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Abstract 

The development of remote learning has increased requirements for effective online 

evaluations, but the lack of physical supervision can lead to inappropriate actions such as 

invisible support, illegal collaboration, and the use of restricted resources. This work represents 

a web-based automated proctoring solution that uses a camera and a lightweight backend 

system to reduce the need for constant monitoring by avoiding complicated client-side 

implementation. The proposed system consists of three major components such as a YOLOv8s, 

a Dlib application and a web-based system. The YOLOv8s vision module detects human faces 

and restricted objects (such as mobile phones and books), a Dlib facial recognition application 

estimates eye and head direction to identify behavioral changes and the web-based monitor 

detects the behaviors like switching tabs, reducing the window size and exiting full-screen 

mode. A rule-based layer analyzes these signals to determine the type of violation and takes 

necessary action such as providing real-time notifications and expanding procedures for 

repeated errors. The detected activities will be saved as structured recorded files in a MySQL 

database for transparency and scientific evaluation with suitable supporting links shown on 

administrator dashboards for monitoring after the evaluation. This experimental evaluation and 
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dashboard examples demonstrate that the system will monitor proctoring actions in real-time 

and provide accurate, reviewable data suitable for remote conditions. 

Keywords: Online Proctoring, Real-Time Monitoring, YOLOv8, Gaze Estimation, Computer 

Vision, Academic Integrity, Browser-Based System, Cheating Detection 

1. Introduction 

When online education first began, computer-based tests were widely used to evaluate 

student performance. However, online tests cannot provide the same level of real-time, in-

person monitoring as classroom-based exams. This lack of control increases the chance of 

inappropriate behavior, such as   accessing restricted devices, copying notes or textbooks, and 

asking others for answers.  Professional proctoring solutions help with this issue, but they 

require subscriptions, continuous human monitoring and complete access to a student's device. 

This creates problems related to privacy, cost, reduced acceptability and accessibility. As a 

result, there will be an increased demand for automated systems that require minimal setup and 

depend on standard technology. Recent advances in computer vision and deep learning have 

enabled real-time analysis of student behavior using techniques such as face identification, 

object localization, and eye tracking.   This system offers a lightweight, web-based automated 

proctoring solution that includes facial detection, eye tracking and the identification of 

restricted devices like phones and books. The goal is to provide accurate and dependable 

remote tests while keeping the system accessible and reducing dependence on external 

proctoring services. 

1.1   Problem Statement 

With remote exams routine in many courses, lecturers have less control over the 

conditions in which students attend their tests. The examiner has slight visibility of students’ 

behaviors, such as using a phone, copying from a book, or getting help from someone nearby. 

Existing proctoring technologies aim to address this issue, but most are challenging to 

implement widely. Few systems depend on live supervisors viewing video feeds; others require 

separate apps with extensive access to the student's computer, and some use expensive licenses 

to operate. Web-based tests require only a webcam and can detect obvious risk situations, such 

as the presence of multiple faces, a visible phone or book, and attention continuously shifting 
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away from the screen. This study proposes a real-time, automated proctoring system to ensure 

equitable online exams. 

1.2   Objective 

A web-based automated proctoring system develops a lightweight model that uses 

YOLOv8 and eye tracking to identify student behaviours in online tests. 

2. Related Work 

Dilini et.al. [1] proposed an internet browser-based system for proctoring using eye-

gaze information to identify cheating during online examinations. This is achieved through a 

webcam plug-in, which records eye pupil movements and then transmits the data to a pre-

trained One Class Support Vector Machine (OCSVM) using normal gaze patterns. There are 

notable differences between the current eye pattern and the reference model, particularly if they 

are irregular, a signal is triggered that enables monitoring of the individual candidate during an 

online examination, whereby a human monitor/proctor is not required. Patil et al. [2] designed 

an AI-based proctoring solution to ensure the integrity of online exams through student 

behavior observation. The proctored system makes use of computer vision techniques like 

OpenCV and MediaPipe for eye-tracking and hand movements. As soon as it detects any 

unusual student behavior, it captures a photo. This photo will be analyzed later by an 

invigilator. From this study, the vision-based proctoring systems are capable of performing a 

considerable amount of proctoring tasks. 

