non-malicious.

3. Data Splitting: The data was split into training and testing sets in the ratio of 80 to 20.

3.3 Feature Extraction

To prepare the data for modeling, the raw executable files were disassembled, and their

static features were extracted. This research focused on static analysis to work on the properties

of malware that do not require execution. The following steps were employed:

Disassembly using objdump: The executable files were disassembled into assembly

language using the objdump tool to examine the structural and functional attributes.

Custom Feature Vectorization Using Count Vectorizer: To analyze specific sections

of the PE headers of the executables and the opcodes from the disassembled code, we

developed a custom Count Vectorizer. This technique, commonly used in NLP, provided us

with the frequency of the text and section counts in the disassembled code.

The following static features were prioritized and extracted for this research:

1. File Size: The size of each executable was recorded, as variations in file size often

provide valuable insights into malware characteristics, such as complexity and functionality.

2. PE Sections: Key sections of the Portable Executable (PE) format were analyzed, as

these sections often reveal critical details about the structure of the malware. The following

sections were examined.

.text contains the executable code. .idata stores import information, including external

libraries. .data contains initialized data. .bss holds uninitialized data. .rdata contains read-only

data, such as constants. .edata stores export information. .rsrc holds resources like icons,

strings, and images. .tls Used for thread-local storage. .reloc contains relocation information

for dynamic address adjustments.

3. Opcode Analysis using Unigrams: Opcode (Operation code) represents the

instructions in the disassembled code of the executable. We conduct unigram analysis by

counting the occurrences of individual opcodes. This provided a granular view of the

malware’s behaviour and functional pattern. Unlike other features, all unigrams were included

 Dikshyant Dhungana, Ashish Sapkota, Sabigya Pokharel, Sudarshan Devkota, Bishnu Hari Paudel

Journal of Artificial Intelligence and Capsule Networks, December 2024, Volume 6, Issue 4 501

in the analysis as the opcode vocabulary was relatively small, making it computationally

efficient to process.

3.4 Model Selection

In creating a robust malware classification system to determine which model offers the

optimal performance for the classification problem, model selection is vital, which involves

testing multiple machine learning algorithms. Given the multi-class nature of the problem, we

experimented with a variety of classification techniques to classify malware into five families

and a non-malicious class.

Naïve Bayes classifier is one of the supervised machine learning algorithms used for

text classification that is based on Bayes Theorem. Logistic Regression (One-vs-Rest) is a

discriminative classifier used for classification and predictive analysis. Logistic regression

calculates the likelihood of an event, such as voting or not voting, based on a collection of

independent variables. Support Vector Machine(SVM) is a supervised machine learning

algorithm that is used for classification as well as regression. SVM algorithm classifies data by

finding the maximum separating hyperplane between each class in the target space. Decision

tree is a type of supervised learning algorithm that uses a tree-like model to make decisions

based on input data. They break down complex decisions into a series of straightforward

choices, making them easy to visualize and interpret. K-Nearest Neighbors(KNN) is a

supervised learning algorithm that is used in classification. It works by finding the k nearest

data points to a query point and making predictions based on their labels. Random forest is a

commonly used machine learning algorithm that combines the output of multiple decision trees

to reach a single result. When multiple decision trees form an ensemble in the random forest,

they predict more accurate results. When using a random forest classifier, various

hyperparameters can be used to alter the decision tree used and the ensemble. It is done through

hyperparameter tuning, which is choosing the optimal hyperparameter for the model

developed.

3.5 Performance Metrics

The methods used in evaluating the performance of the model are mentioned in this

section. Accuracy is one of the performance metrics that measures the proportion of correctly

predicted instances out of the total instances, and evaluates the overall performance of the

model. The performance of a model does not depend on the accuracy alone, but also on other

Malware Classification using Static Analysis Approaches

ISSN: 2582-2012 502

metrics like precision, recall, and F1-score of each class to evaluate the hyperparameters. These

metrics were derived from the confusion matrix, which provides a comprehensive view of the

model’s performance. Precision is a metric that measures how a model correctly predicts the

positive class. The recall is an indicator of the model’s ability to identify all the relevant classes.

