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Abstract 

Malware threats are becoming increasingly complex, thereby posing greater challenges 

to effective mitigation efforts. It has become more essential than ever to address the malware, 

as it poses significant threats to individuals, organizations, and governments worldwide. 

Therefore, effective and more advanced malware classification techniques are necessary to 

address these malware threats. This proposed study presents an advanced approach to malware 

classification using static analysis which examines files without executing them. A structured 

framework was developed for systematic classification which involves gathering raw malware 

samples from various sources. Raw malware samples were deconstructed and information, 

such as the frequency of the opcode and the size of the section were collected. Experiments 

were carried out to assess the effectiveness of several classifiers in terms of accuracy, precision, 

recall, and F1 score across distinct malware classifications. Random Forest emerged as the best 

model in the examined dataset, with an accuracy of over 85.0%. These results demonstrate the 

effectiveness of Random Forest based on extracted datasets. The proposed research focuses on 

malware detection and classification, thereby enhancing cybersecurity in modern computing 

environments. 
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1. Introduction 

With rapid advancement in the field of computers, different technologies involved in 

the system have reached the horizon. Software is one of the examples. To begin with, it is the 

set of instructions used to perform specific tasks on the computer. Some software is useful, 

whereas some may affect the system. Those that affect the system are termed malware. 

Malware is a software program designed to gain access to a computer system without the 

owner’s permission. The advancement in malware causes it to be smarter, that is, it can toy 

with our information without getting noticed and harm us in the worst way possible. Different 

malware, such as viruses, worms, Trojans, ransomware, spyware, and adware are classified 

based on payload, vulnerability exploitation method and propagation methods [1]. A study 

suggests that more than 100,000,000 malware were registered in 2022 alone [2]. In recent 

years, there has been the emergence of new malware such as WannaCry, a ransomware that 

uses encryption to hold victim data to demand ransom [3]. Similarly, REvil stands for 

Ransomware Evil, which appeared first in 2021, a ransomware, exploits systems using remote 

access vulnerabilities, turns off blacklisted processes, encrypts files, and infiltrates information 

[4]. These attacks highlight the sophistication and scale of modern malware campaigns. As 

cybercriminals constantly develop new techniques and obfuscation methods, the traditional 

approach fails to detect the malware. However, these approaches fail against the obfuscated 

malware, which changes its structure to avoid detection. Therefore, a completely new type of 

automated system is needed for the classification of new types of malware i.e., static analysis; 

particularly, opcode analysis. Static analysis is a process of analysing a program's binary code 

without executing it [5]. For this, the malware needs to be in a controlled sandbox environment 

where we can observe its behaviour. Opcode analysis focuses on the low-level machine 

instructions that drive program execution so it will be difficult for the malware to disguise itself 

and reveal its true behaviour. Compared to dynamic analysis, static analysis is faster but also 

more efficient for large-scale, real-time malware detection. 

1.1 Information Related to Malware Families 

With evolving cybersecurity and extensive digitization, malware is also evolving and 

posing new threats. The dataset that is taken into consideration in the study is relatively new, 

dated 2020. The in-depth study of this relatively new malware or its characteristics comparison 

has not been studied previously. This section includes a short description of the malware 
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families that were studied. These malware families are the only classes considered in this 

research. 

Loki is a malware that steals information, which was first detected in February 2015. 

This spyware arrives as an attachment in emails. Loki does not have a downloading capability. 

Loki tries to steal usernames and passwords from web browsers such as Chromium, Apple 

Safari, Google Chrome, Internet Explorer, Opera, etc. Loki creates a backdoor that allows 

hackers to install additional software.[6] As its name suggests, Formbook malware is a type of 

spyware that steals data from HTML forms as well as from the autofill feature of browsers 

before the information reaches the secure server. [7] Amadey is a type of dropper malware that 

is capable of stealing sensitive information and installing additional malware after receiving 

the command from the attacker. The first appearance of this malware was in 2018. [8] 

The njRAT malware family is a widespread remote access trojan (RAT). It allows 

attackers to steal passwords, log keystrokes, activate webcam and microphone, give access to 

the command line and allows attackers to remotely execute and manipulate files and system 

registry. [9] Smokeloader is a type of malicious program that can gain access to user’s systems 

and install other malware programs. Its existence dates back to 2011, and has been active since 

then. It performs tasks such as stealing data and launching distributed denial of service 

attacks.[10] 

Understanding the various research done by various researchers on the said topic, we 

get an overview of the use of machine learning to classify malware using various approaches. 

