
Journal of Artificial Intelligence and Capsule Networks (ISSN: 2582-2012)
www.irojournals.com/aicn/

Journal of Artificial Intelligence and Capsule Networks, December 2025, Volume 7, Issue 4, Pages 388-412 388
DOI: https://doi.org/10.36548/jaicn.2025.4.005

Received: 10.11.2025, received in revised form: 11.12.2025, accepted: 27.12.2025, published: 08.01.2026
 © 2025 Inventive Research Organization. This is an open access article under the Creative Commons Attribution-NonCommercial International (CC BY-NC 4.0) License

An In-Browser Proctoring System Using

YOLO-Based Object Detection and Gaze

Analysis

Ayush Sharma Kaundinya1, Pramish Adhikari2,

Mohan Bikram KC3, Pratikshya Shrestha4

1, 2, 3Gandaki College of Engineering and Science, Pokhara University, Pokhara, Nepal

4Assistant Professor, Gandaki College of Engineering and Science, Pokhara University, Pokhara,

Nepal

Email: 1ayushsharmakaundinya@gmail.com, 2pramishadhikari30@gmail.com, 3kcmohan64@gmail.com,

4pratikshyashrestha@gces.edu.np

Abstract

The development of remote learning has increased requirements for effective online

evaluations, but the lack of physical supervision can lead to inappropriate actions such as

invisible support, illegal collaboration, and the use of restricted resources. This work represents

a web-based automated proctoring solution that uses a camera and a lightweight backend

system to reduce the need for constant monitoring by avoiding complicated client-side

implementation. The proposed system consists of three major components such as a YOLOv8s,

a Dlib application and a web-based system. The YOLOv8s vision module detects human faces

and restricted objects (such as mobile phones and books), a Dlib facial recognition application

estimates eye and head direction to identify behavioral changes and the web-based monitor

detects the behaviors like switching tabs, reducing the window size and exiting full-screen

mode. A rule-based layer analyzes these signals to determine the type of violation and takes

necessary action such as providing real-time notifications and expanding procedures for

repeated errors. The detected activities will be saved as structured recorded files in a MySQL

database for transparency and scientific evaluation with suitable supporting links shown on

administrator dashboards for monitoring after the evaluation. This experimental evaluation and

 Ayush Sharma Kaundinya, Pramish Adhikari, Mohan Bikram KC, Pratikshya Shrestha

Journal of Artificial Intelligence and Capsule Networks, December 2025, Volume 7, Issue 4 389

dashboard examples demonstrate that the system will monitor proctoring actions in real-time

and provide accurate, reviewable data suitable for remote conditions.

Keywords: Online Proctoring, Real-Time Monitoring, YOLOv8, Gaze Estimation, Computer

Vision, Academic Integrity, Browser-Based System, Cheating Detection

1. Introduction

When online education first began, computer-based tests were widely used to evaluate

student performance. However, online tests cannot provide the same level of real-time, in-

person monitoring as classroom-based exams. This lack of control increases the chance of

inappropriate behavior, such as accessing restricted devices, copying notes or textbooks, and

asking others for answers. Professional proctoring solutions help with this issue, but they

require subscriptions, continuous human monitoring and complete access to a student's device.

This creates problems related to privacy, cost, reduced acceptability and accessibility. As a

result, there will be an increased demand for automated systems that require minimal setup and

depend on standard technology. Recent advances in computer vision and deep learning have

enabled real-time analysis of student behavior using techniques such as face identification,

object localization, and eye tracking. This system offers a lightweight, web-based automated

proctoring solution that includes facial detection, eye tracking and the identification of

restricted devices like phones and books. The goal is to provide accurate and dependable

remote tests while keeping the system accessible and reducing dependence on external

proctoring services.

1.1 Problem Statement

With remote exams routine in many courses, lecturers have less control over the

conditions in which students attend their tests. The examiner has slight visibility of students’

behaviors, such as using a phone, copying from a book, or getting help from someone nearby.

Existing proctoring technologies aim to address this issue, but most are challenging to

implement widely. Few systems depend on live supervisors viewing video feeds; others require

separate apps with extensive access to the student's computer, and some use expensive licenses

to operate. Web-based tests require only a webcam and can detect obvious risk situations, such

as the presence of multiple faces, a visible phone or book, and attention continuously shifting

 An In-Browser Proctoring System Using YOLO-Based Object Detection and Gaze Analysis

ISSN: 2582-2012 390

away from the screen. This study proposes a real-time, automated proctoring system to ensure

equitable online exams.

1.2 Objective

A web-based automated proctoring system develops a lightweight model that uses

YOLOv8 and eye tracking to identify student behaviours in online tests.

2. Related Work

Dilini et.al. [1] proposed an internet browser-based system for proctoring using eye-

gaze information to identify cheating during online examinations. This is achieved through a

webcam plug-in, which records eye pupil movements and then transmits the data to a pre-

trained One Class Support Vector Machine (OCSVM) using normal gaze patterns. There are

notable differences between the current eye pattern and the reference model, particularly if they

are irregular, a signal is triggered that enables monitoring of the individual candidate during an

online examination, whereby a human monitor/proctor is not required. Patil et al. [2] designed

an AI-based proctoring solution to ensure the integrity of online exams through student

behavior observation. The proctored system makes use of computer vision techniques like

OpenCV and MediaPipe for eye-tracking and hand movements. As soon as it detects any

unusual student behavior, it captures a photo. This photo will be analyzed later by an

invigilator. From this study, the vision-based proctoring systems are capable of performing a

considerable amount of proctoring tasks.