The F1-score provides the single value for the evaluation of the model and is the harmonic

mean of precision and recall.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (3)

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

3.6 Tools Used

The machine learning models were implemented using Python, utilizing the following

libraries:

Scikit-Learn: An open-source machine learning library used for building machine

learning models like Random Forest, SVM, Logistic Regression, etc.

Pandas: A Python library used for analysing, cleaning, exploring, and manipulating data.

Numpy: A Python library used for performing optimized operations on large arrays.

Matplotlib: A library used for data visualization.

GridSearchCV: It is used for hyperparameter tuning.

Objdump: A tool used to disassemble the executable files into assembly language.

4. Results and Discussion

The result and analysis of the corresponding result are mentioned in this section.

 Dikshyant Dhungana, Ashish Sapkota, Sabigya Pokharel, Sudarshan Devkota, Bishnu Hari Paudel

Journal of Artificial Intelligence and Capsule Networks, December 2024, Volume 6, Issue 4 503

4.1 Features Overview

After various pre-processing using the dataset and extraction of the features, those

features were transformed into a structured dataset, enabling robust training and evaluation of

the classification model. ANOVA analysis (Figure 1) further highlighted the relative

importance of these features, as depicted in the following feature importance chart.

Figure 1. Feature Importance Score of Top 12 Features

As shown in the feature importance chart, the .tls section of the Portable Executable

(PE) format, used for thread-local storage, was identified as the most important feature,

achieving the highest F1 score. This indicates that the presence and characteristics of the .tls

section are highly indicative of malicious behavior. Even if malware attempts to obfuscate its

purpose or evade detection through thread-local storage, the machine-learning model

effectively flags such anomalies.

The .text section, which contains the executable code, is also ranked as a critical feature,

providing significant insights into the malware’s functionality. Its high F1-score highlights its

importance in distinguishing malicious activities embedded in the executable code. Other PE

sections, such as .idata, .data, and .edata also contributed meaningfully to the classification

process. These sections offer structural and behavioral details of malware that assist the model

in accurately identifying and categorizing different malware families.

Additionally, the frequency of certain opcodes—instructions like INC, MOV, OR,

SUB, and JMP—played a crucial role in determining malware behavior. These opcodes are

Malware Classification using Static Analysis Approaches

ISSN: 2582-2012 504

often associated with malicious operations, such as memory manipulation, control flow

alteration, and data tampering, making them valuable features for the model to detect malicious

intent.

By combining structural insights from PE sections and behavioural patterns from

opcode frequencies, the model effectively distinguished malicious from non-malicious files

and classified them into families, showcasing the robustness of the feature selection process.

4.2 Model Selection

The performance of various classifiers (Table 2) was assessed on the pre-processed

dataset. Initially, we trained and evaluated models using standard hyperparameters to establish

a baseline. We focused from the base level and upwards based on complexity to find the best-

performing algorithm for the extracted dataset format.

Table 2. Experiment Results of Different Classifiers

Classifier Scaled Dataset
Train Accuracy

(%)

Val Accuracy

(%)

Naı̈ve Bayes No 40 41

Logistic Regression

(OVR)
Yes 61 60

Decision Tree No 96 79

Support Vector Machines Yes 66 65

KNN Yes 96 84

Random Forest No 98 85

Among the tested algorithms, Random Forest emerged as the best-performing model,

achieving the highest validation accuracy of 85%. The high accuracy achieved by Random

Forest can be ascribed by its capacity to handle non-linear datasets by combining the results of

multiple decision trees. However, Random Forest has limitations, such as difficulties in

generalizing to unseen datasets, especially when faced with smaller datasets. Additionally,

Random Forest uses multiple decision trees to make predictions so it becomes harder to

understand how the model is making decisions causing a lack of clarity. Furthermore, Random

Forest’s effectiveness is dependent upon hyperparameter tunings, such as the maximum

 Dikshyant Dhungana, Ashish Sapkota, Sabigya Pokharel, Sudarshan Devkota, Bishnu Hari Paudel

Journal of Artificial Intelligence and Capsule Networks, December 2024, Volume 6, Issue 4 505

number of trees and maximum depth of the trees, which needs to be adjusted for various

datasets.