Moreover, analyzing the different malware families provided us with an in-depth insight into 

their characteristics and features. Taking into account all the factors, this research aims to use 

various static analysis approaches for feature selection and evaluate the performance and 

capabilities of various classification models. 

2.  Related Work 

An appreciable amount of work has been done in the field of malware detection and 

classification, using various technologies and algorithms. Malware detection and classification 

can be carried out based on static and dynamic analysis. Here we have used the static analysis 

approach as it is more efficient, early detection of malware is possible, detection of dormant 
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malware is possible and can be scaled to analyze large numbers of files easily and efficiently 

than dynamic analysis and the process overhead is not possible in static approach [11]. 

The authors in [12] compared the different static feature extraction techniques for 

malware detection. They used Byte n-gram features, opcode n-grams and Portable Executables 

analysis to highlight the different malware signature capture and its impact on improving 

detection rates by providing statistical difference between legitimate and malicious files. 

However, this study did not address the dimensionality challenges that arise from high-

dimensional data. In [11], Hassen et al. focused on opcode n-grams and control flow graphs to 

enhance malware accuracy. The authors explored control statement shingling, where the 

malware code is structured into function and control blocks, to provide additional context in 

feature representation as well as reduction techniques to tackle dimensionality issues and 

improve computational efficiency. However, this approach introduced computational overhead 

due to the complexity of control flow graph analysis. In [13], Islam et al. focus on static analysis 

methods using string and function features extracted from executable files. They serve as 

indicators of signatures that can help identify and differentiate malware from legitimate 

software. This study emphasizes the utility of text-based string matching to identify malware 

signatures. Although this study identified specific malware signatures, it struggles against 

obfuscated malwares.  In [14], Schultz et al. extracted the features that represented features 

contained within each binary. They examined the subset of PE executables using LibBFD and 

extracted various characteristics of the file such as header information, file sections, import and 

export functions, code and instructions, entropy, and metadata. 

The modelling of extracted features plays a pivotal role in malware detection and 

classification, with various authors exploring different techniques. In [14], Schultz et al. 

proposed a data mining framework for malware detection, utilizing algorithms such as Decision 

Trees, Random Forests, and Support Vector Machines (SVM) to analyze executable files and 

identify malicious patterns. In [15], Singh et al. expanded on this by evaluating the 

effectiveness of data mining methods like Naive Bayes and the rule-based RIPPER algorithm. 

Their approach involved extracting features such as program byte sequences, printed text, and 

DLL imports to classify new binaries as harmful or benign. However, byte sequence analysis 

faces challenges from binary packing techniques like UPX, which obscure raw code, 

complicating detection [16]. To address this limitation, opcode sequences and n-gram features 

have been proposed as alternatives. These techniques analyse disassembled binary instructions, 
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enabling robust clustering of malware samples and mitigating the impact of code obfuscation 

[17]. This evolution highlights the continuous refinement of feature modelling to counter 

sophisticated malware strategies effectively by focusing on binary-level unpacking techniques. 

However, this technique causes computational overhead, and sometimes the binary-level 

unpacking does not show the original code of malware when they are largely obfuscated or 

dynamically packed. 

To fill the gap, we have utilized a dataset of over 200,000 malware samples from 870 

unique families ensuring a thorough analysis of malware types unlike earlier studies. By using 

opcode unigram analysis and portable executables, we have extracted features that effectively 

captures the malware behaviour, even against obfuscation. We have made use of a custom 

count vectorizer to analyse specific sections of the PE headers of the executables and opcodes 

from the disassembled code, which increases the computational efficiency by almost 50%. 