Motwani et al. [3] explored an automated method for monitoring online exams with

minimal human invigilation. The article highlights an AI proctoring system with computer

vision to detect irregular activity during exams. The system is designed to record such activity

as images or videos for later verification. The work indicates that automated monitoring can

enhance the security and administration of online exams. The system is an affordable and

flexible alternative to human invigilation. They argue that automated monitoring systems can

eliminate cheating during exams. Kaddoura and Gumaei [4] proposed a deep‑learning system

that detects cheating in online exams in real time. They aimed to improve earlier vision‑based

methods that relied on hand‑crafted image features. The system handles two input types at

once: it uses convolutional neural networks to learn visual features from the exam video, and

a Gaussian‑based discrete Fourier transform to extract features from the audio stream. It was

 Ayush Sharma Kaundinya, Pramish Adhikari, Mohan Bikram KC, Pratikshya Shrestha

Journal of Artificial Intelligence and Capsule Networks, December 2025, Volume 7, Issue 4 391

trained and tested on a public dataset containing various cheating behaviours and achieved high

accuracy with a processing time suitable for live use.

Ong et al. [5] described a cheating detection system for online exams using a clustering

algorithm to detect similar behaviour among candidates. In this study, the work used an online

exam analysis system focusing on facial movements, eye movements, and human gestures.

They created a custom-made dataset using 50 candidates who were made to cheat as well as

perform normal activities during an exam. These activities were later mapped into a feature

map after a clustering analysis allowed normal patterns to be distinguished from cheating ones.

They attained an approximate accuracy of 83% in detecting cheating during online exams using

unsupervised learning. Sridhar and Rajshekhar [6] proposed an AI-based proctoring solution

for online exams, taking over a major part of the supervision process to prevent cheating. They

implemented behavior analysis models for monitoring students throughout the entire online

test and were capable of storing evidence whenever the system flagged a case of cheating. It

was designed as a secure, cost-effective solution, enabling institutions to rely less on human

proctors for the supervision process. They believed AI could provide viable, scalable, and

trustworthy solutions for online test supervision.

Gaikwad [7] presented an unsupervised machine‑learning proctoring system for online

exams that works without a live invigilator. The software observes students through their

webcams, flags behavior or objects that seem improper, and logs each flagged event so it can

be checked later. The study found that this approach provided useful accuracy under normal

test conditions and argued that unsupervised models can support large‑scale online exams when

regular in‑person supervision is not possible. Naik et al. [8] designed an online invigilation

system that employed the use of Dlib and YOLO for monitoring the activities of the candidates.

The system was designed in such a way that it utilized the webcam and microphone to monitor

the activities of the candidates through their eye movements, as well as the entry of another

candidate within the camera range. Additionally, the system was able to detect unauthorized

devices. If the system detected this activity, it alerted the candidates without the need for human

invigilators.

Singh et al. [9] described an online exam proctoring system that uses YOLO object

detection to support academic integrity in online exams. Their model combines video and audio

to track head direction, catch attempts to fool the system, monitor mouth movement, detect

mobile phones, and count the number of people visible on camera. The system can spot extra

 An In-Browser Proctoring System Using YOLO-Based Object Detection and Gaze Analysis

ISSN: 2582-2012 392

individuals or prohibited devices in real time with pre-trained YOLO weights and

automatically stop the exam when a violation is detected. The system provides a practical,

automated way to make online assessments secure and consistent. Yulita et al. [10] created a

deep learning solution capable of identifying cheating during online exams, responding to the

challenges presented by online classes during the COVID-19 pandemic. Their solution

monitors students’ activities using the webcam and a deep neural network to identify

questionable activities, achieving an F1-score of 84.52%. As a web-based application in the

Indonesian language, the solution provides educators with a useful and credible platform to

monitor academic integrity during online exams. From this research, the effectiveness of deep

learning in designing a proctoring solution that is scalable and suitable for online education can

be assessed.

Abbas & Hameed [11] examined the online proctoring system for exams that utilizes

AI and deep learning, specifically the attempt to identify potential cheating signals. They

conducted a thorough analysis of 41 studies published between 2016 and 2022 and examined

the specifics of each study, including the methods used, the algorithms employed, the data

sources, and the techniques utilized for cheating detection. Their analysis also points out

several vulnerabilities exhibited by the current studies, such as inadequate training

environments and slow adoption of new technologies. This article provides clear insight into

the current situation regarding automated online proctoring and the fields that require

improvement. Zuo et al. in [12] developed an online cheating detection system using a modified

YOLOv8 model and the addition of an attention mechanism. This system observes candidates

remotely and marks unusual observations automatically so that the human proctor does not

have to continually monitor the screen. The detection accuracy achieved on recorded videos of

exam sessions was 82.71% and was very hardware-efficient. It appears that by integrating

object detection models and attention models in proctoring systems, scalability, affordability,

and sufficient accuracy can be achieved.