Motwani et al. [3] explored an automated method for monitoring online exams with 

minimal human invigilation. The article highlights an AI proctoring system with computer 

vision to detect irregular activity during exams. The system is designed to record such activity 

as images or videos for later verification. The work indicates that automated monitoring can 

enhance the security and administration of online exams. The system is an affordable and 

flexible alternative to human invigilation. They argue that automated monitoring systems can 

eliminate cheating during exams. Kaddoura and Gumaei [4] proposed a deep‑learning system 

that detects cheating in online exams in real time. They aimed to improve earlier vision‑based 

methods that relied on hand‑crafted image features. The system handles two input types at 

once: it uses convolutional neural networks to learn visual features from the exam video, and 

a Gaussian‑based discrete Fourier transform to extract features from the audio stream. It was 



                                                                                                                   Ayush Sharma Kaundinya, Pramish Adhikari, Mohan Bikram KC, Pratikshya Shrestha  

Journal of Artificial Intelligence and Capsule Networks, December 2025, Volume 7, Issue 4 391 

 

trained and tested on a public dataset containing various cheating behaviours and achieved high 

accuracy with a processing time suitable for live use. 

Ong et al. [5] described a cheating detection system for online exams using a clustering 

algorithm to detect similar behaviour among candidates. In this study, the work used an online 

exam analysis system focusing on facial movements, eye movements, and human gestures. 

They created a custom-made dataset using 50 candidates who were made to cheat as well as 

perform normal activities during an exam. These activities were later mapped into a feature 

map after a clustering analysis allowed normal patterns to be distinguished from cheating ones. 

They attained an approximate accuracy of 83% in detecting cheating during online exams using 

unsupervised learning. Sridhar and Rajshekhar [6] proposed an AI-based proctoring solution 

for online exams, taking over a major part of the supervision process to prevent cheating. They 

implemented behavior analysis models for monitoring students throughout the entire online 

test and were capable of storing evidence whenever the system flagged a case of cheating. It 

was designed as a secure, cost-effective solution, enabling institutions to rely less on human 

proctors for the supervision process. They believed AI could provide viable, scalable, and 

trustworthy solutions for online test supervision. 

Gaikwad [7] presented an unsupervised machine‑learning proctoring system for online 

exams that works without a live invigilator. The software observes students through their 

webcams, flags behavior or objects that seem improper, and logs each flagged event so it can 

be checked later. The study found that this approach provided useful accuracy under normal 

test conditions and argued that unsupervised models can support large‑scale online exams when 

regular in‑person supervision is not possible. Naik et al. [8] designed an online invigilation 

system that employed the use of Dlib and YOLO for monitoring the activities of the candidates. 

The system was designed in such a way that it utilized the webcam and microphone to monitor 

the activities of the candidates through their eye movements, as well as the entry of another 

candidate within the camera range. Additionally, the system was able to detect unauthorized 

devices. If the system detected this activity, it alerted the candidates without the need for human 

invigilators. 

Singh et al. [9] described an online exam proctoring system that uses YOLO object 

detection to support academic integrity in online exams. Their model combines video and audio 

to track head direction, catch attempts to fool the system, monitor mouth movement, detect 

mobile phones, and count the number of people visible on camera. The system can spot extra 
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individuals or prohibited devices in real time with pre-trained YOLO weights and 

automatically stop the exam when a violation is detected. The system provides a practical, 

automated way to make online assessments secure and consistent. Yulita et al. [10] created a 

deep learning solution capable of identifying cheating during online exams, responding to the 

challenges presented by online classes during the COVID-19 pandemic. Their solution 

monitors students’ activities using the webcam and a deep neural network to identify 

questionable activities, achieving an F1-score of 84.52%. As a web-based application in the 

Indonesian language, the solution provides educators with a useful and credible platform to 

monitor academic integrity during online exams. From this research, the effectiveness of deep 

learning in designing a proctoring solution that is scalable and suitable for online education can 

be assessed. 