K-Nearest Neighbors (KNN) and Decision Tree followed, achieving validation

accuracies of 84% and 79%, respectively. KNN performed well but can be computationally

expensive, especially with large datasets, as it relies on distance calculations for each instance.

Decision Tree showed reasonable accuracy but is prone to overfitting without proper pruning

techniques, which limits its generalizability. Among the lower-performing models, the Support

Vector Machine (SVM) achieved 65% accuracy but struggled due to the large number of

features (51 in this dataset). Logistic Regression achieved 60% accuracy, delayed by its

inability to model non-linear relationships and overlapping feature distributions. Applying non-

linear feature transformations could enhance its performance.

Naïve Bayes recorded the lowest accuracy at 41%, primarily due to its assumption of

feature independence, which is not valid in malware classification where features like PE

sections and opcode frequencies are interdependent. Feature selection and ensuring greater

independence among features could improve its accuracy. While Random Forest displayed the

highest accuracy, it is important to note that its performance may vary with different datasets,

and other algorithms such as SVM or KNN could outperform it on more optimized or specific

datasets.

To find the optimal performance of the classifier, hyperparameter tuning was performed

using GridCV for each classifier. Each classifier has its own hyperparameter, so after

exhaustive experimentation, the optimal hyperparameter for each classifier was determined.

The classifier and its corresponding hyperparameters are mentioned in Table 3.

Table 3. Optimal Hyperparamter Values

Classifier Hyperparamter Value

Naïve Bayes alpha 1.5

Logistic Regression multi_class ovr

Logistic Regression c 100

Logistic Regression class_weight balanced

Malware Classification using Static Analysis Approaches

ISSN: 2582-2012 506

Logistic Regression penalty l2

Logistic Regression solver saga

Decision Tree criterion entropy

Decision Tree max_depth 30

Decision Tree min_samples_split 5

Support Vector Machine kernel rbf

Support Vector Machine gamma auto

Support Vector Machine class_weight balanced

KNN n_neighbors 5

KNN weights distance

KNN metric manhattan

Random Forest n_estimators 220

Random Forest max_depth 30

Random Forest min_samples_split 4

Random Forest min_samples_leaf 2

Random Forest max_features 10

To evaluate the performance of the classifiers, metrics other than accuracy should also

be considered. Precision, recall, and F1-score—commonly used metrics for classification

tasks—were calculated for each malware class. Table 4 summarizes the experimental results

across different malware classes.

 Dikshyant Dhungana, Ashish Sapkota, Sabigya Pokharel, Sudarshan Devkota, Bishnu Hari Paudel

Journal of Artificial Intelligence and Capsule Networks, December 2024, Volume 6, Issue 4 507

Table 4. Experiment Results of Different Classes

Class Precision Recall F1-Score

Amadey 0.97 0.82 0.89

Formbook 0.71 0.82 0.76

Loki 0.76 0.66 0.70

SmokeLoader 0.92 0.96 0.945

njrat 0.88 0.88 0.88

Non-malicious 0.88 0.89 0.89

The overall result highlights that the model performs well across most classes, with

SmokeLoader achieving the highest precision and recall. However, Loki showed relatively

lower performance, which could be attributed to variations in its characteristics or insufficient

representation in the dataset.