Hylton et al. [13] studied whether webcam monitoring during online exams affects

cheating. They ran an experiment with two groups: one group took a webcam‑proctored exam,

and the other took the same test without video monitoring. The average scores were almost the

same, but students in the proctored group finished more quickly and said they felt they had

fewer chances to cheat. The authors concluded that visible webcam use can influence behavior

and help maintain exam integrity. Garg et al. [14] proposed a CNN-based "virtual exam

 Ayush Sharma Kaundinya, Pramish Adhikari, Mohan Bikram KC, Pratikshya Shrestha

Journal of Artificial Intelligence and Capsule Networks, December 2025, Volume 7, Issue 4 393

controller," incorporating students' camera capabilities for surveillance purposes during online

exams. This tool adopts the application of Haar Cascade Classifiers and deep learning models

for the detection and identification of faces within the video stream. This approach enables the

identification of situations such as the presence of more than one face within the video and

other potential suspicious activity during the exam. If such activity is detected, the software

will be programmed with predetermined parameters for sending notifications as a strategy for

ensuring the elimination of cheating and making online exams more standardized.

Ahmad et al. [15] describe an online proctoring system that uses deep‑learning methods

to keep track of students during remote exams. Their system employs HOG-based face

detection, OpenCV face recognition, and eye‑blink checking to spot static or spoofed images,

as well as object detection to identify items such as phones or extra laptops. Tested on the

FDDB and LFW datasets, it achieved around 97% accuracy for face detection and 99.3% for

face recognition, suggesting that biometric monitoring can be used reliably in automated exam

supervision. Erdem and Karabatak [16] examined whether deep learning models and other

machine learning algorithms can identify cheating activity during online examinations. The

work tested their model on 129 datasets from different examination scenarios. The authors'

results showed that, with a regression task of determining cheating activity, they reached 80.9%

accuracy with their 5-layer DNN model and 96.9% accuracy with their 10-layer model for a

yes/no task. However, with multi-class cheating labels, they achieved a maximum accuracy of

97.7% with XGBoost. The authors also applied SHAP and LIME techniques to examine which

features of activity were most meaningful.

3. Proposed Work

This study explains how the web-based online proctoring system detects student

misbehavior during online exams. The proposed tool is designed for easy access and a simple

implementation process. Students need a built-in camera and a current web browser with no

additional software to install or configure. This method uses real-time computer vision to

automate invigilation while minimizing security risks and human involvement.

 An In-Browser Proctoring System Using YOLO-Based Object Detection and Gaze Analysis

ISSN: 2582-2012 394

Figure 1. System Workflow

Figure 1 represents the proposed system's workflow demonstrating how the detection

models handle input data and transfer it from the backend to the frontend.

3.1 Datasets

The multi-class object detection dataset used in this work had three different classes of

objects: Phone, Face and Book. The Mobile Phone Detection Computer Vision Model dataset

[18] had 23,749 images with class label 2, which were further divided into 20,772 training

images, 1,984 validation images, and 993 testing images. For faces, the AiFaceAttribute 2.0

Computer Vision Dataset [17] contained 18,258 images with class label 0, which were divided

into 16,318 training images, 1,581 validation images, and 354 testing images. For books, Book

Detection with YOLO Computer Vision Dataset [19], Books Computer Vision Dataset [20],

and BookData Computer Vision Model [21] were combined for a total of 9,711 images with

 Ayush Sharma Kaundinya, Pramish Adhikari, Mohan Bikram KC, Pratikshya Shrestha

Journal of Artificial Intelligence and Capsule Networks, December 2025, Volume 7, Issue 4 395

class label 1, further divided into 7,695 training images, 1,178 validation images, and 838

testing images. The total dataset comprised 44,785 training images, 4,743 validation images,

and 2,185 testing images. All bounding boxes were annotated using the YOLOv8 format,

which ensured consistent annotation for the three classes of objects.

Figure 2. Sample Dataset

Figure 2 presents example images from the dataset including faces, students, and

banned items, and illustrates the range of object sizes, viewing angles, and exam conditions

used to train and test the model.

3.2 Data Preprocessing

Preprocessing and augmentation were specified independently for each category

because the photographs do not have the same form or substance. For the Phone and Face

datasets, all images were resized to 416 × 416 using stretch resize. This provides the detector

with a fixed square input and retains as many pixels as possible on the real item, rather than

creating empty padding around it. From each original image, we created three augmented

copies using horizontal flip (probability 0.5), vertical flip (probability 0.5), random rotation

between −26° and +26°, exposure change between −25% and +25%, and salt‑and‑pepper noise

on 4% of the pixels. These processes replicate common variations in webcam broadcasts, such

as slight camera rotation, mirrored views, uneven brightness, and sensor noise.

 An In-Browser Proctoring System Using YOLO-Based Object Detection and Gaze Analysis

ISSN: 2582-2012 396

Preprocessing for the Book dataset was specific to each subset. In the first subset (5,311

images), we applied rotation‑based augmentation: every image was rotated by 0°, 90°, −90°,

or 180° with equal probability to make the model less sensitive to how a book is oriented on

the desk. The second subset (1,872 pictures) was handled differently. We first corrected the

image orientation using EXIF metadata, then resized each image to 640 × 640 with stretch

resize and did not add further augmentation. The increased size maintains fine features such as

page borders and covers while maintaining the detector's predetermined input size. Constant

preprocessing throughout the train, validation, and test splits ensures accurate bounding boxes

and reliable detection of faces, phones, and books in noisy, low-resolution webcam footage

with varying views and illumination.