Abbas & Hameed [11] examined the online proctoring system for exams that utilizes 

AI and deep learning, specifically the attempt to identify potential cheating signals. They 

conducted a thorough analysis of 41 studies published between 2016 and 2022 and examined 

the specifics of each study, including the methods used, the algorithms employed, the data 

sources, and the techniques utilized for cheating detection. Their analysis also points out 

several vulnerabilities exhibited by the current studies, such as inadequate training 

environments and slow adoption of new technologies. This article provides clear insight into 

the current situation regarding automated online proctoring and the fields that require 

improvement. Zuo et al. in [12] developed an online cheating detection system using a modified 

YOLOv8 model and the addition of an attention mechanism. This system observes candidates 

remotely and marks unusual observations automatically so that the human proctor does not 

have to continually monitor the screen. The detection accuracy achieved on recorded videos of 

exam sessions was 82.71% and was very hardware-efficient. It appears that by integrating 

object detection models and attention models in proctoring systems, scalability, affordability, 

and sufficient accuracy can be achieved. 

Hylton et al. [13] studied whether webcam monitoring during online exams affects 

cheating. They ran an experiment with two groups: one group took a webcam‑proctored exam, 

and the other took the same test without video monitoring. The average scores were almost the 

same, but students in the proctored group finished more quickly and said they felt they had 

fewer chances to cheat. The authors concluded that visible webcam use can influence behavior 

and help maintain exam integrity. Garg et al. [14] proposed a CNN-based "virtual exam 
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controller," incorporating students' camera capabilities for surveillance purposes during online 

exams. This tool adopts the application of Haar Cascade Classifiers and deep learning models 

for the detection and identification of faces within the video stream. This approach enables the 

identification of situations such as the presence of more than one face within the video and 

other potential suspicious activity during the exam. If such activity is detected, the software 

will be programmed with predetermined parameters for sending notifications as a strategy for 

ensuring the elimination of cheating and making online exams more standardized.  

Ahmad et al. [15] describe an online proctoring system that uses deep‑learning methods 

to keep track of students during remote exams. Their system employs HOG-based face 

detection, OpenCV face recognition, and eye‑blink checking to spot static or spoofed images, 

as well as   object detection to identify items such as phones or extra laptops. Tested on the 

FDDB and LFW datasets, it achieved around 97% accuracy for face detection and 99.3% for 

face recognition, suggesting that biometric monitoring can be used reliably in automated exam 

supervision. Erdem and Karabatak [16] examined whether deep learning models and other 

machine learning algorithms can identify cheating activity during online examinations. The 

work tested their model on 129 datasets from different examination scenarios. The authors' 

results showed that, with a regression task of determining cheating activity, they reached 80.9% 

accuracy with their 5-layer DNN model and 96.9% accuracy with their 10-layer model for a 

yes/no task. However, with multi-class cheating labels, they achieved a maximum accuracy of 

97.7% with XGBoost. The authors also applied SHAP and LIME techniques to examine which 

features of activity were most meaningful. 

3. Proposed Work 

This study explains how the web-based online proctoring system detects student 

misbehavior during online exams. The proposed tool is designed for easy access and a simple 

implementation process. Students need a built-in camera and a current web browser with no 

additional software to install or configure. This method uses real-time computer vision to 

automate invigilation while minimizing security risks and human involvement. 
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Figure 1. System Workflow 

Figure 1 represents the proposed system's workflow demonstrating how the detection 

models handle input data and transfer it from the backend to the frontend. 