Among the different classifiers evaluated, Random Forest emerges as the best-performing 

classifier achieving a validation accuracy of 85%. Furthermore, the static analysis approach 

used in this experiment offers a scalable and efficient approach to malware detection which is 

critical for real-time malware detection.  

While earlier studies have contributed significantly to malware detection, there were 

limitations such as computational overhead, high dimensionality, and vulnerability to 

obfuscation. All these limitations are addressed by this study through robust datasets, feature 

extraction, and optimized classifier performance, increasing the efficiency of malware 

classification using static analysis approaches. 

3. Proposed Model 

The proposed model outlines a comprehensive approach to malware classification, 

detailing each step from data acquisition to performance evaluation. This includes the dataset, 

pre-processing, model description, and performance metrics. 

3.1 Dataset 

A well-structured and quantitative dataset is crucial for effective analysis and accurate 

predictions in any classification process. For this research, we utilized a dataset of malware 

samples sourced from Malware Bazaar [18], a widely respected repository known for its 
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extensive and diverse collection of up-to-date malware samples. The dataset acquired from 

Malware Bazaar was the raw executables that were in the form of password-protected zip. 

We acquired 291 GB of malware samples from Malware Bazaar, covering the period 

from 2020-02-25 to 2022-08-20. The password-protected zip was extracted using a bash script 

to get the Windows executable files. Using the Malware Bazaar API, the samples were 

extracted, labelled, and classified into 231,015 samples, spanning 870 unique malware 

families. Out of these, 33 families contained more than 1,000 samples. For focused analysis, 

we selected five prominent malware families— Amadey, Loki, njrat, SmokeLoader, and 

Formbook—along with a non-malicious class. After preprocessing, the dataset size was 

reduced to 16 GB, containing 25,522 samples across the six classes. The class distribution of 

the dataset is shown in the Table.1 below.  

Table 1. Class Distribution of the Dataset 

Class Sample Count 

Amadey 2703 

Formbook 6215 

Loki 5686 

Njrat 3763 

SmokeLoader 5500 

Non-malicious 1655 

 

3.2 Data Pre-processing 

After collecting the data from various sources, we have to perform a set of steps to 

make the data suitable for machine learning models.  

1. Data Cleaning: We have removed the corrupted data, null values, and missing values 

and eliminated the redundant values as well. 

2. Class Balancing: To address the class imbalance, we employed the Synthetic Minority 

Over-sampling Technique (SMOTE), a widely used method for oversampling. SMOTE 

ensures more balanced class distributions by interpolating between existing samples to 
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create synthetic samples for the minority classes. SMOTE was used for our dataset's 

underrepresented classes, Amadey, Njrat, and Non-malicious.  

3. Data Splitting:  The data was split into training and testing sets in the ratio of 80 to 20. 

3.3 Feature Extraction 

To prepare the data for modeling, the raw executable files were disassembled, and their 

static features were extracted. This research focused on static analysis to work on the properties 

of malware that do not require execution. The following steps were employed: 

Disassembly using objdump: The executable files were disassembled into assembly 

language using the objdump tool to examine the structural and functional attributes. 

Custom Feature Vectorization Using Count Vectorizer: To analyze specific sections 

of the PE headers of the executables and the opcodes from the disassembled code, we 

developed a custom Count Vectorizer. This technique, commonly used in NLP, provided us 

with the frequency of the text and section counts in the disassembled code. 

The following static features were prioritized and extracted for this research: 

1. File Size: The size of each executable was recorded, as variations in file size often 

provide valuable insights into malware characteristics, such as complexity and functionality. 

2. PE Sections: Key sections of the Portable Executable (PE) format were analyzed, as 

these sections often reveal critical details about the structure of the malware. The following 

sections were examined. 