Figure 3. Dataset Preprocessing

Figure 3 shows sample photos from the dataset, comparing the originals to the

preprocessed versions and demonstrating the data prepared for accurate model training and

testing.

3.3 Model Architecture

In this study, the YOLOv8s variation serves as the primary object-detection model. It

consists of three main components: a backbone that analyzes each video frame to collect visual

data, a neck that integrates features at various sizes and a detecting head that generates the final

item predictions. The backbone can detect both large targets, such as a student's upper body

and small objects, such as phones and books. The neck connects these multi-scale properties

 Ayush Sharma Kaundinya, Pramish Adhikari, Mohan Bikram KC, Pratikshya Shrestha

Journal of Artificial Intelligence and Capsule Networks, December 2025, Volume 7, Issue 4 397

together allowing the model to locate items of various sizes depending on their appearance in

the camera view. The detecting head provides a class name and bounding box for each item,

allowing the system to monitor faces, people, phones, and books simultaneously in real time.

Figure 4. Visualisation of the YOLOv8 Architecture Including Backbone, Neck, and

Detection Head Adapted from Hidayatullah et al. [22].

Figure 4 illustrates the YOLOv8s architecture used in the proctoring system, explaining

the received video frames processed to extract features, integrate data across several scales,

recognize students and restricted items in real time.

3.4 Model Training and Optimization

The model was trained for 150 epochs with a batch size of 8, using images resized to

640 × 640 pixels. We started from pretrained YOLOv8s weights and fine‑tuned them with an

Adam optimizer (learning rate 0.01, momentum 0.937, weight decay 0.0005). Automatic

 An In-Browser Proctoring System Using YOLO-Based Object Detection and Gaze Analysis

ISSN: 2582-2012 398

mixed precision was turned on to speed up training. To improve generalization, we used several

data‑augmentation steps, including horizontal flips, scaling, translation, random erasing,

RandAugment, and mosaic augmentation during the first 10 epochs. Validation was carried out

throughout training. All experiments used a single GPU with 8 data‑loader workers, and the

final model runs fast enough to detect faces and prohibited items in real time during online

exams.

Figure 5. Training Loss Curves Over Epochs

Figure 5 shows the classification and localization loss during YOLOv8s training. The

steady drop in these curves indicates that the model improves over time and settles into a stable

solution.

3.5 Frame‑Based Frontend–Backend Pipeline

The proctoring system has a framework-based client-server architecture. In the web

browser, the candidate's camera records photos at various times, which are reduced to image

frames. These frames are transmitted to the backend one by one via a continuous WebSocket

connection. On the server, a WebSocket handler uses OpenCV to decode the base64-encoded

JPEG and convert it to a BGR 'numpy' array. The frame is delivered to an internal detection

pipeline that runs object-detection models and checks the set of proctoring rules. Any unusual

behavior, along with the required information is recorded in a database, and an overview of

that behavior and any rule violations is created. The report is sent back to the client via the

 Ayush Sharma Kaundinya, Pramish Adhikari, Mohan Bikram KC, Pratikshya Shrestha

Journal of Artificial Intelligence and Capsule Networks, December 2025, Volume 7, Issue 4 399

same WebSocket channel allowing for near real-time monitoring without requiring a

continuous video stream.

Figure 6. WebSocket-Based Frame Transfer and Backend Analysis Pipeline

Figure 6 depicts the whole frame flow in the proctoring system from frontend capture,

encoding, and transmission over WebSocket to backend receipt, decoding, analysis, and result

production.

3.6 Gaze Behavior Estimation Module

The eye-tracking system is the second stage in a frame-based pipeline used for other

proctoring checks. The backend decodes the JPEG picture for each camera frame received via

the WebSocket channel and uses a YOLOv8 detector to recognize faces and other relevant

items. YOLOv8's face bounding boxes reduce the focusing areas, which are then processed

using a dlib facial-landmark model. This model generates a set of important areas on the face

with a significant concentration of points near the eyes. The system detects whether the

individual is directed at the screen or away in that frame based on the position of certain eye

landmarks, such as the iris' placement inside the eyelid area and the balance between the left

and right eyes. Every frame generates an eye identifier as well as the appropriate landmark

coordinates. These results are included in the structured proctoring system provided directly to

the website. If off-screen looking is detected, it will be saved as suspicious actions in the

database. The module combines YOLOv8 for face localization with dlib for landmark

 An In-Browser Proctoring System Using YOLO-Based Object Detection and Gaze Analysis

ISSN: 2582-2012 400

estimation, creating a simple and effective gaze-based monitoring mechanism within the

proctoring system.

Figure 7. Visualisation of the 68 Facial Landmark Configuration from the iBUG Facial Point

Annotations Dataset, Adapted from PyImageSearch [23].

Figure 7 shows the distribution of 68 facial landmarks over the main areas of the face.

These points provide the geometric data required to identify the eyes and estimate gaze

direction in the proposed system.

3.7 Event-Driven Alert Logging

In this proposed system, the inputs received from detecting outputs and activities on the

browser used by the candidate during the examination are moderated through several

predetermined rules. Once a rule has been violated, it activates a specific response while

collecting details of the occurrence in a MySQL database, which can be viewed later through

an admin interface for each examinee. This is shown in Table 1.