3.1   Datasets 

The multi-class object detection dataset used in this work had three different classes of 

objects: Phone, Face and Book. The Mobile Phone Detection Computer Vision Model dataset 

[18] had 23,749 images with class label 2, which were further divided into 20,772 training 

images, 1,984 validation images, and 993 testing images. For faces, the AiFaceAttribute 2.0 

Computer Vision Dataset [17] contained 18,258 images with class label 0, which were divided 

into 16,318 training images, 1,581 validation images, and 354 testing images. For books, Book 

Detection with YOLO Computer Vision Dataset [19], Books Computer Vision Dataset [20], 

and BookData Computer Vision Model [21] were combined for a total of 9,711 images with 
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class label 1, further divided into 7,695 training images, 1,178 validation images, and 838 

testing images. The total dataset comprised 44,785 training images, 4,743 validation images, 

and 2,185 testing images. All bounding boxes were annotated using the YOLOv8 format, 

which ensured consistent annotation for the three classes of objects. 

 

Figure 2. Sample Dataset 

Figure 2 presents example images from the dataset including faces, students, and 

banned items, and illustrates the range of object sizes, viewing angles, and exam conditions 

used to train and test the model. 

3.2   Data Preprocessing 

Preprocessing and augmentation were specified independently for each category 

because the photographs do not have the same form or substance. For the Phone and Face 

datasets, all images were resized to 416 × 416 using stretch resize. This provides the detector 

with a fixed square input and retains as many pixels as possible on the real item, rather than 

creating empty padding around it. From each original image, we created three augmented 

copies using horizontal flip (probability 0.5), vertical flip (probability 0.5), random rotation 

between −26° and +26°, exposure change between −25% and +25%, and salt‑and‑pepper noise 

on 4% of the pixels. These processes replicate common variations in webcam broadcasts, such 

as slight camera rotation, mirrored views, uneven brightness, and sensor noise. 
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Preprocessing for the Book dataset was specific to each subset. In the first subset (5,311 

images), we applied rotation‑based augmentation: every image was rotated by 0°, 90°, −90°, 

or 180° with equal probability to make the model less sensitive to how a book is oriented on 

the desk. The second subset (1,872 pictures) was handled differently. We first corrected the 

image orientation using EXIF metadata, then resized each image to 640 × 640 with stretch 

resize and did not add further augmentation. The increased size maintains fine features such as 

page borders and covers while maintaining the detector's predetermined input size. Constant 

preprocessing throughout the train, validation, and test splits ensures accurate bounding boxes 

and reliable detection of faces, phones, and books in noisy, low-resolution webcam footage 

with varying views and illumination. 

 

Figure 3. Dataset Preprocessing 

Figure 3 shows sample photos from the dataset, comparing the originals to the 

preprocessed versions and demonstrating the data prepared for accurate model training and 

testing. 

3.3   Model Architecture 

In this study, the YOLOv8s variation serves as the primary object-detection model. It 

consists of three main components: a backbone that analyzes each video frame to collect visual 

data, a neck that integrates features at various sizes and a detecting head that generates the final 

item predictions. The backbone can detect both large targets, such as a student's upper body 

and small objects, such as phones and books. The neck connects these multi-scale properties 
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together allowing the model to locate items of various sizes depending on their appearance in 

the camera view. The detecting head provides a class name and bounding box for each item, 

allowing the system to monitor faces, people, phones, and books simultaneously in real time. 

 

Figure 4. Visualisation of the YOLOv8 Architecture Including Backbone, Neck, and 

Detection Head Adapted from Hidayatullah et al. [22]. 

Figure 4 illustrates the YOLOv8s architecture used in the proctoring system, explaining 

the received video frames processed to extract features, integrate data across several scales, 

recognize students and restricted items in real time. 

3.4   Model Training and Optimization 

The model was trained for 150 epochs with a batch size of 8, using images resized to 

640 × 640 pixels. We started from pretrained YOLOv8s weights and fine‑tuned them with an 

Adam optimizer (learning rate 0.01, momentum 0.937, weight decay 0.0005). Automatic 
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mixed precision was turned on to speed up training. To improve generalization, we used several 

data‑augmentation steps, including horizontal flips, scaling, translation, random erasing, 

RandAugment, and mosaic augmentation during the first 10 epochs. Validation was carried out 

throughout training. All experiments used a single GPU with 8 data‑loader workers, and the 

final model runs fast enough to detect faces and prohibited items in real time during online 

exams. 

