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Abstract 

To guarantee agricultural output and stop the spread of disease, early detection and 

treatment of plant diseases are essential. The problem of classifying plant leaf diseases is 

addressed in this article using a novel approach based on the EfficientNetV2 model. The 

model's complex structure makes it possible to accurately diagnose a variety of diseases by 

effectively differentiating them based on minute variations in leaf characteristics. This study 

shows that deep learning approaches can accurately detect disease patterns and symptoms, 

which can be used as a tool to detect and provide evidence of future changes in the disease 

state. Our recommended method outperforms conventional disease management techniques in 

terms of performance effectiveness and quality by leveraging cutting-edge technologies. 

EfficientNetV2 easily outperforms conventional deep learning techniques on all major 

evaluation metrics, according to a comparative analysis with a baseline CNN model. In addition 

to the technology, the approach has important ramifications for the agricultural methodology 

framework as a whole. By empowering stakeholders to automatically and precisely identify 

diseases that can improve crop health and yield, our method has the potential to completely 

transform disease management strategies. In order to ensure food security and sustainability 

globally, this article demonstrates how the clever integration of new technologies with 

agricultural systems has the potential to revolutionize active disease management. 
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1. Introduction 

Artificial intelligence (AI) and machine learning (ML) algorithms are being blended to 

reshape plant pathology. The innovative technologies enable the development of complex 

models that can effectively diagnose and identify diseases with high accuracy on the basis of 

visual signals in the images of leaves. Deep learning algorithms allow scientists and 

agronomists to make the neural networks learn how to identify and detect patterns and signals 

of disease that would be unobservable by the human eye. This degree of accuracy not only 

enables early detection but also facilitates interventions on a targeted basis, decreasing the 

necessity for broad-spectrum treatments and minimizing unwanted environmental effects. In 

addition, remote sensing methods in the form of drones with high-resolution cameras are 

increasing in popularity for the fast and comprehensive scanning of large agricultural 

landscapes. These unmanned aerial vehicles can take high-resolution images of crops, giving 

immediate estimates of plant health and disease incidence over large regions. The information 

gathered can be quickly processed and interpreted using AI-based analysis software so that 

farmers and agronomists can make smart, actionable decisions about the right crop 

management techniques. Through these innovative technologies, agricultural stakeholders can 

maximize productivity with the purpose of lessening yield loss and ensuring food security 

despite fluctuating climatic conditions and new pathogens. Since crops are responsible for the 

food security and economic stability of a community, plant diseases remain a principal 

challenge that jeopardizes agricultural production anywhere in the world at any given time. 

Pests of organic agronomy that appear before harvest should be quickly detected to 

guarantee the success of the agronomic process. Nevertheless, conventional methods to detect 

pests of organic agronomy are subjective, time-consuming, and labor-intensive, which require 

a huge workforce to implement successfully. Detection of diseases is a serious bottleneck for 

farmers and agronomists, especially in large-scale agricultural operations, since the ability to 

correctly discriminate among different diseases is constrained. In addition, the quick 

acceleration of internationally related diseases highlights the imperative for faster development 

in effective detection systems. 

Technological advancements, especially in computer vision and neural networks, are 

increasingly making it possible to identify plant pathogens. Digital image analysis from these 

technologies makes it possible to increase precision, accuracy, and speed when it comes to the 

diagnosis of plant diseases and fungi. In response, early action and effective treatment measures 
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can result in tremendous optimizations in operational procedures, especially in the context of 

efficient system management. 

The plant leaf disease diagnosis system is a revolutionary technology in contemporary 

agriculture, not only for the diagnosis of plant diseases but also for transforming conventional 

farming. The major aim of the system is to ensure protection of plant health and improve 

agricultural productivity through the early and precise identification of leaf-spread diseases. 

Through early infection detection, the system enables farmers and the agricultural industry to 

take proper steps to prevent possible disease outbreaks and reduce crop loss. The approach 

results in more yields, better crop quality, and increased availability of food, thus promoting 

greater food security and sustainable agriculture objectives. 

