Comparative Analysis of Machine Learning Algorithms for Early Prediction of Parkinson’s Disorder based on Voice Features
Volume-4 | Issue-4

Automated Waste Sorting with Delta Arm and YOLOv8 Detection
Volume-6 | Issue-3

AI-Integrated Proctoring System for Online Exams
Volume-4 | Issue-2

Detection of Fake Job Advertisements using Machine Learning algorithms
Volume-4 | Issue-3

Sentiment Analysis of Nepali COVID19 Tweets Using NB, SVM AND LSTM
Volume-3 | Issue-3

Smart Fashion: A Review of AI Applications in Virtual Try-On & Fashion Synthesis
Volume-3 | Issue-4

Blockchain-Enabled Federated Learning on Kubernetes for Air Quality Prediction Applications
Volume-3 | Issue-3

Deniable Authentication Encryption for Privacy Protection using Blockchain
Volume-3 | Issue-3

Leather Defect Segmentation Using Semantic Segmentation Algorithms
Volume-4 | Issue-2

Enhancing Health Monitoring using Efficient Hyperparameter Optimization
Volume-4 | Issue-4

Real Time Anomaly Detection Techniques Using PySpark Frame Work
Volume-2 | Issue-1

Deniable Authentication Encryption for Privacy Protection using Blockchain
Volume-3 | Issue-3

Smart Fashion: A Review of AI Applications in Virtual Try-On & Fashion Synthesis
Volume-3 | Issue-4

Sentiment Analysis of Nepali COVID19 Tweets Using NB, SVM AND LSTM
Volume-3 | Issue-3

Audio Tagging Using CNN Based Audio Neural Networks for Massive Data Processing
Volume-3 | Issue-4

Frontiers of AI beyond 2030: Novel Perspectives
Volume-4 | Issue-4

Smart Medical Nursing Care Unit based on Internet of Things for Emergency Healthcare
Volume-3 | Issue-4

Early Stage Detection of Crack in Glasses by Hybrid CNN Transformation Approach
Volume-3 | Issue-4

ARTIFICIAL INTELLIGENCE APPLICATION IN SMART WAREHOUSING ENVIRONMENT FOR AUTOMATED LOGISTICS
Volume-1 | Issue-2

Deep Convolution Neural Network Model for Credit-Card Fraud Detection and Alert
Volume-3 | Issue-2

Home / Archives / Volume-6 / Issue-4 / Article-3

Volume - 6 | Issue - 4 | december 2024

Transfer Learning for Wildlife Classification: Evaluating YOLOv8 against DenseNet, ResNet, and VGGNet on a Custom Dataset Open Access
Subek Sharma  , Sisir Dhakal, Mansi Bhavsar  180
Pages: 415-435
Cite this article
Sharma, Subek, Sisir Dhakal, and Mansi Bhavsar. "Transfer Learning for Wildlife Classification: Evaluating YOLOv8 against DenseNet, ResNet, and VGGNet on a Custom Dataset." Journal of Artificial Intelligence and Capsule Networks 6, no. 4 (2024): 415-435
Published
11 November, 2024
Abstract

This study evaluates the performance of various deep learning models, specifically DenseNet, ResNet, VGGNet, and YOLOv8, for wildlife species classification on a custom dataset. The dataset comprises 575 images of 23 endangered species sourced from reputable online repositories. The study utilizes transfer learning to fine-tune pre-trained models on the dataset, focusing on reducing training time and enhancing classification accuracy. The results demonstrate that YOLOv8 outperforms other models, achieving a training accuracy of 97.39% and a validation F1-score of 96.50‘%. These findings suggest that YOLOv8, with its advanced architecture and efficient feature extraction capabilities, holds great promise for automating wildlife monitoring and conservation efforts.

Keywords

Convolutional Neural Network (CNN) Endangered Species Detection Image Classification Transfer Learning YOLO

×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

To access the full PDF, please complete the payment process.

Subscription Details

Category Fee
Article Access Charge
15 USD
Open Access Fee Nil
Annual Subscription Fee
200 USD
After payment,
please send an email to irojournals.contact@gmail.com / journals@iroglobal.com requesting article access.
Subscription form: click here