

Advancements in Turning: Exploring Hybrid Nanofluids and MQL Strategies

Karthikraja M.¹, Kalidoss P.², Anbu S.³, Prabakaran P⁴

^{1,2,4}Department of Mechanical Engineering, Dhanalakshmi Srinivasan University, Trichy, India

³Department of Mechanical Engineering, Dhanalakshmi Srinivasan Engineering College, Perambalur, India.

E-mail: ¹karthikmechmo@gmail.com, ²kalidossp.set@dsuniversity.ac.in, ³sathasivamanbu1974@gmail.com, ⁴prabakaranpalanisamy4312@gmail.com

Abstract

This research examines hybrid nanofluids in turning operations using Minimum Quantity Lubrication (MQL), a popular method for improving machining efficiency and sustainability. Hybrid nanofluids have better thermal conductivity, heat transfer, and lubrication than conventional coolants and single-component options. Using hybrid nanofluids with MQL can reduce cutting temperatures, improve surface polish, lengthen tool life, and reduce environmental impact while enhancing material removal rate and coefficient of friction. This research covers recently developed hybrid nanofluid selection criteria, MQL parameter modification, and turning process performance enhancements. Stability, cost, and health hazards are also discussed while using hybrid nanofluids in industry. The data suggest that formulations and deployment techniques require more investigation to ensure widespread acceptance of this promising technology in modern production.

Keywords: Turning, Hybrid Nanofluids, Cutting fluids, Minimum Quantity Lubrication (MQL), Surface roughness

1. Introduction

A crucial machining technique used in many different sectors to shape materials like steel, titanium alloys, and other metals is turning. Lately, efforts have been directed at enhancing this procedure's efficiency by using hybrid nanofluids in Minimum Quantity Lubrication (MQL) systems. Significant gains in machining performance, such as decreased

© 2024 Inventive Research Organization. This is an open access article under the Creative Commons Attribution-NonCommercial International (CC BY-NC 4.0) License

surface roughness, decreased cutting pressures, and increased tool life, have been shown by this novel technique. A machining of AA6061 Steel using SiO₂, MgO, and Fe₂O₃ nanoparticles in vegetable oil was shown by Vinay et al. [1]. MgO and Fe₂O₃ both displayed a 10.05% gain in machining performance, whilst SiO₂ showed a 12.5% improvement. The use of MoS₂ nanoparticles in water for Inconel 718 machining was studied by Rahul et al. [2]. The tool tip temperature was dramatically lowered and the friction coefficient was reduced by 11.05% creating the nanofluid. According to Pradeep et al. [3] research, using nano alumina in vegetable oil on stainless steel 304 produced a 25% increase in tool life and a 15% decrease in surface roughness. Using Al₂O₃ and SiO₂ in SAE 40 oil on AISI 1040 steel resulted in a decrease in surface roughness of 23.5% and cutting force of 10.13%, according to Anup et al. [7]. Nanofluids, which are suspensions of nanoparticles inside a base fluid, are an example of the creative solutions that nanotechnology has brought out in recent years. When compared to traditional fluids, these nanofluids have better heat dissipation capabilities, better lubrication, and increased thermal conductivity.

Hybrid nanofluids, which blend many nanoparticle kinds, have shown even more promise by using the properties of each constituent to produce beneficial effects. The increasing amount of data that supports the use of hybrid nanofluids in MQL for turning operations is shown by this research. Combining nanoparticles with various characteristics allows for a customized approach to cooling and lubrication that may be adjusted for certain materials and machining circumstances. The research carried out in this area will be examined in more detail in this review article, which will also examine the prospects for future developments and the processes behind the noted breakthroughs. The goal is to provide producers a thorough grasp of how hybrid nanofluids in MQL may transform the turning process and create more economical, sustainable, and effective machining solutions.