An important goal of the system is to meet the challenge of the varied range of plant 

diseases, each having unique visual characteristics and biological behaviors. Within this varied 

spectrum, the capacity to detect minute variations in color, texture, or pattern on leaf tissue is 

essential in making precise diagnosis. The challenge highlights the conditions of real-world 

situations, with overlapping symptoms, changing light conditions, and the high possibility of 

multiple infections. The developed system is designed for high accuracy, flexibility, and 

reliable performance on diverse crops and environmental conditions. Moreover, one main aim 

is to facilitate the decrease of excessive pesticide application, a well-known concern among 

traditional agriculture. 

The system ensures early and precise detection of disease to enable specific 

interventions rather than relying on the application of broad-spectrum pesticides. This not only 

minimizes chemical inputs and related environmental impacts but also encourages more 

sustainable and ecologically friendly management of crops. Through this, the system helps 

ensure long-term soil health and diversity improvement as well as reduction of exposure of 

humans and animals to toxic substances. Besides, it seeks to minimize farmers' financial losses, 

enhance marketable yields, and sustain livelihoods, thus enhancing economic resilience. 

Moreover, by facilitating stable food availability and encouraging environmentally friendly 

approaches, the system actively contributes to component development progress. It is a 

transformative tool that has the ability to reshape agricultural landscapes with greater 

efficiency, sustainability, and resilience in the wake of increasing food demand and mounting 

environmental challenges. Deep learning architectures, like Convolutional Neural Networks 

(CNNs), have been chosen due to the fact that they can learn hierarchical features and learn to 
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accommodate leaf texture, color, and lighting variations essential for robust detection in a 

variety of field conditions. 

EfficientNetV2 has been chosen as the back-end architecture for the proposed model 

based on its compound scaling efficiency, fast convergence, and good performance on small-

scale datasets. While traditional CNN-based methods primarily focus on classification 

accuracy and are limited to classical image processing or machine learning models with low 

scalability, there is a notable gap in the application of lightweight and high-performance deep 

learning models, such as EfficientNetV2, for plant disease detection in resource-limited 

environments. This work addresses the lack of repeatable architectures and the need for 

improved precision in realistic farm conditions. 

2. Related Work 

Paper [1] proposes the Multiscale Distance Matrix (MDM) approach to plant leaf 

disease classification based on shape distance matrices only, and it captures the shape 

geometry. It has challenges like segmentation instability and the importance of metric choice, 

which necessitate further investigation into how to extend MDM to open curves or multi-

contour forms. The geometric feature-based method's dependence holds potential for strong 

disease detection that needs to be fine-tuned to deal with segmentation problems and metric 

sensitivity, particularly at intricate leaf morphology. 

The Spectral Disease Index (SDI) in paper [2] is proposed, which is computed from 

reflectance spectra in the range 350–2500 nm that successfully discriminates between different 

levels of diseases in diseased leaves. In spite of its success, testing on multiple sensors is 

necessary to confirm its stability across different platforms. The richness of SDI in 

discriminating disease levels is a big leap in the use of spectral-based detection for diseases but 

guaranteeing its consistency across various sensor platforms is critical to its general 

applicability and use in agricultural systems. 

Paper [3] is a comparative study of Partial Least Squares Regression (PLSR), support 

vector regression (ν-SVR), and Gaussian process regression (GPR), where the superior 

performance of GPR is emphasized, especially with small sample sizes. This highlights the 

explanatory power of machine learning regression methods in dampening difficulties inherent 

in early plant disease detection. Although GPR is promising, its scalability and computational 
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complexity must be examined further before real-world implementation, particularly in 

environments limited by resources. 

Paper [4] uses the RELIEF-F algorithm to identify useful wavelengths from leaf 

spectral features for improving classification accuracy of different diseases in winter wheat. 

