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Abstract 

Predicting earthquake risk accurately is essential for reducing the devastating effects of 

seismic activity. To improve earthquake risk prediction by geolocation, this study presents a 

hybrid learning strategy that combines Convolutional Neural Networks (CNNs) with Long 

Short-Term Memory (LSTM) networks. The research uses CNNs to extract spatial 

characteristics from geophysical and seismic data and LSTM networks to capture temporal 

dependencies in the sequence of events using the United States Geological Survey (USGS) 

dataset. The model creates a strong foundation for estimating earthquake risk at the local and 

regional levels by combining these complementary approaches. By integrating these 

complementary approaches and utilizing geolocation data such as latitude, longitude, depth, 

and proximity to fault lines, the model provides a robust framework for local and regional 

earthquake risk estimation, providing granular insights into vulnerable areas.  According to 

experimental data, the hybrid CNN-LSTM model works better than conventional machine 

learning techniques, resulting in reduced false positives and increased prediction accuracy. 

Additionally, the model demonstrates flexibility and scalability, enabling real-time updates 

through the use of streaming data from IoT-enabled sensors and seismometers. 

Keywords: Hybrid Learning Approach, Earthquake Risk Prediction, Geolocation-based 

Prediction, CNN-LSTM Model, United States Geological Survey Dataset, Spatiotemporal Data 

Analysis, Seismic Risk Modeling, Machine Learning for Earthquake Forecasting 
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1. Introduction 

One of the most destructive natural catastrophes, earthquakes continue to cause 

enormous destruction and a high death toll all over the globe [1]. More accurate earthquake 

risk prediction is essential for emergency preparation, disaster mitigation, and lessening the 

negative effects on the economy and society. The complex interaction of geological, 

environmental, and temporal elements makes earthquake prediction difficult, even with 

advances in seismology. The dynamic and nonlinear character of seismic occurrences may be 

missed by traditional approaches, which often depend on static statistics and basic models. 

More advanced methods for predicting earthquake risk have been made possible by 

recent advancements in deep learning and machine learning [2]. Specifically, hybrid models 

combining multiple learning approaches provide new possibilities for achieving unprecedented 

levels of geophysical data analysis and interpretation. Long Short-Term Memory (LSTM) 

networks are excellent at simulating temporal relationships in sequential data, whereas 

Convolutional Neural Networks (CNNs) are well known for their capacity to extract spatial 

characteristics from structured data. A hybrid learning strategy that combines these two 

architectures can handle temporal and spatial information more efficiently, improving 

prediction accuracy. 

In this study, the United States Geological Survey (USGS) dataset is used to forecast 

earthquake hazards using a CNN-LSTM hybrid learning model. The dataset is a useful resource 

for training and assessing prediction models as it provides extensive geophysical data, such as 

earthquake locations, magnitudes, depths, and timestamps. The suggested method seeks to give 

more precise and detailed risk evaluations by using geolocation data, especially for seismic 

zones that are considered high risk. 

The rest of the work demonstrates how the CNN-LSTM hybrid model was designed, 

how USGS geophysical data was pre-processed, and how geolocation elements were included. 

Results from experiments are shown to compare the model's performance to more conventional 

methods.  The study concludes by discussing the research's implications for disaster 

management, urban planning, and the creation of real-time early warning systems and 

suggesting possible future improvements for wider application. 
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2. Related Work 

Precursory anomaly analysis and statistical approaches are part of the current 

earthquake prediction techniques. Statistical approaches focus on past earthquakes and the 

structure of possible sources, and they employ geological and statistical theories to examine 

the connection between past earthquakes and future earthquakes. 

The principle that there will be some abnormalities behind an earthquake is the 

foundation of the precursory anomalies analysis approach. To identify each kind of earthquake 

precursor and investigate the suggested physical explanations to explain each one, Cicerone 

reviewed the available scientific literature [3]. Rikitake examines the likelihood that an 

anomalous signal of different geophysical elements will be associated with an impending 

earthquake. These odds were calculated using the available precursor data [4]. It was found 

that as the mainshock magnitude increases, precursors can be found farther from the epicentre 

[5]. Yun-Tai discovers that these gravity changes seem to be closely linked to earthquake 

occurrences [6]. According to Brodsky, there may be detectable preludes to major earthquakes, 

as shown by the Chilean incident on April 1, 2014 [7]. In contrast to a long-term analysis based 

on the Gutenberg–Richter law or other statistical laws, these works demonstrated that there are 

typically some precursor signals prior to a earthquake rupture, such as land deformation 

reported by geodetic survey and tide-gauge observation, ground tilt observed by a water-tube 

tiltmeter, anomalous seismic activity, and geomagnetic field change. However, the analysis of 

earthquake precursory abnormalities is challenging because of their complexity and 

unpredictability. The study  uses PCA, a popular technique, to extract  the data since it performs 

well in feature extraction. A kind of robust machine learning model called LightGBM is based 

on the decision tree is used as it is fast, stable, and has a high degree of accuracy and prediction 

ability [8]. 