Table 1. Proctoring Event Types, Trigger Conditions, and Recorded Evidence

Violation Type Triggering Condition Logged Data Stored in

Database

System Action

Multiple Faces

in Frame

More than one face

detected in

consecutive video

frames

User ID, time of event,

violation type, reference to

the stored frame

Warning flag raised

and event recorded

 Ayush Sharma Kaundinya, Pramish Adhikari, Mohan Bikram KC, Pratikshya Shrestha

Journal of Artificial Intelligence and Capsule Networks, December 2025, Volume 7, Issue 4 401

Face Not

Visible / Blank

Screen

Face not detected for

longer than a defined

time limit

User ID, time of event,

violation type, reference to

the stored frame

Warning flag raised

and event recorded

Smartphone

Detected

YOLOv8-based

detector identifies a

mobile phone above a

set confidence level

User ID, time of event,

violation type, reference to

the captured frame

Alert generated and

event recorded

Book /

Unauthorised

Material

YOLOv8-based

detector identifies a

book or printed

material on the desk

User ID, time of event,

violation type, reference to

the captured frame

Alert generated and

event recorded

Suspicious

Gaze Direction

Estimated gaze

remains directed away

from the screen

beyond a set limit

User ID, time of event,

violation type, reference to

the captured frame

Alert generated and

event recorded

Browser Focus

Lost

User switches tab,

minimises the

window, or exits full-

screen mode

User ID, time of event,

violation type

Warning issued and

event recorded

Repeated

Browser

Violations

More than three

browser-focused

warnings during a

single exam session

User ID, time of event,

violation type

Automatic exam

submission and final

log stored

All events related to proctoring are logged in the suspicious_events table. For every

single event, the system logs the candidate's username, the test ID associated with the event,

the timestamp of the event, the nature of the violation, and, if captured by the webcam, a

reference to the image captured. Foreign-key links to the users and tests tables ensure that every

record is tied to a specific candidate and exam, supporting both real-time alerts during the test

and structured post-exam review with visual evidence.

Figure 8. Flow of Entities in Proctoring Database

Figure 8 illustrates how the database tables relate to one another, connecting user, test,

and session records with the logged events. It shows that each suspicious event is linked to a

 An In-Browser Proctoring System Using YOLO-Based Object Detection and Gaze Analysis

ISSN: 2582-2012 402

particular candidate and test, which makes it straightforward to trace, inspect, and review

proctoring incidents.

3.8 Handling Latency and Detection Failures

The proctoring system maintains an active WebSocket connection and follows an

identified sample time period. At each sample interval, the web page takes and submits the

current webcam image for analysis. The sample rate is set in advance for the whole session; it

doesn't change during runtime. There is no adaptive frame rate. The interval is chosen before

implementation, balancing response and computation or network load. On the backend, every

image is processed as soon as it comes and replaces the previous one without being queued.

This reduces buffering, lowers the possibility of irrelevant frames being examined when the

network slows down, and allows the server to return the result over the same channel,

maintaining the monitoring dashboard and warning logic up to date. Short, temporary losses of

the face signal are handled with a small grace period. When a received frame does not contain

a detectable face, the system starts or refreshes a per‑user timer instead of immediately counting

a violation. A "no face detected" event is logged only if the absence continues beyond a short

threshold, typically several consecutive samples or roughly three seconds. This rule filters out

spurious alerts caused by brief lighting changes, quick head movements, or momentary

network delays.

3.9 Escalation Policy and Cooldown Period

The system has a gradual monitoring method in which suspicious behaviors are initially

recorded, followed by user warnings, and finally exam cancellation with manual review if

violations continue. A maximum of five warnings is allowed per candidate for all monitored

rules. A 10-second relaxation has been established after each logged violation to prevent

frequent triggering by temporary errors, while similar occurrences are ignored. When the

warning limit is reached, the examination session is immediately ended and the attempt is

marked for a post-exam manual review by an administrator. This technique maintains a balance

between robustness and false positives, allowing for immediate action in confirmed cases of

illegal activity.

 Ayush Sharma Kaundinya, Pramish Adhikari, Mohan Bikram KC, Pratikshya Shrestha

Journal of Artificial Intelligence and Capsule Networks, December 2025, Volume 7, Issue 4 403

3.10 Thresholds

The system's rule levels are defined effectively using validation data instead of fixed

heuristics. Detection confidence levels are established by analyzing precision-recall trade-offs

across various operational points to balance sensitivity and false positives. Face and head

position levels have been adjusted using recorded landmark deviations to differentiate between

normal and suspicious motions. Temporal thresholds are used to guarantee that only continuous

violations are highlighted, improving durability to temporary detection noise. The final limits

were designed to maintain a balance between effective memory (to prevent missed errors) and

proper precision to avoid false alerts. Table 2 represents the performance based on confidence.

Table 2. Per Class Performance based on Confidence

Confidence

Threshold

Face(P/R/

mAP@0.5)

Book(P/R/mAP@0.5) Mobile(P/R/mAP@0.5)

0.5 0.91 / 0.72 / 0.83 0.63 / 0.83 / 0.63 0.97 / 0.92 / 0.95

0.6 0.94 / 0.65 / 0.80 0.65 / 0.80 / 0.62 0.97 / 0.91 / 0.95

0.7 0.97 / 0.51 / 0.74 0.67 / 0.76 / 0.61 0.98 / 0.89 / 0.94

0.8 0.99 / 0.22 / 0.60 0.68 / 0.67 / 0.58 0.99 / 0.83 / 0.91

4. Results and Discussion

The automated proctoring system was evaluated in controlled tests that simulated

distant exam sessions. All experiments were conducted in a regular web browser with a

consumer-grade camera, which is the common configuration for students to use at home. The

examination assessed facial recognition, restricted object detection, and eye tracking. Tests

were repeated under various lighting conditions, backdrops, and viewing angles to see if the

secure system was maintained. We also verified that notifications were delivered on time and

that each incident was recorded in the logs.