Figure 2. Confusion Matrix for Validation Set

The confusion matrix, shown in Figure 2, further validates the model’s classification

performance, highlighting its ability to accurately distinguish between malware families. The

confusion matrix demonstrates that the model is effective in detecting and classifying malwares

between different families. However, due to similarities in the characteristics of some malware

Malware Classification using Static Analysis Approaches

ISSN: 2582-2012 508

families, there are some misclassifications. To exemplify, Loki and njrat are identified with

high accuracy (976 for Loki and 1084 for njrat). On the contrary, SmokeLoader is occasionally

misclassified as Loki and njrat because of the overlapping characteristics of the malware

families. However, Non-malicious files are generally classified correctly. Despite this

misclassification, the high accuracy in the diagonals shows a strong overall accuracy.

Finally, the Random Forest classifier with hyperparameter tuning was identified as the

most effective model for this classification task, offering a balanced trade-off between

accuracy, interpretability, and computational efficiency.

5. Conclusion

The study, conducted in the malware classification using static analysis, classifies the

malware by the family using machine learning. To sum up, the analysis revealed the significant

variations in the accuracy among the algorithms due to their inability to handle non-linearity

and overlapping characteristics in data. Although algorithms like Naı̈ve Bayes and Logistic

Regression struggled with accuracy because of huge noise and overlap, Random Forest

demonstrated high accuracy, precision, and recall, making it suitable for such classification

tasks. Its ability to handle complex patterns and reduce overfitting. This makes Random Forest

the best fit for accurately classifying malware families, thereby mitigating potential threats in

the user’s system. In the future, the study intends to expand the data set, which was limited in

this experimental analysis, with more malware samples due to the evolving nature of malware.

Models trained on previous malware samples may not be able to detect new types of malware.

Also, will explore more about bigram and trigram opcode analysis, and also use boosting

methods and more complex algorithms, such as ANN.

References

[1] Namanya, Anitta Patience, Andrea Cullen, Irfan U. Awan, and Jules Pagna Disso. "The

world of malware: An overview." In 2018 IEEE 6th international conference on future

Internet of Things and cloud (FiCloud), Barcelona, Spain. IEEE, 2018. 420-427

[2] Dinh, Phai Vu, Nathan Shone, Phan Huy Dung, Qi Shi, Nguyen Viet Hung, and Tran

Nguyen Ngoc. "Behaviour-aware malware classification: Dynamic feature selection."

In 2019 11th International Conference on Knowledge and Systems Engineering (KSE).

IEEE, 2019. 1-5

 Dikshyant Dhungana, Ashish Sapkota, Sabigya Pokharel, Sudarshan Devkota, Bishnu Hari Paudel

Journal of Artificial Intelligence and Capsule Networks, December 2024, Volume 6, Issue 4 509

[3] Chen, Qian, and Robert A. Bridges. "Automated behavioral analysis of malware: A

case study of wannacry ransomware." In 2017 16th IEEE International Conference on

machine learning and applications (ICMLA),Cancun, Mexico. IEEE, 2017. 454-460.

[4] Jarjoui, Samir, Robert Murimi, and Renita Murimi. "Hold my beer: a case study of how

ransomware affected an Australian beverage company." In 2021 International

conference on cyber situational awareness, data analytics and assessment (cybersa)

Dublin, Ireland. IEEE, 2021. 1-6.

[5] Vinayakumar, R., Mamoun Alazab, K. P. Soman, Prabaharan Poornachandran, and

Sitalakshmi Venkatraman. "Robust intelligent malware detection using deep learning."

IEEE access 7 (2019): 46717-46738.

[6] S. R. Ariani and R. Lumanto, “Study of lokibot infection against indonesian network,”

[7] N. Villeneuve, R. Eitzman, S. Nemes, and S. Dean, Formbook,

https://cloud.google.com/blog/topics/threat-intelligence/formbook-malware-

distribution-campaigns/, 2017.

[8] Z. Tilsiter, Amadey, https://darktrace.com/blog/amadey-info-stealer-exploiting-n-day-

vulnerabilities, 2023.

[9] Rashid, Salar Jamal, Shatha A. Baker, Omar I. Alsaif, and Ali I. Ahmad. "Detecting

Remote Access Trojan (RAT) Attacks based on Different LAN Analysis Methods."