The paper indicates potential for further improvement via integration of hyperspectral data. 

Integration of hyperspectral data has the potential for more detailed spectral resolution for 

disease detection, but also poses data fusion and computational complexity issues that need 

consideration for practical application in agricultural monitoring systems. 

Paper [5] demonstrates advancements in robotic disease detection systems, specifically 

in advancing proximal sensing methods for improving detection accuracy, especially by 

detecting the lower side of leaves. The suggestion to deploy a mobile robotic manipulator with 

detection sensors seeks to mitigate sensor positioning and pose acquisition difficulties. While 

potential, the real-world deployment of mobile robotic systems in agricultural production 

involves overcoming issues with power autonomy, terrain adaptability, and cost-effectiveness 

to be scalable and adopted by farmers. 

Paper [6] compares the effectiveness of Partial Least Squares Regression (PLSR) and 

Continuous Wavelet Transform (CWT) in estimating aphid density and detecting aphid 

infestations. While both methods show promise, the paper highlights the challenge of scaling 

these results to field conditions. The study's findings offer valuable insights into potential 

methodologies for aphid detection; yet, the translation of laboratory success to field 

applicability necessitates addressing practical constraints such as environmental variability and 

sensor deployment logistics. 

Paper [7] makes use of Parallel Convolutional Neural Networks (CNNs) to improve 

network performance for disease diagnosis. Nevertheless, it admits continued misclassification 

errors in real-world settings because of data pattern similarities or environmental reasons, 

proposing deeper investigation of deep learning methods. Although CNNs provide spectacular 

performance, overcoming the inherent drawbacks of CNNs in their capability to deal with 

sophisticated environmental conditions and variable disease presentations is essential for 

making dependable and robust disease diagnostic systems. 

Paper [8] presents the tri-CNN model, which consists of DenseNet169, Inception, and 

Xception, and has impressive detection accuracy. Optimization of the ensemble method, the 
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authors suggest, could lead to even greater detection effectiveness. Although the tri-CNN 

model holds promise, optimizing ensemble approaches must take into account model diversity 

as well as aggregation schemes to unlock the maximum capabilities of multiple CNN models 

for disease detection applications. 

Paper [9] utilizes convolutional neural networks (CNNs) for better disease 

classification with the goal of decreasing resource complexity and improving generalization 

ability. The paper also highlights the need for the creation of server-side systems and deploying 

solutions on a variety of plant species with maximum performance. Although CNNs have 

performed well, achieving scalability and adaptability over various plant species and conditions 

is a major challenge that must be addressed to facilitate extensive use and influence in 

agriculture. 

Paper [10] employs a Hybrid Random Forest Multiclass SVM method, in combination 

with Spatial Fuzzy C-Means segmentation, which is highly accurate and cost-effective in 

detecting disease. Future research is recommended to extend disease detection to cover more 

varieties of plant disease. Although the hybrid method offers an exciting solution to disease 

detection, its scalability and generalizability to various crop types and forms of disease 

occurrence should be examined further and be confirmed in real-world agricultural 

environments. 

Paper [11] employs Multilayer Perceptron (MLP) models coupled with IoT sensor data 

to attain high accuracy in the classification of diseases, facilitating dynamic plant monitoring 

under varying environmental conditions. The suggested approach has potential for extensive 

use over various plant species and climates. However, the robustness and reliability of the MLP 

models in dynamically changing environmental conditions must be validated and optimized 

further, especially in data fusion and model adaptation techniques. 

