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Abstract 

Electrical faults in power transmission systems can severely affect grid stability, 

equipment safety, and operational reliability. Traditional protection schemes, particularly 

distance relays, depend on apparent impedance computation that changes with error, creating 

a risk of misclassification. The results from relay overreach, underreach, or complete 

maloperation due to CT/PT saturation lead to developing problems in high impedance 

situations. These limitations highlight the need for adaptive, data-driven alternatives. This 

paper proposes an intelligent fault detection and classification model based on supervised 

machine learning techniques that overcome these challenges. The system’s robustness was 

validated under different training sizes and Gaussian noise levels, demonstrating consistent 

accuracy and generalization across diverse learning conditions. The presented approaches learn 

the complex nonlinear mapping between three-phase voltage/current patterns and the 

associated fault type, without assuming fixed impedance paths like traditional protection 

schemes. This method extracts a high set of derived features to represent the distinguishing 

characteristics of six fault categories by utilizing line voltages and currents. Different models 

such as Artificial Neural Networks (ANN), Support Vector Machines (SVM), Random Forests, 

XGBoost, Long Short-Term Memory (LSTM), and Physics-Informed Neural Networks 

(PINN) are developed and processed on SMOTE-balanced datasets. These models classify the 

errors without fixed thresholds or fault loop assumptions, improving sensitivity and robustness. 

The supervised machine learning approaches bridge the gap between traditional impedance-
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based protection and smart, scalable data-driven grid analytics that are implemented into a wide 

area monitoring and control system. The PINN achieved the highest fault detection accuracy 

of 99.86% while sustaining 99.79% multiclass classification accuracy on the clean dataset. The 

PINN maintains high accuracy under 2–5% noise and 1–60% training data, providing 

millisecond-level inference by embedding power system equations, which enables accurate 

real-time protection by understanding the missing simple data-driven parameters.  

Keywords: Fault Detection, Fault Classification, Supervised Learning, Transmission Line 

Protection, LSTM, Artificial Neural Networks (ANN), XGBoost. 

1. Introduction 

The effective operation of electrical power systems is essential for current infrastructure 

and productivity in industries. Line-to-ground (LG), line-to-line (LL), double-line-to-ground 

(LLG), three-phase (LLL), and three-phase-to-ground (LLLG) are all types of disturbances that 

have a significant impact on power transmission. These faults cause equipment damage and 

result in numerous blackouts. Early accurate detection and classification of these errors are 

important for maintaining grid stability, reducing outage duration, and avoiding catastrophic 

failures in electrical power systems. Traditional protection mechanisms such as impedance-

based relays and overcurrent relays are normally unable to detect high-impedance faults, 

evolving grid topologies, and multiple simultaneous faults. As highlighted in [1], the apparent 

impedance measured by distance relays can change based on the fault type and location, 

making accurate classification essential for reliable protection. Recent advancements in 

artificial intelligence, particularly machine learning (ML) provide new possibilities in fault 

analysis. In this work, supervised machine learning-based approaches have been widely 

adopted for detecting and classifying faults. Anwar et al. [2] demonstrated the effectiveness of 

ensemble models for robust classification under noisy conditions. Porawagamage et al. [3] 

reviewed recent challenges in ML-based protection and proposed strategies for better data 

representation and real-time decision-making. The study by Chen et al. [4] emphasizes the 

significance of feature extraction for fault classification models using different methods. 

Moreover, advanced techniques combining ANNs with signal processing or optimization 

methods have shown high accuracy under various grid conditions [5], [6]. Data-driven methods 

for the detection and classification of faults have caused significant changes among research 

scholars who use leveraging algorithms such as Support Vector Machines (SVM), Random 
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Forests (RF), XGBoost, Long Short-Term Memory (LSTM), and optimized Artificial Neural 

Networks (ANN), which are widely accepted. Such methods have demonstrated improved 

performance when combined with engineered features along with data balancing methods such 

as SMOTE [7], [8]. Recent advances also highlight the importance of resilience-oriented 

intelligent frameworks for strengthening modern grid protection [9]. Most recently, Physics-

Informed Neural Networks (PINNs) include physics loss in the learning process enhancing 

interpretability along with the robustness of power system fault analysis [10]. The above 

developments indicate the increasing possibilities of smart learning models for exact, reliable, 

and real-time protection in smart grid operations and the planning of future transmission 

systems [11]. However, existing techniques are frequently limited in scope, mostly 

concentrated on a small number of fault categories, requiring large clean data, and depending 

solely on data-driven learning without real-time integration. This limitation reduces robustness 

and real-time applicability, creating a need for models that include physics-based restrictions 

with supervised models. 