.text contains the executable code. .idata stores import information, including external 

libraries. .data contains initialized data. .bss holds uninitialized data. .rdata contains read-only 

data, such as constants. .edata stores export information. .rsrc holds resources like icons, 

strings, and images. .tls Used for thread-local storage. .reloc contains relocation information 

for dynamic address adjustments. 

3. Opcode Analysis using Unigrams: Opcode (Operation code) represents the 

instructions in the disassembled code of the executable. We conduct unigram analysis by 

counting the occurrences of individual opcodes. This provided a granular view of the 

malware’s behaviour and functional pattern. Unlike other features, all unigrams were included 
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in the analysis as the opcode vocabulary was relatively small, making it computationally 

efficient to process. 

3.4 Model Selection 

In creating a robust malware classification system to determine which model offers the 

optimal performance for the classification problem, model selection is vital, which involves 

testing multiple machine learning algorithms. Given the multi-class nature of the problem, we 

experimented with a variety of classification techniques to classify malware into five families 

and a non-malicious class. 

Naïve Bayes classifier is one of the supervised machine learning algorithms used for 

text classification that is based on Bayes Theorem. Logistic Regression (One-vs-Rest) is a 

discriminative classifier used for classification and predictive analysis. Logistic regression 

calculates the likelihood of an event, such as voting or not voting, based on a collection of 

independent variables.  Support Vector Machine(SVM) is a supervised machine learning 

algorithm that is used for classification as well as regression. SVM algorithm classifies data by 

finding the maximum separating hyperplane between each class in the target space. Decision 

tree is a type of supervised learning algorithm that uses a tree-like model to make decisions 

based on input data. They break down complex decisions into a series of straightforward 

choices, making them easy to visualize and interpret. K-Nearest Neighbors(KNN) is a 

supervised learning algorithm that is used in classification. It works by finding the k nearest 

data points to a query point and making predictions based on their labels. Random forest is a 

commonly used machine learning algorithm that combines the output of multiple decision trees 

to reach a single result.  When multiple decision trees form an ensemble in the random forest, 

they predict more accurate results. When using a random forest classifier, various 

hyperparameters can be used to alter the decision tree used and the ensemble. It is done through 

hyperparameter tuning, which is choosing the optimal hyperparameter for the model 

developed.   

3.5 Performance Metrics 

The methods used in evaluating the performance of the model are mentioned in this 

section. Accuracy is one of the performance metrics that measures the proportion of correctly 

predicted instances out of the total instances, and evaluates the overall performance of the 

model.  The performance of a model does not depend on the accuracy alone, but also on other 
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metrics like precision, recall, and F1-score of each class to evaluate the hyperparameters. These 

metrics were derived from the confusion matrix, which provides a comprehensive view of the 

model’s performance. Precision is a metric that measures how a model correctly predicts the 

positive class. The recall is an indicator of the model’s ability to identify all the relevant classes. 

The F1-score provides the single value for the evaluation of the model and is the harmonic 

mean of precision and recall. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                  (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                  (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                   (3) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                   (4) 

3.6 Tools Used 

The machine learning models were implemented using Python, utilizing the following 

libraries: 

Scikit-Learn: An open-source machine learning library used for building machine 

learning models like Random Forest, SVM, Logistic Regression, etc. 

Pandas: A Python library used for analysing, cleaning, exploring, and manipulating data. 

Numpy: A Python library used for performing optimized operations on large arrays.  

Matplotlib:  A library used for data visualization. 

GridSearchCV: It is used for hyperparameter tuning. 

Objdump: A tool used to disassemble the executable files into assembly language. 

4. Results and Discussion 

The result and analysis of the corresponding result are mentioned in this section. 
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4.1 Features Overview 

After various pre-processing using the dataset and extraction of the features, those 

features were transformed into a structured dataset, enabling robust training and evaluation of 

the classification model. ANOVA analysis (Figure 1) further highlighted the relative 

importance of these features, as depicted in the following feature importance chart. 