Paper [12] suggests a low-footprint transfer learning-based method, based on the 

MobileNetV2 model and color space conversion, to attain high accuracy with smaller model 

size and computational intensity, accommodating low-end devices. Though the method is 

useful in terms of practical utility in resource-limited setups, its effectiveness in varying plant 

species and diseases must be tested, along with ensuring model transferability and adaptation 

to changing environmental conditions. 
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Paper [13] delineates IoT sensor-based forecasts of environmental conditions in the 

crop field combined with Multiple Linear Regression (MLR), to estimate the probability of 

early disease attack. Such a method provides proactive disease management guidelines, 

especially beneficial against temperature and humidity-sensitive diseases such as blister blight 

in tea plants. The scalability and generalizability of the predictions through MLR to varying 

crops and regions, however, require deeper research and validation through rigorous field trials 

and data collection. 

Paper [14] demonstrates a multi-layered perceptron model developed using soil sensor 

and satellite data, which performs with very high accuracy in disease forecasting. The 

feasibility of the model for real-time disease management calls for deeper investigation. 

Nonetheless, obtaining the dependability and scalability of the model under varying 

agricultural conditions and environmental circumstances necessitates the resolution of issues 

arising from data consolidation, model interpretation, and incorporation within practical 

agricultural applications of decision support systems. 

Paper [15] describes the Deep Leaf Disease Prediction Framework (DLDPF), which 

combines CNNs with AlexNet and GoogLeNet, with improved apple disease prediction over 

other methods. Future work can be done to extend the application of DLDPF to other crops and 

diseases. As encouraging as the results of DLDPF in predicting apple diseases are, its 

application to a wide range of plant species and disease types requires extensive validation and 

modification, factoring in differences in leaf structure, disease symptoms, and environmental 

factors across different plant species and geographical locations. 

Paper [16] presents the PLDPNet model, based on U-Net architecture and ViT, for 

potato leaf disease prediction, with optimistic performance in image processing and 

segmentation. Its scalability for disease prediction is of particular interest. Nonetheless, 

practical application and field validation of PLDPNet in actual agricultural environments are 

important and need consideration of issues associated with data availability, interpretability of 

the model, and conjoining of disease management practice to ensure effectiveness and farmers' 

adoption. 

Paper [17] uses the InceptionResNetV2 CNN model in rice plant disease prediction and 

achieves high accuracy in separating several diseases from healthy leaves. With further model 

architecture refinement and testing on varied data sets, it could become even more reliable. 
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Although InceptionResNetV2 is promising for rice plant disease prediction, its application to 

diversified rice types and epidemics must be fully validated and optimized for variations in 

disease symptoms, environmental factors, and cultural practices across regions where rice is 

being grown. 

Paper [18] is engaged in unifying machine learning and deep learning techniques for 

leaf disease classification with the potential to outshine conventional imaging methods. 

Problems like dataset underfitting and model overfitting can be resolved by hyperparameter 

optimization and hybrid ML-DL techniques, enhancing disease detection precision and 

robustness. Nonetheless, maintaining the scalability and reliability of combined industry-grade 

ML-DL techniques in practical agricultural environments demands tackling issues regarding 

model interpretability, data quality, and computational resource demands for industry-scale 

model training and deployment. 

3. Proposed Work 

3.1 Convolutional Neural Networks (CNN) 

A type of deep learning model, which is domain-specific known as Convolutional 

Neural Networks (CNNs), employs a spatial hierarchy and grid-based structure and, therefore, 

they are best suited to work with image data. Unlike normal neural networks, which employ 

convolutional layers consisting of learnable filters to extract features from the input images, 

CNNs employ layers, which initially identify lower-level visual signals such as edges and 

textures. In later layers, they learn higher-level features such as shapes and patterns. Through 

this process, the hierarchical feature extraction of CNNs allows them to learn atypical visual 

features without any feature engineering, which is what the majority of image classification 

tasks need. Using CNN for plant disease diagnosis is motivated by their natural capacity to 

reduce the parameters using localized connections and weight sharing. This provides an 

architectural advantage of greater computational efficiency and lowers the risk of overfitting, 

particularly for very high-dimensional image datasets. CNNs are also spatially invariant and 

thus identify important features regardless of their position in an image. However, this feature 

is not superficial, especially considering images of plant leaves, which are normally imaged 

from diverse angles, distances, and light sources, so those diseases must be accurately 

diagnosed regardless of the boundaries. The pooling layers are also an important advantage of 
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CNNs as they utilize down sampling of feature maps to reduce computational complexity 

without dropping any meaningful information. 