 

Figure 5. Training Loss Curves Over Epochs 

Figure 5 shows the classification and localization loss during YOLOv8s training. The 

steady drop in these curves indicates that the model improves over time and settles into a stable 

solution. 

3.5   Frame‑Based Frontend–Backend Pipeline 

The proctoring system has a framework-based client-server architecture. In the web 

browser, the candidate's camera records photos at various times, which are reduced to image 

frames. These frames are transmitted to the backend one by one via a continuous WebSocket 

connection. On the server, a WebSocket handler uses OpenCV to decode the base64-encoded 

JPEG and convert it to a BGR 'numpy' array. The frame is delivered to an internal detection 

pipeline that runs object-detection models and checks the set of proctoring rules. Any unusual 

behavior, along with the required information is recorded in a database, and an overview of 

that behavior and any rule violations is created. The report is sent back to the client via the 
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same WebSocket channel allowing for near real-time monitoring without requiring a 

continuous video stream. 

 

Figure 6. WebSocket-Based Frame Transfer and Backend Analysis Pipeline 

Figure 6 depicts the whole frame flow in the proctoring system from frontend capture, 

encoding, and transmission over WebSocket to backend receipt, decoding, analysis, and result 

production. 

3.6   Gaze Behavior Estimation Module 

The eye-tracking system is the second stage in a frame-based pipeline used for other 

proctoring checks. The backend decodes the JPEG picture for each camera frame received via 

the WebSocket channel and uses a YOLOv8 detector to recognize faces and other relevant 

items. YOLOv8's face bounding boxes reduce the focusing areas, which are then processed 

using a dlib facial-landmark model. This model generates a set of important areas on the face 

with a significant concentration of points near the eyes. The system detects whether the 

individual is directed at the screen or away in that frame based on the position of certain eye 

landmarks, such as the iris' placement inside the eyelid area and the balance between the left 

and right eyes. Every frame generates an eye identifier as well as the appropriate landmark 

coordinates. These results are included in the structured proctoring system provided directly to 

the website. If off-screen looking is detected, it will be saved as suspicious actions in the 

database. The module combines YOLOv8 for face localization with dlib for landmark 
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estimation, creating a simple and effective gaze-based monitoring mechanism within the 

proctoring system. 

 

Figure 7. Visualisation of the 68 Facial Landmark Configuration from the iBUG Facial Point 

Annotations Dataset, Adapted from PyImageSearch [23]. 

Figure 7 shows the distribution of 68 facial landmarks over the main areas of the face. 

These points provide the geometric data required to identify the eyes and estimate gaze 

direction in the proposed system. 

3.7   Event-Driven Alert Logging 

In this proposed system, the inputs received from detecting outputs and activities on the 

browser used by the candidate during the examination are moderated through several 

predetermined rules. Once a rule has been violated, it activates a specific response while 

collecting details of the occurrence in a MySQL database, which can be viewed later through 

an admin interface for each examinee. This is shown in Table 1. 

Table 1. Proctoring Event Types, Trigger Conditions, and Recorded Evidence 

Violation Type Triggering Condition Logged Data Stored in 

Database 

System Action 

Multiple Faces 

in Frame 

More than one face 

detected in 

consecutive video 

frames 

User ID, time of event, 

violation type, reference to 

the stored frame 

Warning flag raised 

and event recorded 
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Face Not 

Visible / Blank 

Screen 

Face not detected for 

longer than a defined 

time limit 

User ID, time of event, 

violation type, reference to 

the stored frame 

Warning flag raised 

and event recorded 

Smartphone 

Detected 

YOLOv8-based 

detector identifies a 

mobile phone above a 

set confidence level 

User ID, time of event, 

violation type, reference to 

the captured frame 

Alert generated and 

event recorded 

Book / 

Unauthorised 

Material 

YOLOv8-based 

detector identifies a 

book or printed 

material on the desk 

User ID, time of event, 

violation type, reference to 

the captured frame 

Alert generated and 

event recorded 

Suspicious 

Gaze Direction 

Estimated gaze 

remains directed away 

from the screen 

beyond a set limit 

User ID, time of event, 

violation type, reference to 

the captured frame 

Alert generated and 

event recorded 

Browser Focus 

Lost 

User switches tab, 

minimises the 

window, or exits full-

screen mode 

User ID, time of event, 

violation type 

Warning issued and 

event recorded 

Repeated 

Browser 

Violations 

More than three 

browser-focused 

warnings during a 

single exam session 

User ID, time of event, 

violation type 

Automatic exam 

submission and final 

log stored 

 