4.1 Model Performance Evaluation Curves

Training and evaluation will demonstrate the proctoring detection model (for faces,

mobile devices, and books) as it evolves over time. Figure 7(1) shows that the accuracy, recall,

and F1-score values increase significantly during the first few epochs before slowing down,

indicating that the model understands the key concepts and achieves a level of stability and

 An In-Browser Proctoring System Using YOLO-Based Object Detection and Gaze Analysis

ISSN: 2582-2012 404

consistency. However, the precision level remains higher than the recall level, indicating that

the model is more cautious with alarms and is less prone to false positives. Figure 7(2), the

Precision-Recall Curve, verifies this by showing that the precision is high even when the recall

level is still satisfactory. This is important for the proctoring system since phones and books

must be identified, but student behavior shouldn't be taken as false alarms. Figure 7(3) shows

the same trend for mAP values, as mAP@0.5 and mAP@0.5:0.95 display comparable progress

patterns and reach stability after a sudden increase.

Figure 9. Variation of Precision, Recall, F1-Score, and Mean Average Precision During

Validation

From Table 3, the proposed final model is appropriate for use in real-time proctoring

tasks. Its precision value of 0.914 indicates high accuracy, meaning the majority of the detected

faces, phones, and books are indeed accurate, ensuring limited false alerts during exams.

Furthermore, its high recall of 0.813 ensures that a vast majority of the objects are detected,

aiming to capture illegal devices during exams. The F1-score of 0.860 ensures a sound balance

between accuracy and scope. Based on its bounding box accuracy, the mAP@0.5 of 0.889

implies that performance on a reasonable overlap threshold was good, while its mAP@0.5:0.95

of 0.682 implies that its performance on a more rigid localization threshold was still sound.

 Ayush Sharma Kaundinya, Pramish Adhikari, Mohan Bikram KC, Pratikshya Shrestha

Journal of Artificial Intelligence and Capsule Networks, December 2025, Volume 7, Issue 4 405

Table 3. Performance Metrics Table

Metric Value

Precision 0.914

Recall 0.813

F1-score 0.860

mAP@0.5 0.889

mAP@0.5:0.95 0.682

4.2 Confusion Matrix Analysis

Figure 10. Normalised Confusion Matrix

The normalized confusion matrix shows that the model recognizes the three monitored

classes reasonably well. About 82% of face instances, 78% of book instances, and 95% of

mobile-phone instances are classified correctly. Most of the remaining errors for these classes

occur when the model predicts background instead, meaning that some objects are simply

missed. The opposite problem appears for the background class: many background regions are

wrongly labeled as objects, mainly as faces (approximately 0.73), and to a lesser extent as

books (approximately 0.18) and mobiles (approximately 0.09). Overall, the model performs

 An In-Browser Proctoring System Using YOLO-Based Object Detection and Gaze Analysis

ISSN: 2582-2012 406

well in detecting real faces, phones, and books, but it still generates several false alarms in

background areas, especially for faces, which can occasionally lead to unnecessary flags in the

proctoring system. Figure 10 shows the normalized confusion matrix of the YOLOv8s

proctoring model. The system correctly detects faces, books, and mobile phones most of the

time, while some mistakes occur with background areas, especially faces, which can

occasionally trigger false alerts.

4.3 Face, Gaze, and Prohibited Object Detection Performance

The face‑detection part of the system worked consistently under normal exam

conditions. When a single student was in front of the camera, it detected the face and updated

the status as well as the head and eye direction if the student looked away. If the student moved

out of view, it correctly showed “No Face Detected.” When another person entered the frame,

the system reported more than one face (faceCount = 2), issued a warning, and saved each of

these events with a timestamp for later review.

The gaze tracker could follow the gaze of the test taker accurately throughout the test.

When the student was taking the test by looking at the screen, this was marked as normal gaze,

and small natural blinks were eliminated to avoid false warnings. When the eyes remained off

the computer screen past a certain threshold, the system generated a warning and marked the

time and image frame. In Figure 11, the eye and head movement is indicated on the dashboard

and is dependent on real-time tracking of facial points. The gaze estimation module is inactive

if no face is detected on the video image. Thus, no gaze estimation decision is made until a

valid face is detected again. Figure 11 shows a proctoring interface that analyzes faces and eye

points in real time to identify gazing, blinking, looking away, on-screen focus, fast eye

movement, rotated head, presence of multiple faces and partial faces, absence of a face and

marks any violations as needed. The system’s restricted device check will identify a phone or

book and report it immediately to the admin. When a phone or book is viewed on the screen,

the dashboard displays a message such as "Phone Detected" or "Book Detected". It also

continues to show the face and eye status with a warning message. The system will record the

incident in the log including the exact moment and image frame each time it occurs. This

provides a clear record of restricted devices detected during the exam.