According to Colombelli et al. [9], the P ( primary) wave peak displacement changes 

over time for various earthquakes in the early stages of the rupture process. They found that 

the peak displacement of small earthquakes increases quickly in the initial phase, whereas the 

peak displacement of large earthquakes grows slowly. In contrast, Rydelek and Horiuchi [10] 

contested the notion of a deterministic assumption, arguing that the rupture process is 

ultimately unexpected and that the earthquake nucleation process is universal and independent 

of the final magnitude. According to rupture unpredictability, early rupture behaviour alone 

cannot be used to forecast an earthquake's ultimate size. 
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Rupture weak determinism, which addresses the capacity to infer the ultimate 

earthquake magnitude after the nucleation, has replaced deterministic rupture nucleation as the 

main emphasis of earthquake research in recent years. According to Melgar and Hayes' [11] 

weakly determined model of rupture development, big earthquakes rupture by self-similar slip 

pulses. They created an average source–time function with 0.5 magnitude units within the 

magnitude range of Mw 7.0 to 8.5 in order to examine the change in the average seismic 

moment rate over time. According to the data, the average seismic moment rate was much 

lower in the first 10 seconds than it was throughout the earthquake's length. This indicates that 

shortly after the rupture begins, a self-similar slip pulse forms. Therefore, it may be possible to 

rule out entirely deterministic rupture processes. Nevertheless, a thorough examination of 

seismic or geodetic data might sometimes still reveal weak or probabilistic types of 

deterministic assumption. 

3. Proposed Work 

In order to create and evaluate a hybrid learning strategy for earthquake risk prediction, 

this study adheres to a systematic methodology. Before combining them into a hybrid CNN-

LSTM framework, the procedure includes data gathering, preprocessing, and the creation of 

separate CNN and LSTM models [12]. Each stage is explained in depth in the sections that 

follow. 

3.1 Dataset Collection 

The dataset utilized in this investigation was taken from   USGS [15], which maintains 

an extensive global database of earthquake records. This study employed the USGS 

Earthquakes 2024 dataset, comprising 14,150 data samples with 22 characteristics. The dataset 

includes essential features such as latitude, longitude, depth, magnitude, time of occurrence, 

and location specifics. To enhance forecast accuracy, it also incorporates geophysical and 

environmental characteristics like past seismic activity, tectonic plate boundaries, and 

proximity to fault lines. Figure 1 illustrates sample data from this dataset Multiple decades' 

worth of earthquake recordings are included, with an emphasis on seismically active places, to 

guarantee a solid dataset. The USGS Earthquake Catalogue API, which provides both historical 

and real-time earthquake data, is used to retrieve the information. Other geographic data 

sources, such as satellite images and topographic maps, are included in the dataset to further 

improve it by capturing structural and environmental elements that affect earthquake hazards. 
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Figure 1. USGS Earthquakes Dataset Sample 

3.2 Dataset Preprocessing 

Extensive preprocessing is necessary to eliminate discrepancies and get raw seismic 

data ready for deep learning models [13]. Before training the models, the noise, missing values, 

and inconsistencies in the raw seismic data must be fixed. Data cleaning is the first step in the 

preparation stage. Imputation methods, such as mean replacement for numerical 

characteristics, are used to manage missing values. One-hot encoding is used to transform 

categorical information, such as earthquake site descriptions, into numerical representations, 

and duplicate records are eliminated to avoid model bias. 

Numerical characteristics like magnitude, depth, and geographical coordinates are 

scaled to a similar range through normalisation, which guarantees that each input variable 

contributes proportionately to model training. Timestamps are transformed into numerical 

sequences since time-series analysis is essential for earthquake prediction. This enables the 

LSTM model to efficiently capture temporal relationships. The model can recognise patterns 

in earthquake-prone areas by converting spatial data, such as latitude and longitude, into grid-

based representations for CNN processing. 