 

Figure 1. Feature Importance Score of Top 12 Features 

As shown in the feature importance chart, the .tls section of the Portable Executable 

(PE) format, used for thread-local storage, was identified as the most important feature, 

achieving the highest F1 score. This indicates that the presence and characteristics of the .tls 

section are highly indicative of malicious behavior. Even if malware attempts to obfuscate its 

purpose or evade detection through thread-local storage, the machine-learning model 

effectively flags such anomalies. 

The .text section, which contains the executable code, is also ranked as a critical feature, 

providing significant insights into the malware’s functionality. Its high F1-score highlights its 

importance in distinguishing malicious activities embedded in the executable code. Other PE 

sections, such as .idata, .data, and .edata also contributed meaningfully to the classification 

process. These sections offer structural and behavioral details of malware that assist the model 

in accurately identifying and categorizing different malware families. 

Additionally, the frequency of certain opcodes—instructions like INC, MOV, OR, 

SUB, and JMP—played a crucial role in determining malware behavior. These opcodes are 
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often associated with malicious operations, such as memory manipulation, control flow 

alteration, and data tampering, making them valuable features for the model to detect malicious 

intent. 

By combining structural insights from PE sections and behavioural patterns from 

opcode frequencies, the model effectively distinguished malicious from non-malicious files 

and classified them into families, showcasing the robustness of the feature selection process. 

4.2 Model Selection 

The performance of various classifiers (Table 2) was assessed on the pre-processed 

dataset. Initially, we trained and evaluated models using standard hyperparameters to establish 

a baseline. We focused from the base level and upwards based on complexity to find the best-

performing algorithm for the extracted dataset format. 

Table 2. Experiment Results of Different Classifiers 

Classifier Scaled Dataset 
Train Accuracy 

(%) 

Val Accuracy 

(%) 

Naı̈ve Bayes No 40 41 

Logistic Regression 

(OVR) 
Yes 61 60 

Decision Tree No 96 79 

Support Vector Machines Yes 66 65 

KNN Yes 96 84 

Random Forest No 98 85 

Among the tested algorithms, Random Forest emerged as the best-performing model, 

achieving the highest validation accuracy of 85%. The high accuracy achieved by Random 

Forest can be ascribed by its capacity to handle non-linear datasets by combining the results of 

multiple decision trees. However, Random Forest has limitations, such as difficulties in 

generalizing to unseen datasets, especially when faced with smaller datasets. Additionally, 

Random Forest uses multiple decision trees to make predictions so it becomes harder to 

understand how the model is making decisions causing a lack of clarity. Furthermore, Random 

Forest’s effectiveness is dependent upon hyperparameter tunings, such as the maximum 
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number of trees and maximum depth of the trees, which needs to be adjusted for various 

datasets. 

K-Nearest Neighbors (KNN) and Decision Tree followed, achieving validation 

accuracies of 84% and 79%, respectively. KNN performed well but can be computationally 

expensive, especially with large datasets, as it relies on distance calculations for each instance. 

Decision Tree showed reasonable accuracy but is prone to overfitting without proper pruning 

techniques, which limits its generalizability. Among the lower-performing models, the Support 

Vector Machine (SVM) achieved 65% accuracy but struggled due to the large number of 

features (51 in this dataset).  Logistic Regression achieved 60% accuracy, delayed by its 

inability to model non-linear relationships and overlapping feature distributions. Applying non-

linear feature transformations could enhance its performance. 

Naïve Bayes recorded the lowest accuracy at 41%, primarily due to its assumption of 

feature independence, which is not valid in malware classification where features like PE 

sections and opcode frequencies are interdependent. Feature selection and ensuring greater 

independence among features could improve its accuracy. While Random Forest displayed the 

highest accuracy, it is important to note that its performance may vary with different datasets, 

and other algorithms such as SVM or KNN could outperform it on more optimized or specific 

datasets. 

To find the optimal performance of the classifier, hyperparameter tuning was performed 

using GridCV for each classifier. Each classifier has its own hyperparameter, so after 

exhaustive experimentation, the optimal hyperparameter for each classifier was determined. 