All events related to proctoring are logged in the suspicious_events table. For every 

single event, the system logs the candidate's username, the test ID associated with the event, 

the timestamp of the event, the nature of the violation, and, if captured by the webcam, a 

reference to the image captured. Foreign-key links to the users and tests tables ensure that every 

record is tied to a specific candidate and exam, supporting both real-time alerts during the test 

and structured post-exam review with visual evidence. 

 

Figure 8. Flow of Entities in Proctoring Database 

Figure 8 illustrates how the database tables relate to one another, connecting user, test, 

and session records with the logged events. It shows that each suspicious event is linked to a 
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particular candidate and test, which makes it straightforward to trace, inspect, and review 

proctoring incidents. 

3.8   Handling Latency and Detection Failures 

The proctoring system maintains an active WebSocket connection and follows an 

identified sample time period. At each sample interval, the web page takes and submits the 

current webcam image for analysis. The sample rate is set in advance for the whole session; it 

doesn't change during runtime. There is no adaptive frame rate. The interval is chosen before 

implementation, balancing response and computation or network load. On the backend, every 

image is processed as soon as it comes and replaces the previous one without being queued. 

This reduces buffering, lowers the possibility of irrelevant frames being examined when the 

network slows down, and allows the server to return the result over the same channel, 

maintaining the monitoring dashboard and warning logic up to date. Short, temporary losses of 

the face signal are handled with a small grace period. When a received frame does not contain 

a detectable face, the system starts or refreshes a per‑user timer instead of immediately counting 

a violation. A "no face detected" event is logged only if the absence continues beyond a short 

threshold, typically several consecutive samples or roughly three seconds. This rule filters out 

spurious alerts caused by brief lighting changes, quick head movements, or momentary 

network delays. 

3.9   Escalation Policy and Cooldown Period 

The system has a gradual monitoring method in which suspicious behaviors are initially 

recorded, followed by user warnings, and finally exam cancellation with manual review if 

violations continue. A maximum of five warnings is allowed per candidate for all monitored 

rules. A 10-second relaxation has been established after each logged violation to prevent 

frequent triggering by temporary errors, while similar occurrences are ignored. When the 

warning limit is reached, the examination session is immediately ended and the attempt is 

marked for a post-exam manual review by an administrator. This technique maintains a balance 

between robustness and false positives, allowing for immediate action in confirmed cases of 

illegal activity. 
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3.10   Thresholds 

The system's rule levels are defined effectively using validation data instead of fixed 

heuristics. Detection confidence levels are established by analyzing precision-recall trade-offs 

across various operational points to balance sensitivity and false positives. Face and head 

position levels have been adjusted using recorded landmark deviations to differentiate between 

normal and suspicious motions. Temporal thresholds are used to guarantee that only continuous 

violations are highlighted, improving durability to temporary detection noise. The final limits 

were designed to maintain a balance between effective memory (to prevent missed errors) and 

proper precision to avoid false alerts. Table 2 represents the performance based on confidence. 