This paper proposes a combined supervised learning model for fault detection and 

classification in power systems. The architecture utilizes voltage and current signals to train 

separate models for binary detection and multi-class classification. Six algorithms including 

ANN, LSTM, SVM, Random Forest, XGBoost, and PINN are evaluated consistently using 

engineered features and statistical measures. The dataset combines field-based reality with the 

variability of simulations to allow for generalization. This proposed system aids in maintaining 

modularity in real-time implementation. The aim is to provide scalable, automated, and 

accurate decision-making for wide-area monitoring, protection, and control (WAMPAC) for 

both traditional power systems and smart grid systems [12], [13]. 

2. Overview: Faults and Fault Types 

2.1   Fault Types 

Electrical power transmission systems are naturally dependable but vulnerable to a 

variety of disturbances, ranging from lightning strikes and insulation breakdowns to equipment 

aging and human error. These disturbances frequently cause incorrect electrical connections or 

faults. Fault areas represent harmful behavior that requires immediate attention for the system’s 

stability, reliability, and safety. Traditional protection systems focus on detecting and isolating 

errors, while modern networks demand smarter systems that can detect, classify, and localize 
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faults swiftly to support dynamic relay coordination, situational awareness, and self-healing 

grid operations [14]. The most common type is the single line-to-ground (LG) fault, which 

accounts for approximately 70–80% of all transmission line faults. LG faults result in high 

errors in the affected phase and a drop in its voltage, while the other phases may experience 

transient overvoltage, which affects insulation coordination and can lead to tripping if not 

accurately classified [15]. Line-to-line (LL) faults account for 10–15% of situations and are 

characterized by high current exchange between the two involved phases; abnormal voltage 

conditions can exacerbate high-risk error types, particularly when magnitude-based detection 

is utilized. Double line-to-ground (LLG) faults make up the remaining 10–15% and involve 

two phases shorted to the ground, producing large, unbalanced currents and the presence of 

zero-sequence components that significantly affect relay behavior. Although three-phase faults 

(LLL and LLLG) occur infrequently, they can cause the most serious system damage due to 

symmetrical high fault currents and continuous voltage decreases in all phases [16]. 

2.2   Importance of Fault Identification and Classification 

The effects of faults on system functions are important to learn for developing effective 

protection schemes [1]. For example, LG implements a low-impedance path to ground causing 

a high fault current along with a continuous voltage decrease in the affected phase: 

𝐼𝑓𝑎𝑢𝑙𝑡 =
𝑉𝑝𝑟𝑒𝑓𝑎𝑢𝑙𝑡

𝑍𝑙𝑖𝑛𝑒+𝑍𝑔𝑟𝑜𝑢𝑛𝑑
                                                                      (1) 

where  𝑍𝑔𝑟𝑜𝑢𝑛𝑑 is very low resulting in a high fault current in the phase, while other 

phases remain relatively unaffected. In contrast, line-to-line (LL) faults create high current in 

the two involved phases, and are controlled by the inter-phase impedance: 

𝐼𝐿𝐿 =
𝑉𝑎𝑏

𝑍𝑎𝑏
                                                                                 (2) 

Double line-to-ground (LLG) faults combine phase-to-phase and ground paths resulting 

in unbalanced currents and modified system stability. These variations demand accurate fault 

classification for appropriate relay response. Misclassification or failure to identify the fault 

type can lead to incorrect relay operation, miscoordination, delayed acceptance and an 

increased risk of prolonged outages or widespread blackouts [17]. The risk arises when relays 

detect the wrong fault impedance, tripping early (overreach) or failing to trip when required 

(underreach) from a protection standpoint. 
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This challenge becomes more important in distance relays, where the apparent 

impedance observed by the relay is used to estimate the distance to a fault. That impedance is 

calculated as: 

𝑍𝑎𝑝𝑝 =
𝑉

𝐼
                                                                            (3) 

However, the value of 𝑍𝑎𝑝𝑝 changes the fault location and with the type of fault. For 

example, a relay calibrated for a three-phase fault may significantly miscalculate the impedance 

when it receives an LLG fault resulting in protection failure [1]. In pilot protection and 

differential protection schemes, accurate fault type learning enables better coordination 

between line terminals. This reduces unnecessary tripping and improves system dependability. 