The classifier and its corresponding hyperparameters are mentioned in Table 3.  

Table 3. Optimal Hyperparamter Values 

Classifier Hyperparamter Value 

Naïve Bayes alpha 1.5 

Logistic Regression multi_class ovr 

Logistic Regression c 100 

Logistic Regression class_weight balanced 
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Logistic Regression penalty l2 

Logistic Regression solver saga 

Decision Tree criterion entropy 

Decision Tree max_depth 30 

Decision Tree min_samples_split 5 

Support Vector Machine kernel rbf 

Support Vector Machine gamma auto 

Support Vector Machine class_weight balanced 

KNN n_neighbors 5 

KNN weights distance 

KNN metric manhattan 

Random Forest n_estimators 220 

Random Forest max_depth 30 

Random Forest min_samples_split 4 

Random Forest min_samples_leaf 2 

Random Forest max_features 10 

 

To evaluate the performance of the classifiers, metrics other than accuracy should also 

be considered. Precision, recall, and F1-score—commonly used metrics for classification 

tasks—were calculated for each malware class. Table 4 summarizes the experimental results 

across different malware classes.  

 

 

 



                                                                                                   Dikshyant Dhungana, Ashish Sapkota, Sabigya Pokharel, Sudarshan Devkota, Bishnu Hari Paudel 

Journal of Artificial Intelligence and Capsule Networks, December 2024, Volume 6, Issue 4 507 

 

Table 4. Experiment Results of Different Classes 

Class Precision Recall F1-Score 

Amadey 0.97 0.82 0.89 

Formbook 0.71 0.82 0.76 

Loki 0.76 0.66 0.70 

SmokeLoader 0.92 0.96 0.945 

njrat 0.88 0.88 0.88 

Non-malicious 0.88 0.89 0.89 

 

The overall result highlights that the model performs well across most classes, with 

SmokeLoader achieving the highest precision and recall. However, Loki showed relatively 

lower performance, which could be attributed to variations in its characteristics or insufficient 

representation in the dataset. 

 

Figure 2. Confusion Matrix for Validation Set 

The confusion matrix, shown in Figure 2, further validates the model’s classification 

performance, highlighting its ability to accurately distinguish between malware families. The 

confusion matrix demonstrates that the model is effective in detecting and classifying malwares 

between different families. However, due to similarities in the characteristics of some malware 
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families, there are some misclassifications. To exemplify, Loki and njrat are identified with 

high accuracy (976 for Loki and 1084 for njrat). On the contrary, SmokeLoader is occasionally 

misclassified as Loki and njrat because of the overlapping characteristics of the malware 

families. However, Non-malicious files are generally classified correctly. Despite this 

misclassification, the high accuracy in the diagonals shows a strong overall accuracy. 

Finally, the Random Forest classifier with hyperparameter tuning was identified as the 

most effective model for this classification task, offering a balanced trade-off between 

accuracy, interpretability, and computational efficiency. 

5. Conclusion 

The study, conducted in the malware classification using static analysis, classifies the 

malware by the family using machine learning. To sum up, the analysis revealed the significant 

variations in the accuracy among the algorithms due to their inability to handle non-linearity 

and overlapping characteristics in data. Although algorithms like Naı̈ve Bayes and Logistic 

Regression struggled with accuracy because of huge noise and overlap, Random Forest 

demonstrated high accuracy, precision, and recall, making it suitable for such classification 

tasks. Its ability to handle complex patterns and reduce overfitting. This makes Random Forest 

the best fit for accurately classifying malware families, thereby mitigating potential threats in 

the user’s system. In the future, the study intends to expand the data set, which was limited in 

this experimental analysis, with more malware samples due to the evolving nature of malware. 

Models trained on previous malware samples may not be able to detect new types of malware. 

Also, will explore more about bigram and trigram opcode analysis, and also use boosting 

methods and more complex algorithms, such as ANN. 
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