CNNs can be applied to quickly handle huge volumes of image data, required in 

farming environments where there is a need for fast and real-time detection of diseases. They 

are also capable of learning extremely complex, nonlinear mappings from the image data to, 

and hence can detect extremely subtle variations in leaf texture, color, or shape, each mapping 

to a distinct disease. In addition to their computation simplicity, their robustness against noise 

and image quality changes makes them appropriate for use under field conditions where image 

capture cannot always be made standardized or normalized. CNNs can be combined with other 

image features to build scalable robust automatic plant disease diagnostic systems. CNN-based 

models make it possible to detect and monitor plant health at the right time because they can 

handle large data sets and are capable of identifying signs of disease. Subsequently, in the soil 

layer, the same degrading pattern is observed with minerals that can redesign for convenience 

of access of adsorption sites. This makes it possible to intervene early, hence lowering crop 

loss and increasing agricultural output. Their high accuracy, flexibility, and efficiency in 

combination position CNNs at the leading edge of applied and research literature in precision 

agriculture and plant pathology. 

3.2 EfficientNetV2 

State-of-the-art convolutional neural network architecture, EfficientNetV2, extends an 

innovative scaling approach to optimize model performance. Unlike earlier scaling strategies 

that alter a single aspect of the network (e.g., depth, width, or input resolution), EfficientNetV2 

employs a scaled coefficient. Here we are proposing an overall scaling plan on these three axes 

so that the model is able to scale all three simultaneously and to utilize computational resources 

more fairly and efficiently. With the compound scaling method, the network is able to preserve 

more complex visual patterns and context cues from images of diverse sizes without sacrificing 

modest complexity. Unlike random or ad-hoc scaling techniques, EfficientNetV2 follows a 

disciplined structure to have layer and channel numbers increasing in the same ratios. Network 

receptive field expansion will need to increase to be able to extract high-resolution input 

images' fine-grained information. From the design element of inverted bottleneck residual 

blocks used to reduce computation cost at the cost of representational capacity, the architecture 

is presented. 
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Furthermore, EfficientNetV2 consists of the additional mechanism of squeeze-and-

excitation modules for adjusting channel-wise feature responses mutually. As a result, the 

network has the ability to emphasize the most discriminative features and thereby attain better 

overall accuracy. With the compound scaling framework, inverted bottleneck blocks 

conception, and squeeze-and-excitation mechanisms, EfficientNetV2 offers more predictive 

capability with the minimum number of computations relative to the existing models. It 

exhibits a good accuracy-computational cost trade-off and hence is suitable for both big image 

classification tasks as well as in constrained environments. Model optimization ensures that 

the model performs reliably across various datasets compared to regression models and has 

trustworthy predictions with lower latency and lower resource consumption. These high 

efficiencies and average accuracies make EfficientNetV2 a highly resilient tool in image 

analysis tasks in which both accuracy and efficiency are a significant factor. Therefore, because 

of its good balance regarding the level of efficiency and accuracy it can employ in dealing with 

complex image classification tasks, EfficientNetV2 was chosen as a specialized convolutional 

neural network. 

3.3 System Architecture 

 

Figure 1. Architecture of EfficientNetV2 
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The process starts with the gathering of plant leaf images, as shown in Figure 1, which 

are collected into a dataset for training the deep learning model. These images undergo 

processing and are input into an EfficientNetV2-based convolutional neural network (CNN), a 

cutting-edge architecture that is renowned for its best-in-class trade-off between model 

performance and computational efficiency. The image acquisition stage commences the data 

pipeline, followed by intense preprocessing to improve the quality and homogeneity of input 

data to support effective model training. The model is extensively trained on a large, annotated 

dataset to enable it to learn detailed patterns and visual features characteristic of different plant 

diseases.  