Fault classification also plays a vital role in self-adaptive protection systems, where protection 

features are easily modified based on fault characteristics. For example, protection zones may 

be scaled using: 

𝑍𝑧𝑜𝑛𝑒 = 𝑍𝑙𝑖𝑛𝑒(1 + 𝑘𝑓𝑎𝑢𝑙𝑡)                                                 (4) 

where  𝑘𝑓𝑎𝑢𝑙𝑡  is a small modification factor that depends on characteristics like ground 

current. Fault classification facilitates real-time control, predictive maintenance, and better 

planning in bidirectional DER-dense systems [2], [16]. In modern systems, classification 

provides that the appropriate action is taken when the detection activates the alarm. This smart 

classification is the key to future-oriented, fault-tolerant protection.  

3. Problem Formulation 

Fault detection is important to grid dependability, preventing outages and providing 

timely protective steps. While traditional systems focused only on detection, modern protection 

schemes require both detection and classification to support selective isolation and adaptive 

responses. The fault type, its transient behavior, and the need for preventive measures depend 

on the nature of the fault and the phases involved. This paper evaluates fault detection and 

classification as two related supervised learning tasks. The system study is a simulated three-

phase transmission line, where line voltages and currents are captured under both normal and 

errored conditions. Each instance is transformed into a 13-dimensional feature vector using 

time-domain statistics such as average (Iavg, Vavg), range (Irange), standard deviation (Istd), 

magnitude (Imag), and zero-sequence components (I0, V0). All these features were selected 
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with the aim of improving the discriminability of the model for complicated fault situations. 

Two data sets are used in the training and testing of the models. The first set is for the binary 

classification between fault and non-fault. The second is for the multi-class classification with 

a 4-bit ground and phase involvement representation (G, C, B, A). The realization is in line 

with practical requirements as the type of fault affects the impedance measurable to the relays 

and zone estimation. Misclassification results in overreach, underreach, or miscoordination in 

distance protection [1]. 

The proposed architecture focuses on real-time implementation at high-resolution 

inputs using either PMUs or IEDs. Relevant models such as XGBoost, SVM, ANN, and PINN 

provide the implementation of high-performance, interpretable, and scalable decision-making 

suitable for digital substation extended protection and control using engineered statistical 

features [18]. 

4. Methodology 

This section describes the proposed model for smart fault detection and classification. 

It implements data generation through simulation, domain-specific feature engineering, class 

balancing, and supervised learning using six current models. Figure 1 presents an overview of 

the proposed methodology, feature extraction, SMOTE balancing, and model training using six 

machine learning algorithms. It will be followed by performance evaluation under clean, noisy, 

and low-data conditions.   

4.1   Data Generation  

The IEEE 13-node test feeder has been employed to simulate realistic unbalanced 

distribution network behavior. Fault situations were simulated including six conditions: no 

fault, LG, LL, LLG, LLL, and LLLG. Voltage and current signals (Va, Vb, Vc, Ia, Ib, Ic) were 

sampled at 10 kHz. Each instance was labeled using a 4-bit vector [G, C, B, A], where each bit 

represents the involvement of ground and phase conductors. 

The datasets were modified by including Gaussian noise to simulate real-time 

measurement imperfections. Initially, the model tested up to 20%, with noise levels placed at 

5% for model stability. 
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Each sample represents a 4–5 cycle interface at 50 Hz. Z-score normalization has been 

used and is defined by: 

𝑥′ =
𝑥−𝜇

𝜎
                                                                            (5) 

Stratified sampling was applied to develop training and testing sets with balanced class 

representation. The final dataset comprised approximately 10000 samples per class across the 

six fault categories with included variability. The proposed model evaluated on the IEEE 13-

node feeder can be extended to larger highlighted systems (e.g., IEEE 33-, 118-node) and real 

PMU datasets as the feature extraction and learning modules expand according to the system 

size. 