Engineering, Technology & Applied Science Research 14, no. 5 (2024): 17294-17301.

[10] THREATLABZ, Smoke loader, https://www.zscaler.com/blogs/security-

research/brief-history-smokeloader-part-1, 2024.

[11] Hassen, Mehadi, Marco M. Carvalho, and Philip K. Chan. "Malware classification

using static analysis based features." In 2017 IEEE symposium series on computational

intelligence (SSCI), IEEE, 2017. 1-7.

[12] Ranveer, Smita, and Swapnaja Hiray. "Comparative analysis of feature extraction

methods of malware detection." International Journal of Computer Applications 120,

no. 5 (2015).

Malware Classification using Static Analysis Approaches

ISSN: 2582-2012 510

[13] Islam, Rafiqul, Ronghua Tian, Lynn Batten, and Steve Versteeg. "Classification of

malware based on string and function feature selection." In 2010 Second Cybercrime

and Trustworthy Computing Workshop, IEEE, 2010. 9-17

[14] Schultz, Matthew G., Eleazar Eskin, F. Zadok, and Salvatore J. Stolfo. "Data mining

methods for detection of new malicious executables." In Proceedings 2001 IEEE

Symposium on Security and Privacy. S&P 2001,IEEE, 2000. 38-49.

[15] Singh, Prabhat K., and Arun Lakhotia. "Analysis and detection of computer viruses and

worms: An annotated bibliography." ACM SIGPLAN Notices 37, no. 2 (2002): 29-35.

[16] M. Oberhumer, L. Molnár, and J. F. Reiser, Upx: The ultimate packer for executables-

homepage, 2020.

[17] Hu, Xin, Kang G. Shin, Sandeep Bhatkar, and Kent Griffin. "{MutantX-S}: Scalable

malware clustering based on static features." In 2013 USENIX Annual Technical

Conference (USENIX ATC 13), 2013. 187-198

[18] M. Bazaar, Malware bazaar, https://bazaar.abuse.ch/browse.php, 2024.

Author's biography

Dikshyant Dhungana holds a Bachelor’s Degree in Computer Engineering from Tribhuvan

University. He has a strong interest in Distributed Systems, Cloud Computing, High

Performance Computing and Artificial Intelligence, with a deep passion for advancing

technology through research and innovation. He is interested in building scalable, fault-tolerant

and high-performance systems.

Ashish Sapkota holds a Bachelor of Science in Computer Engineering. He is currently

working as a Flutter developer, focusing on building cross-platform mobile applications. In

addition to his professional role, he is passionate about contributing to advancements in the

fields of Internet of Things (IoT) and Security.

Sabigya Pokharel is a Computer Engineering graduate with a strong interest in research and

development. She is currently working as a Flutter developer, specializing in building cross-

platform mobile applications. Her research interests include deep learning and convolutional

neural networks.

 Dikshyant Dhungana, Ashish Sapkota, Sabigya Pokharel, Sudarshan Devkota, Bishnu Hari Paudel

Journal of Artificial Intelligence and Capsule Networks, December 2024, Volume 6, Issue 4 511

Sudarshan Devkota is a computer engineering graduate with a strong interest in research and

development. Currently working as a Java developer, he focuses on creating scalable and

efficient software solutions while exploring advancements in technology and software

engineering methodologies.

Bishnu Hari Paudel is an Assistant Professor in the Department of Electronics and Computer

Engineering at Pashchimanchal Campus in Tribhuvan University, Nepal. He holds a dual

Master's degree, having earned a Masters in Information Technology at University of Southern

Queensland, Australia and Masters in Science in Communication & Knowledge Engineering

at Tribhuvan University of Nepal. He also completed his Bachelor of Engineering in Computer

Engineering from Pokhara University, Nepal. His research interests include Distributed

Systems, Geographic Information Systems (GIS), and Artificial Intelligence (AI).