Table 2. Per Class Performance based on Confidence 

Confidence 

Threshold 

Face(P/R/ 

mAP@0.5) 

Book(P/R/mAP@0.5) Mobile(P/R/mAP@0.5) 

0.5 0.91 / 0.72 / 0.83 0.63 / 0.83 / 0.63 0.97 / 0.92 / 0.95 

0.6 0.94 / 0.65 / 0.80 0.65 / 0.80 / 0.62 0.97 / 0.91 / 0.95 

0.7 0.97 / 0.51 / 0.74 0.67 / 0.76 / 0.61 0.98 / 0.89 / 0.94 

0.8 0.99 / 0.22 / 0.60 0.68 / 0.67 / 0.58 0.99 / 0.83 / 0.91 

4. Results and Discussion 

The automated proctoring system was evaluated in controlled tests that simulated 

distant exam sessions. All experiments were conducted in a regular web browser with a 

consumer-grade camera, which is the common configuration for students to use at home. The 

examination assessed facial recognition, restricted object detection, and eye tracking. Tests 

were repeated under various lighting conditions, backdrops, and viewing angles to see if the 

secure system was maintained. We also verified that notifications were delivered on time and 

that each incident was recorded in the logs. 

4.1   Model Performance Evaluation Curves 

Training and evaluation will demonstrate the proctoring detection model (for faces, 

mobile devices, and books) as it evolves over time. Figure 7(1) shows that the accuracy, recall, 

and F1-score values increase significantly during the first few epochs before slowing down, 

indicating that the model understands the key concepts and achieves a level of stability and 
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consistency. However, the precision level remains higher than the recall level, indicating that 

the model is more cautious with alarms and is less prone to false positives. Figure 7(2), the 

Precision-Recall Curve, verifies this by showing that the precision is high even when the recall 

level is still satisfactory. This is important for the proctoring system since phones and books 

must be identified, but student behavior shouldn't be taken as false alarms. Figure 7(3) shows 

the same trend for mAP values, as mAP@0.5 and mAP@0.5:0.95 display comparable progress 

patterns and reach stability after a sudden increase. 

 

Figure 9. Variation of Precision, Recall, F1-Score, and Mean Average Precision During 

Validation 

From Table 3, the proposed final model is appropriate for use in real-time proctoring 

tasks. Its precision value of 0.914 indicates high accuracy, meaning the majority of the detected 

faces, phones, and books are indeed accurate, ensuring limited false alerts during exams. 

Furthermore, its high recall of 0.813 ensures that a vast majority of the objects are detected, 

aiming to capture illegal devices during exams. The F1-score of 0.860 ensures a sound balance 

between accuracy and scope. Based on its bounding box accuracy, the mAP@0.5 of 0.889 

implies that performance on a reasonable overlap threshold was good, while its mAP@0.5:0.95 

of 0.682 implies that its performance on a more rigid localization threshold was still sound. 
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Table 3. Performance Metrics Table 

Metric Value 

Precision 0.914 

Recall 0.813 

F1-score 0.860 

mAP@0.5 0.889 

mAP@0.5:0.95 0.682 

 

4.2 Confusion Matrix Analysis 

 

Figure 10. Normalised Confusion Matrix 

The normalized confusion matrix shows that the model recognizes the three monitored 

classes reasonably well. About 82% of face instances, 78% of book instances, and 95% of 

mobile-phone instances are classified correctly. Most of the remaining errors for these classes 

occur when the model predicts background instead, meaning that some objects are simply 

missed. The opposite problem appears for the background class: many background regions are 

wrongly labeled as objects, mainly as faces (approximately 0.73), and to a lesser extent as 

books (approximately 0.18) and mobiles (approximately 0.09). Overall, the model performs 
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well in detecting real faces, phones, and books, but it still generates several false alarms in 

background areas, especially for faces, which can occasionally lead to unnecessary flags in the 

proctoring system. Figure 10 shows the normalized confusion matrix of the YOLOv8s 

proctoring model. The system correctly detects faces, books, and mobile phones most of the 

time, while some mistakes occur with background areas, especially faces, which can 

occasionally trigger false alerts. 

4.3   Face, Gaze, and Prohibited Object Detection Performance 

The face‑detection part of the system worked consistently under normal exam 

conditions. When a single student was in front of the camera, it detected the face and updated 

the status as well as the head and eye direction if the student looked away. If the student moved 

out of view, it correctly showed “No Face Detected.” When another person entered the frame, 

the system reported more than one face (faceCount = 2), issued a warning, and saved each of 

these events with a timestamp for later review. 

The gaze tracker could follow the gaze of the test taker accurately throughout the test. 