During this process, the architecture and behavior of the model constitute the backbone 

of this research. EfficientNetV2 involves a stem convolutional layer, followed by several 

MBConv blocks with Swish activation and squeeze-and-excitation modules for better feature 

representation. The network has a total of 480 layers, including 9 convolutional layers, 4 down-

sampling layers, and the final dense layer with softmax activation. The model further involves 

a range of convolutional operations like 3×3 Conv and Fused MBConv1 blocks, which are 

crucial in extracting discriminative features. Batch normalization speeds up and stabilizes 

training, and global average pooling dimensionally reduces it so that no computationally costly 

fully connected layers are needed. Dense and dropout layers also enhance the model's 

generalization by lowering overfitting. The last fully connected and softmax layers allow the 

model to make probabilistic predictions by assigning the highest probable class label for every 

input image. The trained model is then used for real-world inference. It takes in input leaf 

images and forecasts the resulting plant disease, or labels the plant as healthy if it finds no signs 

of disease. This end-to-end deep learning pipeline of sophisticated data preprocessing, feature 

extraction, and classification provides a solid automated plant disease detection solution. The 

suggested architecture not only improves diagnosis accuracy but also simplifies agricultural 

management through timely and accurate disease classification. 

3.4 Data Description 

A big open-source dataset downloaded from Kaggle consists of about 70,000 high-

resolution images (256x256 pixels) of plants and their great variety, divided into 38 distinct 

classes with 14 varied plant species and 26 varied classes of disease images. The data is divided 

into 80% for training and 20% for testing. With such extensive coverage, models can be trained 
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and tested far more rigorously and generalizable because they are being trained on a wide 

spectrum of both real-world settings and disease expressions. This dataset also helps ensure 

consistent image resolution and labeling quality, which ensures that models trained with this 

dataset will have reproducible performance and the capacity to compare across studies. It 

provides the research community with a chance to collaborate, innovate, and come up with 

very resilient and scalable solutions to the issue of plant disease management in agriculture by 

releasing such well-curated and comprehensive datasets under an open license. In this study, 

we have collaborated with the leaf disease dataset, and Figure 2 shows a preview of the dataset. 

 

Figure 2. Dataset Overview 

3.5 Experimental Setup 

To build the ultimate output, we use a sound component and a heavy load of tools and 

technologies. At the core of our system is Python as the central programming language, and 

for good reason: it is a robust language with a staggering number of libraries. The development 

of deep learning models is done using TensorFlow and Keras as its backbone, which are robust 

libraries to construct and train robust neural networks. With these in hand, we are able to 

construct and train models that can effectively recognize and classify plant leaf diseases from 

the input image. To develop the web application framework, we use Flask to provide a user-

friendly interface and a place for interaction. Flask gives us endpoints to process the requests 

and send back responses quite efficiently because of its simplicity and flexibility. Meanwhile, 

the frontend is constructed mostly from HTML, CSS, and JavaScript, which enables us to build 

a user-friendly and good-looking interface. This all-inclusive toolkit enables us to easily 

integrate numerous components to facilitate seamless communication between the deep 

learning models in the backend and the frontend interface. This produces a working and useful 



                                                                                                                                                                                 Mrudhhula V. S., Madhvesh V. S., Thirumahal R. 

 

Journal of Artificial Intelligence and Capsule Networks June 2025, Volume 7, Issue 2 149 

 

plant leaf detection system for disease symptom detection and plant leaf disease classification, 

allowing users to monitor and maintain the health of their agricultural systems more effectively. 

4. Results and Discussion 

After 30 epochs of training, the suggested model, EfficientNetV2, outperformed the 

baseline Convolutional Neural Network (CNN) model, which obtained an accuracy of 89.6%. 