 

Figure 1. Flow Chart of Proposed Methodology 
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4.2   Feature Engineering and Balancing 

A 13-dimensional feature vector was generated for each sample based on established 

practices in power system protection, considering accuracy. These include Iavg, Vavg, Irange, 

Vrange, Istd, Vstd, Imag (RMS magnitude of currents), and approximated zero-sequence 

components I₀ and V₀. These features characterize fault signatures including phase imbalance 

and asymmetrical behavior. For instance, high I₀ and V₀ values are associated with LG and 

LLG faults when LLL faults remain balanced [1]. 

The Synthetic Minority Oversampling Technique (SMOTE) has been applied to 

address class imbalance for rare cases like LLLG or LL faults. SMOTE generates synthetic 

samples for minority classes, improving model recall and sensitivity without overfitting, thus 

avoiding the unstable random oversampling and excessive noise of adaptive methods such as 

ADASYN. 

4.3   Machine Learning Models 

Six supervised machine learning models for fault classification and detection were 

developed from the same standardized feature set, undergoing SMOTE balancing. The 

Artificial Neural Network (ANN) was implemented with a three-layer Multi-layer Perceptron 

(MLP) network architecture. The binary detection network comprised two hidden layers with 

256 and 128-neurons layers, while the classification network comprised three deeper layers 

with 256, 64, 32 neurons. Stable convergence for both networks was achieved with ReLU 

activation functions along with early stopping techniques and adaptive learning rates. The ANN 

performed effectively by establishing non-linear connections between the feature dimensions. 

Support Vector Machines with a radial basis function (RBF) kernel were trained for 

these tasks. The hyperparameters including the regularization coefficient (C) and kernel 

width(γ) were optimized using grid search with three-fold cross-validation. The SVMs 

performed well in developing non-linear decision limits and consistently predicted fault types, 

with minor variation due to feature changes. 

Random Forest classifiers with 200 trees and a maximum tree depth of 20 were applied 

for classification in most scenarios. Their interpretability and generalizability were enhanced 

by feature impact rankings associated with them. The Random Forest   generalized effectively 

to balanced and imbalanced types of faults. 
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XGBoost classifiers were utilized for classification as well as for detection problems 

since they possessed the gradient boosting algorithm with regularization built into them. The 

model for detection had 100 estimators with a max depth of 5 and a 0.1 learning rate, the of 

classification possessed 250 estimators with a depth of 8 and a 0.05 learning rate. XGBoost 

was found to have steady resistance to noise as well as b multicollinearity, achieving high 

accuracy for all the fault classes. 

Long Short-Term Memory (LSTM) networks were used to learn temporal relationships 

from the waveforms of voltage and current. The input data streams were reshaped three-

dimensionally to match LSTM input formats. The models included two stacked LSTMs with 

64 units and 32 units, respectively, along with a dense output layer with dropout regularization.  

LSTM models trained using the Adam optimizer and categorical cross-entropy error function 

were competitive in learning waveform dynamics and dependencies based on time. 

Physics-Informed Neural Networks (PINNs) extended classical deep learning with the 

addition of physical constraints of Ohm’s Law in the learning objective. Total loss is minimized 

in the learning process. 

Total Loss= Data Loss+ λ× Physics Loss 

 Here, the Data Loss corresponds to binary or categorical cross-entropy, while 

the Physics Loss represents the residuals of the three-phase Ohm’s law equations. The 

weighting factor λ is introduced to preserve the dominance of data-driven learning while 

enforcing physical consistency. In addition, dropout was applied from the outset to prevent 

overfitting, along with batch normalization to stabilize training. The block diagram for this is 

shown in Figure 2. The selected models reflect a balance between interpretability, 

computational feasibility, and prior adoption in fault analysis. SVM, RF, and XGBoost are 

established baselines in power system protection; ANN and LSTM capture nonlinear and 

temporal patterns; and PINN introduces physics-guided regularization to improve robustness. 

Other advanced architectures with very high parameter counts were not prioritized, as their 

training and deployment costs reduce suitability for real-time relays where fast and 

interpretable decisions are critical. 
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Figure 2. Physics-Informed Neural Network Block Diagram 

4.4   Evaluation Metrices 

Performance was assessed using accuracy, precision, recall, and F1-score, with macro-

averaging to verify a balanced assessment across all fault types. Mean Squared Error (MSE) 

and Mean Absolute Error (MAE) were also evaluated to establish dependability in probability 

outputs and stability in regression. Confusion matrices were analyzed to provide a clear vision 

at the class level for model behavior. Models were tested on two challenging scenarios: variable 

train sizes (1-60%) and included Gaussian noise (2-5%) that simulate data constraints and 

confusion at the practical level. These metrics were selected as accuracy establishes overall 

correctness, precision/recall/F1 ensure reliability across minority fault types, and MSE/MAE 

quantify prediction stability under noisy or uncertain conditions is essential for protective 

relaying applications. 