 Ayush Sharma Kaundinya, Pramish Adhikari, Mohan Bikram KC, Pratikshya Shrestha

Journal of Artificial Intelligence and Capsule Networks, December 2025, Volume 7, Issue 4 407

Figure 11. Face and Gaze Detection in Proctoring Interface

Figure 12 shows that the proctoring interface recognizes the restricted objects,

including books and mobile devices, in real-time. The system displays a warning pop-up

window when an item is identified, highlighting the image as a problem and saving the date

for future reference.

Figure 12. Prohibited Object Detection Results in the Proctoring Interface

 An In-Browser Proctoring System Using YOLO-Based Object Detection and Gaze Analysis

ISSN: 2582-2012 408

4.4 Log Records and Evidence Capture

The system maintains a structured log entry for every proctoring event. When any of

the face, eye, object-detection, or web-based modules raise an alert, the backend saves the user

ID, exam or session ID, exact time, type of violation, confidence value, and a pointer to the

related image frame or screen grab. All this information is stored in a database and can be

exported if needed for review or appeals. In testing, every alert shown on the dashboard has a

matching log entry, providing a complete, time-ordered account of the exam.

Figure 13. Suspicious Events Log

Figure 13 shows the admin panel view of the suspicious event log, including all the

alerts that occurred during the exam. Such events include gaze violations, the absence or co-

occurrence of faces, as well as the occurrence of restricted objects, alongside the precise exam

time and the video frame.

4.5 Overall Performance and Discussion

The proposed proctoring system shows strong performance for real-time exam

monitoring. The YOLOv8s-based detector consistently recognizes faces, mobile phones, and

books, while the gaze-estimation and web-based components capture off-screen viewing and

tab-switch behavior. Most relevant violations are detected and each event is logged with a

timestamp and linked to visual evidence to support later review. The main drawback is the

presence of some false positives in cluttered or visually complex scenes, suggesting that

improved background handling and filtering would further increase the system’s robustness.

 Ayush Sharma Kaundinya, Pramish Adhikari, Mohan Bikram KC, Pratikshya Shrestha

Journal of Artificial Intelligence and Capsule Networks, December 2025, Volume 7, Issue 4 409

5. Future Scope

In the future, the system will improve reliability and avoid false warnings by training

under distributed situations and verifying the detections using multiple video frames. The

system can also be enhanced to detect other restricted objects and improve the eye based

tracking. Furthermore, future work will focus on real-time implementation, improved privacy

protection and expanded testing in exam situations.

6. Conclusion

The proposed system will create an automated online proctoring system that includes

live video monitoring and a web-based activity tracking process. It uses YOLOv8 facial

recognition to identify books, mobile devices and faces. This method also used facial

landmarks from Dlib to determine eye and head position. This system will detect web-based

activity includes the use of several tabs during the evaluation period. Every incident will be

stored in a system with supporting visual evidence. The system scored well in terms of

detection accuracy and its dashboard performed well in typical examination circumstances such

as single face verification matching, absence of face/multiple faces, eye movement, and limited

item detection. Overall, the findings show that the developed scheme is effective and reliable

for automating tests and generating reports.

References

[1] Dilini, Nimesha, Asara Senaratne, Tharindu Yasarathna, Nalin Warnajith, and Leelanga

Seneviratne. "Cheating detection in browser-based online exams through eye gaze

tracking." In 2021 6th International Conference on Information Technology Research

(ICITR), pp. 1-8. IEEE, 2021.

[2] Patil, None Akshay Vinod, None Payal Atul Chavan, None Shruti Rangnath Jadhav,

None Atharva Umesh Phodkar, None Mayuresh Bhagwat Gulame, and None Aarti

Paresh Pimpalkar. “Online Exam Proctoring Application using AI.” International Journal

of Science and Research Archive 15, no. 2 (May 28, 2025): 1228–34.

https://doi.org/10.30574/ijsra.2025.15.2.1440.

https://doi.org/10.30574/ijsra.2025.15.2.1440

 An In-Browser Proctoring System Using YOLO-Based Object Detection and Gaze Analysis

ISSN: 2582-2012 410

[3] Motwani, Sahil, Chirag Nagpal, Manav Motwani, Nikhil Nagdev, and Anjali Yeole. "AI-

based proctoring system for online tests." In Proceedings of the 4th International

Conference on Advances in Science & Technology (ICAST2021). 2021.

[4] Kaddoura, Sanaa, and Abdu Gumaei. "Towards effective and efficient online exam

systems using deep learning-based cheating detection approach." Intelligent Systems

with Applications 16 (2022): 200153.

[5] Ong, Seng Zi, Tee Connie, and Michael Kah Ong Goh. "Cheating detection for online

examination using clustering based approach." JOIV: International Journal on

Informatics Visualization 7, no. 3-2 (2023): 2075-2085.

[6] Sridhar, Arjun, and J. S. Rajshekhar. "AI-integrated Proctoring system for online exams."

Journal of Artificial Intelligence and Capsule Networks 4, no. 2 (2022): 139-148.

[7] Gaikwad, Vaibhav Ratan. "A Novel Unsupervised AI/ML based proctored system." PhD

diss., Dublin, National College of Ireland, 2022.