3.3 Building the CNN Model 

Regional seismic patterns are captured by the CNN model, which is used to interpret 

spatial earthquake data and aid in the prediction of earthquake risk [14]. An organised 

representation of geolocation data in the form of a grid picture, with each cell encoding 

earthquake characteristics like depth and magnitude, makes up the CNN's input. 
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Each grid cell in the CNN model's input layer represents a distinct geographic area with 

seismic characteristics recorded in it. The grid representation of earthquake sites is organised. 

The model captures spatial correlations between earthquake events by using several 

convolutional layers with ReLU activation functions. After every convolutional layer, a max-

pooling layer is used to minimise dimensionality while maintaining important features. The 

overview of the CNN architecture used in this research is illustrated in Figure 2.  

In order to ensure robust feature learning and avoid overfitting, dropout layers are used 

to randomly deactivate a portion of neurons during training. After being flattened, the final 

output from the CNN layers is sent to a dense layer that is completely linked and uses learnt 

spatial patterns to make predictions. Mean squared error is used for regression-based risk 

prediction, while categorical cross-entropy loss is used for classification tasks when training 

the CNN model. 

 

Figure 2. CNN Architecture to Determine Seismic Risk Zones 

3.4 Building the LSTM Model 

The Long Short-Term Memory (LSTM) model uses past earthquake events to increase 

prediction accuracy by capturing temporal relationships in seismic activity. LSTM is a good 

option for modelling time-series earthquake patterns since it can handle sequential data, and 

earthquake occurrences show temporal relationships. 

A series of historical earthquake data with characteristics like magnitude, depth, and 

timestamps make up the input to the LSTM. Tanh activation functions are used by each of the 

system's many LSTM layers to capture long-term interdependence in seismic activity. Between 

LSTM layers, batch normalisation layers are used to stabilise training, guaranteeing that 

gradients stay constant during backpropagation. 
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Fully linked dense layers that translate the learnt temporal patterns to seismic risk 

forecasts are applied to the final output from the LSTM layers. Batch normalisation between 

bidirectional LSTM layers is used to stabilise learning and speed up convergence in order to 

enhance model generalization, as demonstrated in Figure 3. Using learnt temporal information, 

a dense output layer with a SoftMax or linear activation function is utilised to provide 

earthquake risk predictions. 

 

Figure 3. LSTM Architecture to Determine Seismic Risk Zones 

3.5 Building the CNN-LSTM Hybrid Model 

The CNN-LSTM hybrid model combines LSTM's temporal sequence learning 

advantages with CNN's spatial feature extraction capabilities. By processing both geolocation 

information and time-series seismic records, the hybrid architecture provides a more thorough 

framework for risk prediction. 

Sequential earthquake events processed by the LSTM layers and spatial earthquake data 

handled by the CNN layers are the two input streams that the model uses. The LSTM 

component records patterns that change over time, while the CNN component retrieves 

geographical characteristics from the seismic dataset. To learn joint feature representations, the 

model concatenates the outputs from both networks into a common dense layer as shown in 

Figure 4. 

An output layer that produces earthquake risk probability or magnitude forecasts comes 

after the last dense layers improve the characteristics that were extracted. To balance the 

learning of spatial and temporal features, a multi-objective loss function is used to train the 

hybrid model. The network architecture is optimised by hyperparameter tuning, and early 

stopping is used to avoid overfitting in order to increase model resilience. 
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The performance of the CNN-LSTM model is compared to that of solo CNN and LSTM 

models after extensive testing. Model efficacy is measured using performance indicators 

including mean absolute error, F1-score, accuracy, and recall. The hybrid model uses both 

geographical and temporal data to forecast earthquake risk with more accuracy, according to 

the results. 

The potential of deep learning in seismic risk assessment is shown in this research by 

combining CNN and LSTM into a hybrid framework. For better earthquake prediction, the 

results emphasise the value of integrating geospatial and time-series analysis, opening the door 

for further developments in disaster preparation and mitigation techniques. 

 

Figure 4. Hybrid CNN-LSTM Architecture to Determine Seismic Risk Zones 

4. Results and Discussion 

Utilising geolocation data from the United States Geological Survey (USGS), the 

study's findings show how well the hybrid CNN-LSTM model predicts earthquake risk. To 

evaluate its performance gains, the CNN-LSTM hybrid model is also contrasted with solo CNN 

and LSTM models. The findings demonstrate how well the suggested method captures 

temporal and geographical trends in earthquake occurrences. 