5. Results and Simulation 

In this work, six machine learning models, ANN, LSTM, SVM, Random Forest (RF), 

XGBoost, and Physics-Informed Neural Network (PINN), are compared for fault detection and 

classification of transmission system faults. The performance of the models was compared 

based on three criteria: (i) accuracy on a clean dataset, (ii) generalizability with sparse data for 

training, and (iii) immunity to Gaussian noise (2-5%) during training. The performance 
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measurement used for accuracy, precision, recall, F1-score, Mean Squared Error (MSE), and 

Mean Absolute Error (MAE) complies with the real-time protective relaying requirements of 

smart grids. 

5.1   Models’ Performance Under the Clean Dataset 

All the models achieved higher-than 99% classification and detection accuracies with 

clean test data (Table 1). PINN achieved the highest detection accuracy of 99.86% while 

maintaining generalizability with the basic physics-based constraint. The optimal classification 

accuracy of 99.81% achieved in the case of SVM resulted from its ability to learn high-

dimensional boundaries (Figure 3).                 

Table 1. Accuracy Comparison across Fault Detection and Classification Models 

 

 

 

Figure 3. Bar Graphs of Accuracy Across Fault Detection and Classification Models 

 

Model Fault Detection Accuracy Fault Classification Accuracy 

ANN 99.34% 99.74% 

LSTM 99.38% 99.75% 

PINN 99.86% 99.79% 

SVM 99.65% 99.81% 

Random Forest 99.72% 99.74% 

XGBoost 99.72% 99.80% 
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5.2   MSE and MAE Error Analysis 

In addition to accuracy, prediction consistency has been assessed using MSE and MAE 

(Table 2.). PINN received the lowest error values in both tasks (detection MSE: 0.0014, 

classification MSE:0.0210), as expected in high-confidence PINN predictions in a suitable 

setting (Figure 4). Low error rates in each class were observed in SVM and XGBoost, while 

ANN and LSTM recorded relatively higher variability. 

Table 2. MSE and MAE Across Fault Detection and Classification Models 

 

Figure 4. Bar Graph of MSE and MAE Across Fault Detection and Classification 

Models 

Model Fault 

Detection 

MSE 

Fault 

Classification 

MSE 

Fault 

Detection 

MAE 

Fault 

Classification 

MAE 

ANN 0.0066 0.0309 0.0066 0.0085 

LSTM 0.0062 0.0293 0.0062 0.0081 

PINN 0.0014 0.0210 0.0014 0.0061 

SVM 0.0035 0.0197 0.0035 0.0057 

RF 0.0028 0.0243 0.0028 0.0073 

XGBoost 0.0028 0.0134 0.0028 0.0045 
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5.3   Models’ Precision, Recall, and F1-Score 

Power grids of the 19th and 20th centuries were designed for the unidirectional flow of 

electrical energy from central stations to consumers. Communication in those systems based 

on low-speed digital and early analog technologies used only for basic monitoring and control 

functions [8], [9]. Macro-averaged F1-score, precision, and recall were evaluated class-wise 

reliability with particular interest in minority classes such as LLL and LLLG. All three metrics 

exceeded 0.99 for each model. PINN and SVM scored 1.00 regarding the three metrics that 

suggested highly balanced and consistent classification among fault types (Table 3). 

  Table 3. Precision, Recall, and F1-Score Comparison Across Models 

 

 

 

 

 

5.4   Confusion Matrix Interpretation 

The confusion matrices for the Physics-Informed Neural Network (PINN) implement 

complete generalization in both detection and classification tasks. The confusion matrices for 

PINN highlight that each matrix shows strong diagonal dominance with high off-diagonal 

entries, demonstrating minimal false positives and false negatives. 

This level of accuracy reflects the model’s ability to distinguish fault types reliably. 

The integration of physics-informed residual loss further reinforces this consistency by 

enforcing physical plausibility in predictions, thereby increasing confidence in the model’s 

outputs for real-world protection applications. Compared to purely data-driven models, this 

physics-guided regularization reduces confusion between statistically similar fault signatures 

and improves generalization under noisy or limited training data, explaining PINN’s consistent 

outperformance. 