Table 1 compares the performance of the two models using a number of evaluation metrics, 

such as precision, recall, and F1-score. The outcomes unequivocally show that EfficientNetV2 

performs better than the conventional CNN on all metrics, demonstrating its applicability for 

automated plant disease detection tasks. 

Table 1. Comparative Analysis 

Metric Baseline CNN (%) Proposed EfficientNetV2 (%) 

Accuracy 89.6 95.2 

Precision 88.9 94.7 

Recall 89.1 95.0 

F1-Score 89.0 94.8 

 

 

Figure 3. Graph of Model Loss Over Epochs 
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Figure 4. Graph of Model Accuracy Over Epochs 

The EfficientNetV2 model's training dynamics are depicted in Figures 3 and 4. Figure 

4 displays the corresponding accuracy across training and validation datasets, while Figure 3 

displays the trend of model loss over epochs. The y-axis in both figures shows the 

corresponding loss or accuracy values, while the x-axis shows the number of epochs. The 

trends show stable learning and effective convergence, indicating that the model does a good 

job of generalizing to new data. 

To assess the model's learning behavior and spot possible problems like overfitting or 

underfitting, it is essential to keep an eye on the accuracy and loss curves. The suggested 

architecture has been successfully trained, as evidenced by the steady drop in loss and the 

accompanying increase in accuracy. In order to ensure optimal performance for real-world 

deployment in agricultural diagnostics, these visualizations also help guide decisions about 

model refinement and hyperparameter tuning. 

5. Future Work 

The capability of integrating real-time disease detection functions through edge 

computing and IoT sensors into the realm of future agriculture management is a giant step 

towards proactive farming through precision management methods. This method applies 

hyperspectral and infrared data in combination with conventional image analysis methods to 
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not only permit easy, in-field plant health monitoring but also provide much earlier detection 

of diseases with unprecedented resolution. Through this incorporation, farmers and agricultural 

agencies can receive almost real-time disease management information (e.g., the impact of 

rainfall on disease levels in farms), which can help them to take timely interventions once 

disease has been identified. Further, the system is now an entirely integrated decision support 

tool that associates a diagnosis with a list of therapeutic measures with an associated list of 

preventive measures so that the user can customize advice to ensure maximal production in 

terms of crop health and yield. Other paradigms of agricultural management are also set to be 

transformed in the hands of the convergence of sophisticated technologies. A system of live 

disease monitoring, treatment prescription, and preventive practices can be harmoniously 

incorporated to raise farming to the peak of its efficiency and sustainability. Through the use 

of a whole systems approach, this increases disease resistance, yield of crops, and care for the 

environment by reducing the necessity for chemical intervention. Such a system can benefit 

both individual farmers and entire farming communities and ecosystems by enabling farmers 

to use actionable information and smart decision support for making knowledgeable decisions 

on the farm. Embracing this vision of integrative agronomic management has the potential to 

transform how we produce crops and ensure the food supply for decades to come. 

6. Conclusion 

Plant leaf disease is detected using the EfficientNetv2 model, which represents a 

significant advancement in agricultural technology. Utilizing computational power without 

sacrificing performance is made possible by the robust architecture in conjunction with 

innovative scaling techniques. EfficientNetV2 was the best model choice for this 

implementation, outperforming the conventional CNN architecture in terms of accuracy, rate 

of convergence, and global generalization across a wide range of disease classes. It is among 

the best solutions currently in use in agriculture because of its capacity to handle small samples 

and provide accurate predictions. Furthermore, the model's efficacy opens the door for the 

development of low-cost field management systems, which are vital for maintaining food 

security in modern farming methods in the face of shifting obstacles. Applying state-of-the-art 

technology to agricultural operations has the potential to transform farming practices and lay 

the groundwork for a safe and sustainable food production system. Actually, as we create and 

implement these high-tech solutions, we also need to build a strong agriculture sector that will 

help us solve the agricultural issue and give future generations a sustainable supply of food. 
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