When the student was taking the test by looking at the screen, this was marked as normal gaze, 

and small natural blinks were eliminated to avoid false warnings. When the eyes remained off 

the computer screen past a certain threshold, the system generated a warning and marked the 

time and image frame. In Figure 11, the eye and head movement is indicated on the dashboard 

and is dependent on real-time tracking of facial points. The gaze estimation module is inactive 

if no face is detected on the video image. Thus, no gaze estimation decision is made until a 

valid face is detected again. Figure 11 shows a proctoring interface that analyzes faces and eye 

points in real time to identify gazing, blinking, looking away, on-screen focus, fast eye 

movement, rotated head, presence of multiple faces and partial faces, absence of a face and 

marks any violations as needed. The system’s restricted device check will identify a phone or 

book and report it immediately to the admin. When a phone or book is viewed on the screen, 

the dashboard displays a message such as "Phone Detected" or "Book Detected". It also 

continues to show the face and eye status with a warning message. The system will record the 

incident in the log including the exact moment and image frame each time it occurs.  This 

provides a clear record of restricted devices detected during the exam. 

 



                                                                                                                   Ayush Sharma Kaundinya, Pramish Adhikari, Mohan Bikram KC, Pratikshya Shrestha  

Journal of Artificial Intelligence and Capsule Networks, December 2025, Volume 7, Issue 4 407 

 

 

Figure 11. Face and Gaze Detection in Proctoring Interface 

Figure 12 shows that the proctoring interface recognizes the restricted objects, 

including books and mobile devices, in real-time. The system displays a warning pop-up 

window when an item is identified, highlighting the image as a problem and saving the date 

for future reference. 

 

Figure 12. Prohibited Object Detection Results in the Proctoring Interface 
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4.4   Log Records and Evidence Capture 

The system maintains a structured log entry for every proctoring event. When any of 

the face, eye, object-detection, or web-based modules raise an alert, the backend saves the user 

ID, exam or session ID, exact time, type of violation, confidence value, and a pointer to the 

related image frame or screen grab. All this information is stored in a database and can be 

exported if needed for review or appeals. In testing, every alert shown on the dashboard has a 

matching log entry, providing a complete, time-ordered account of the exam. 

 

Figure 13. Suspicious Events Log 

Figure 13 shows the admin panel view of the suspicious event log, including all the 

alerts that occurred during the exam. Such events include gaze violations, the absence or co-

occurrence of faces, as well as the occurrence of restricted objects, alongside the precise exam 

time and the video frame. 

4.5   Overall Performance and Discussion 

The proposed proctoring system shows strong performance for real-time exam 

monitoring. The YOLOv8s-based detector consistently recognizes faces, mobile phones, and 

books, while the gaze-estimation and web-based components capture off-screen viewing and 

tab-switch behavior. Most relevant violations are detected and each event is logged with a 

timestamp and linked to visual evidence to support later review. The main drawback is the 

presence of some false positives in cluttered or visually complex scenes, suggesting that 

improved background handling and filtering would further increase the system’s robustness. 
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5. Future Scope 

In the future, the system will improve reliability and avoid false warnings by training 

under distributed situations and verifying the detections using multiple video frames. The 

system can also be enhanced to detect other restricted objects and improve the eye based 

tracking. Furthermore, future work will focus on real-time implementation, improved privacy 

protection and expanded testing in exam situations. 

6. Conclusion 

The proposed system will create an automated online proctoring system that includes 

live video monitoring and a web-based activity tracking process. It uses YOLOv8 facial 

recognition to identify books, mobile devices and faces. This method also used facial 

landmarks from Dlib to determine eye and head position. This system will detect web-based 

activity includes the use of several tabs during the evaluation period. Every incident will be 

stored in a system with supporting visual evidence. The system scored well in terms of 

detection accuracy and its dashboard performed well in typical examination circumstances such 

as single face verification matching, absence of face/multiple faces, eye movement, and limited 

item detection. Overall, the findings show that the developed scheme is effective and reliable 

for automating tests and generating reports. 
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