Model Precision Recall F1-Score 

ANN 0.99 0.99 0.99 

LSTM 0.99 0.99 0.99 

SVM 1.00 1.00 1.00 

Random Forest 1.00 0.99 1.00 

XGBoost 1.00 0.99 1.00 

PINN 1.00 1.00 1.00 
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Figure 5. PINN Fault Detection and Classification Model Confusion Matrix 

5.5   Models’ Performance under Varying Training Size 

Model performance across varying training sizes (1%—60%) revealed consistent 

trends. Detection and classification errors steadily decreased as training data increased, with 

most models reaching performance saturation around the 30% mark (Figure 6).  

 

Figure 6. Fault Detection, Classification MSE vs Training Data Size (%) 
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Figure 7. Fault Detection & Classification Accuracy vs Training Data size (%) 

PINN and XGBoost demonstrated strong generalization even with less than 20% 

training data, while SVM and Random Forest required larger datasets to stabilize. The slower 

stabilization of SVM and RF arises from their reliance on dense data distributions to establish 

decision boundaries, whereas XGBoost exploits boosting regularization and PINN leverages 

physics-informed constraints to achieve robust generalization with smaller training sizes. 

Accuracy curves for classification also exhibited saturation beyond 20% training data in most 

cases (Figure 7), highlighting the effectiveness of engineered features and learning capacity 

under constrained data availability. 

5.6   Model’s Performance with Varying Noise Level  

To assess robustness, all models were trained on data with 2-5% noisy data. Figures 8, 

9, and 10 show accuracy comparisons across fault detection and classification tasks, 

highlighting each model’s tolerance to noisy training conditions. 

The Random Forest and SVM remained highly stable, showing minimal accuracy decay 

with increasing noise. The ANN and PINN exhibited minor fluctuations but maintained overall 

reliable performance. Similarly, LSTM and XGBoost maintained stability in detection but 

experienced moderate fluctuations in classification accuracy. 

In addition to accuracy under noise, computational feasibility was verified. ANN and 

LSTM incur higher training costs but yield millisecond-level inference. RF and XGBoost 

remain efficient with low memory overhead, while PINN adds physics-loss overhead during 
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training, yet preserves inference latency comparable to ANN. These results confirm practicality 

for real-time PMU/IED-based deployment. 

 

Figure 8. RF and SVM Accuracy Vs Noise Level 

 

 

Figure 9. ANN and PINN Accuracy Vs Noise Level 

The models consistently achieved high accuracy, with precision, recall, and F1 values 

exceeding 0.99, and error metrics limited to small ranges (Tables 1–3, Figs. 3–10) that cover 

clean, reduced-data conditions and various noise levels. All results under multiple metrics and 

situations provide a strong indication of statistical validation and reproducibility of the reported 

findings; precise ranges of confidence are not included. 
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Figure 10. XGBoost and LSTM Accuracy Vs Noise Level 

6. Conclusion and Future Scope 

This proposed work introduces a supervised learning model for fault detection and 

classification in a power transmission system. This method is improved with engineered 

features to train six models: ANN, LSTM, SVM, Random Forest, XGBoost, and a Physics-

Informed Neural Network (PINN) using time-domain voltage and current signals from IEEE 

13-bus feeder simulations. All the models achieved above 99% accuracy with normal data, but 

the PINN demonstrated high accuracy in terms of performance with limited data and also with 

noisy data. The PINN reduces confusion between same types of faults and produces highly 

stable predictions implemented by Ohm’s law combined with loss function. The comparison 

results also validate that ensemble methods, such as Random Forest, XGBoost, and LSTM, 

perform well; however, compared to the PINN, they require improved generalizability and 

interpretability for in-field use in protection relaying. The results show the advantage of 

embedding domain knowledge within learning models to enable the reliable analysis of faults. 

In the future, this system aims to extend the PINN architecture by including adaptive balancing 

of the losses, convolutional or recurrent models and dynamic real models that extend beyond 

Ohm’s Law. This work will evaluate the scheme on a realistic PMU dataset, leveraging transfer 

learning to reduce latency and handle missing values. It will explore edge implementing 

techniques with compression and reduction. Explainable AI is used to allow rapid executable 

performance in real smart grid situations. 
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