[8] Naik, Chinmaya Nilakantha, Adarsh S Shetty, Vismita Kuppayya Naik, Rakshith CP,

and IJARCCE. “Dlib and YOLO Based Online Proctoring System.” International Journal

of Advanced Research in Computer and Communication Engineering. Vol. 11, April

2022. DOI: 10.17148/IJARCCE.2022.11586.

[9] Singh, Tripty, Rekha R. Nair, Tina Babu, and Prakash Duraisamy. "Enhancing academic

integrity in online assessments: Introducing an effective online exam proctoring model

using yolo." Procedia Computer Science 235 (2024): 1399-1408.

[10] Yulita, Intan Nurma, Fauzan Akmal Hariz, Ino Suryana, and Anton Satria Prabuwono.

"Educational innovation faced with COVID-19: deep learning for online exam cheating

detection." Education Sciences 13, no. 2 (2023): 194.

[11] Abbas, Muhanad Abdul Elah, and Saad Hameed. "A systematic review of deep learning

based online exam proctoring systems for abnormal student behaviour detection."

International Journal of Scientific Research in Science, Engineering and Technology 9,

no. 4 (2022): 192-209.

 Ayush Sharma Kaundinya, Pramish Adhikari, Mohan Bikram KC, Pratikshya Shrestha

Journal of Artificial Intelligence and Capsule Networks, December 2025, Volume 7, Issue 4 411

[12] Zuo, Yan, Soo See Chai, and Kok Luong Goh. "Cheating detection in examinations using

improved yolov8 with attention mechanism." Journal of Computer Science 20, no. 12

(2024): 1668-1680.

[13] Hylton, Kenrie, Yair Levy, and Laurie P. Dringus. "Utilizing webcam-based proctoring

to deter misconduct in online exams." Computers & Education 92 (2016): 53-63.

[14] Garg, Kavish, Kunal Verma, Kunal Patidar, and Nitesh Tejra. "Convolutional neural

network based virtual exam controller." In 2020 4th International Conference on

Intelligent Computing and Control Systems (ICICCS), pp. 895-899. IEEE, 2020.

[15] Ahmad, Istiak. "A novel deep learning-based online proctoring system using face

recognition, eye blinking, and object detection techniques." International Journal of

Advanced Computer Science and Applications (2021).

[16] Erdem, Bahaddin, and Murat Karabatak. "Cheating detection in online exams using deep

learning and machine learning." Applied Sciences 15, no. 1 (2025): 400.

[17] Hunh. “AiFaceAttribute 2.0 Dataset.” Roboflow Universe (Roboflow), July 2025.

https://universe.roboflow.com/hunh/aifaceattribute-2.0-o3oih.

[18] Tusker AI. “Mobile Phone Detection Dataset.” Roboflow Universe (Roboflow), August

2023. https://universe.roboflow.com/tusker-ai/mobile-phone-detection-2vads.

[19] Darmawan, Fransiscus Xaverius Surya. “Book Detection With YOLO Dataset.”

Roboflow Universe (Roboflow), May 2025. 1872

https://universe.roboflow.com/fransiscus-xaverius-surya-darmawan-qaqpt/book-

detection-with-yolo.

[20] DJ2. “Books Dataset.” Roboflow Universe (Roboflow), March 2025.

https://universe.roboflow.com/dj2/books-qqqmx.

[21] Esha. “BookData Dataset.” Roboflow Universe (Roboflow), March 2025.

https://universe.roboflow.com/esha-imlgz/bookdata.

[22] Hidayatullah, Priyanto, Nurjannah Syakrani, Muhammad Rizqi Sholahuddin, Trisna

Gelar, and Refdinal Tubagus. “YOLOv8 to YOLO11: A Comprehensive Architecture

https://universe.roboflow.com/hunh/aifaceattribute-2.0-o3oih
https://universe.roboflow.com/hunh/aifaceattribute-2.0-o3oih
https://universe.roboflow.com/hunh/aifaceattribute-2.0-o3oih
https://universe.roboflow.com/tusker-ai/mobile-phone-detection-2vads
https://universe.roboflow.com/tusker-ai/mobile-phone-detection-2vads
https://universe.roboflow.com/fransiscus-xaverius-surya-darmawan-qaqpt/book-detection-with-yolo
https://universe.roboflow.com/fransiscus-xaverius-surya-darmawan-qaqpt/book-detection-with-yolo
https://universe.roboflow.com/fransiscus-xaverius-surya-darmawan-qaqpt/book-detection-with-yolo
https://universe.roboflow.com/fransiscus-xaverius-surya-darmawan-qaqpt/book-detection-with-yolo
https://universe.roboflow.com/dj2/books-qqqmx
https://universe.roboflow.com/dj2/books-qqqmx
https://universe.roboflow.com/dj2/books-qqqmx
https://universe.roboflow.com/esha-imlgz/bookdata
https://universe.roboflow.com/esha-imlgz/bookdata
https://universe.roboflow.com/esha-imlgz/bookdata

 An In-Browser Proctoring System Using YOLO-Based Object Detection and Gaze Analysis

ISSN: 2582-2012 412

In-depth Comparative Review.” arXiv (Cornell University), January 23, 2025.

https://doi.org/10.48550/arxiv.2501.13400.

[23] Rosebrock, Adrian. “Facial Landmarks With Dlib, OpenCV, and Python -

PyImageSearch.” PyImageSearch, July 3, 2021.

https://pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/.

https://doi.org/10.48550/arxiv.2501.13400
https://pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/