The testing dataset includes earthquake occurrences from several geographical 

locations, enabling a thorough assessment of the model's capacity for generalisation. By 
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examining geolocation variables like latitude, longitude, and closeness to fault lines, the CNN 

model, which is specifically designed to interpret spatial data, can identify high-risk seismic 

zones. Its forecasts, however, are restricted to geographical patterns and do not take into 

account the time dependencies of seismic activity. Because of this, it does a good job of 

identifying seismic hotspots but is not very accurate at forecasting future occurrences based on 

past patterns, and achieved an accuracy of 94.35% in training and 94.01% in testing, as seen in 

Figure 5. 

 

Figure 5. CNN Performance Graph 

The temporal relationships between previous and upcoming seismic occurrences are 

captured by the LSTM model, which was trained only on sequential earthquake data. It 

effectively learns from past earthquake sequences, seeing trends that suggest the probability of 

future events. Its geographical precision is decreased by its dependence on time-series data 

alone, which restricts its capacity to identify regional differences in earthquake risk. The 

findings demonstrate that while the LSTM model performs very well in time-dependent 

forecasting, it has trouble successfully integrating geographical data, and achieved an accuracy 

of 95.17% in training and 94.54% in testing, as seen in the graph in Figure 6. 
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Figure 6. LSTM Performance Graph 

These separate drawbacks are addressed by the hybrid CNN-LSTM model, which 

combines temporal and spatial information into a single prediction framework. While the 

LSTM component analyses the sequence of seismic events to forecast the probability of future 

occurrences, the CNN component processes the geographical features of earthquakes to 

identify high-risk locations. When these two systems are combined, earthquake risk prediction 

accuracy and dependability are greatly increased. 

The hybrid model outperforms the solo CNN and LSTM models in terms of accuracy 

with 98.45% accuracy in training and 97.61% in testing as shown in Figure 7, according to 

quantitative performance study. According to the accuracy and recall values, the hybrid 

technique produces more reliable seismic risk assessments by lowering false positives and false 

negatives. The model's robustness is further supported by the RMSE and MAE scores, which 

show reduced error rates in magnitude predictions when compared to single deep learning and 

conventional machine learning models. 

 

Figure 7. CNN-LSTM Performance Graph  
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The CNN-LSTM model provides more accurate risk evaluations, especially in areas 

with high seismic activity, according to a comparison of projected and real earthquake 

occurrences. The model's capacity to examine both temporal and spatial trends guarantees that 

forecasts are grounded in the fundamental geological variables affecting earthquake hazards as 

well as past data patterns. Furthermore, the model's adaptability is validated by real-time testing 

using recent seismic events, showing its efficacy in dynamic earthquake forecasting. 

The results also demonstrate the model's scalability, since tests reveal that it can retain 

a high level of predicted accuracy even when trained on bigger datasets that span many decades. 

The CNN-LSTM model is a useful tool for assessing the risk of earthquakes worldwide since 

it generalises well across various geographical areas. Additionally, the way it integrates with 

real-time data sources, such IoT-based seismic sensors, shows how it may be used in early 

warning systems to help with disaster preparation and mitigation. 

Overall, the findings demonstrate that by using the advantages of both spatial and 

temporal data, the hybrid CNN-LSTM model greatly improves earthquake risk prediction. It is 

a potent instrument for seismic risk assessment because to its exceptional accuracy, precision, 

memory, and error reduction capabilities. According to the research, combining deep learning 

with geolocation data has the potential to completely transform earthquake forecasting and 

provide insightful information for disaster risk management, emergency response plans, and 

urban planning. 

5. Conclusion 

This study offers a hybrid learning strategy that combines Long Short-Term Memory 

(LSTM) networks with Convolutional Neural Networks (CNNs) to improve earthquake risk 

prediction using geolocation data. The research effectively illustrates how merging 

geographical and temporal characteristics may increase forecast accuracy by using the United 

States Geological Survey (USGS) dataset. According to the findings, the hybrid CNN-LSTM 

model offers a more thorough and trustworthy framework for evaluating earthquake risk than 

solo CNN and LSTM designs. The model improves forecasting skills by using CNN to record 

regional seismic patterns and LSTM to learn previous trends, providing an accuracy of 98.45% 

in training. This work emphasises how hybrid deep learning models may revolutionise seismic 

risk assessment and how useful they are for real-time decision-making, urban planning, and 

catastrophe preparation. To increase forecast reliability, future initiatives include adding 
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worldwide datasets to the model, including more environmental parameters, and resolving 

issues with data quality. 
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