2. Literature Review

Recent developments in the use of nanoparticles in cutting fluids have greatly enhanced surface polish, reduced tool wear, and increased lubrication in machining operations. For example, Anup et al. [11] investigated the use of graphene nanoparticles in vegetable oil during titanium alloy (Ti-6Al-4V) machining. This resulted in a 6.45% decrease in tool flank wear and a 13.75% gain in performance, both of which increased tool life. Similarly, Sarthak et al.[12] investigated incorporation of graphene nanoparticles into jatropha oil was shown to reduce tool flank wear by 11.05% and surface roughness by 13.75% for the same alloy. In

machining Ti-6Al-4V alloy, Lim et al. [13] achieved an 8.76% reduction in surface roughness and a 7.45% drop in cutting temperature, demonstrating the advantages of adding Al₂O₃ nanoparticles to vegetable oil. Additionally, Talwinder et al. [14] highlighted how hybrid nanofluids in Minimum Quantity Lubrication (MQL) systems provided better lubrication and extended tool life for a variety of steels and alloys. Using an emulsion of MoS₂ and Al₂O₃ nanoparticles, Minh et al. [15] achieved a 65% decrease in surface roughness and a 42% reduction in cutting force while milling 90CrSi steel. Vineet et al. [16] discovered how using nano-cutting fluids including different nanoparticles for AISI 1045 steel may improve machining efficiency. When Anjali et al. [17] looked at the effects of Al₂O₃ and Multi-Walled Carbon Nanotubes (MWCNT) in vegetable oil on AISI 1040 steel, they discovered that a 20% MWCNT concentration decreased surface roughness by 13.6%, while a 40% concentration reduced it by 6.86%. According to Tran et al. [18], machining 90CrSi steel with MWCNT in vegetable oil produced improvements in cutting temperature of 10.45% and a reduction in surface roughness of 11.76%. Furthermore, while machining Al 7075 alloy, Ariffin et al. [19] discovered that the addition of Al₂O₃ and TiO₂ nanoparticles in mineral oil increased tool life by 10.05% and enhanced surface polish by 12.45%. Last but not least, Syh et al. [20] reported that using Al₂O₃ and graphene nanoparticles in ethylene glycol for chrome steel bars resulted in a notable 45% decrease in friction coefficient and reduced machining temperatures. Similar results were seen by Pravin et al. [22] while machining Inconel 718, where CuO nanofluids in soybean oil led to a 32.43% reduction in surface roughness and a 24.97% decrease in tool wear.

Moreover, Mustafa et al. [23] showed that ZnO nanofluids derived from palm oil decreased surface roughness in AISI 52100 steel machining by 57%. Furthermore, using SiO₂ nanofluids in water to machine HSLA steel produced improvements in surface roughness of 28.34% and material removal rate of 5.09%, according to Hassan et al. [24]. Using a hybrid nanofluid of MWCNT/MoS₂ in sesame oil for AISI 1040 steel, Vamsi et al. study [25] also shown significant reductions in cutting forces (up to 32%), surface roughness (28.5%), and tool flank wear (81.3%). Karthikraja et al. [29] discovered that the HF-MQL method for AISI 4130 steel using mineral oil with Al₂O₃, Cu, and MWCNT nanoparticles decreased cutting tool temperature 25.43%, increased tool life 12.45%. Additionally, it was shown by Natalia et al. [30] that while machining titanium alloys, the NF-MQL technique decreased surface roughness by 10.02% and wear cutting temperature by about 12%. Through an analysis of previous research and recommendations for future directions, this study seeks to provide practical

insights into the effective use of nanofluids and MQL systems to increase performance and sustainability in turning operations.

3. Methods and Application of Turning Process

The turning process is one of the most used machining procedures in production, especially for shaping cylindrical workpieces. In recent years, advances in cutting fluid technology have considerably improved machining performance by decreasing tool wear, enhancing surface smoothness, and lowering machining temperatures. Among these improvements, the use of hybrid nanofluids in conjunction with Minimum Quantity Lubrication (MQL) has received significant attention. Hybrid nanofluids, which are made up of two or more nanoparticles distributed in a base fluid, have showed encouraging outcomes in terms of increasing machining efficiency. Tao et al. [4] achieved a 17% reduction in cutting temperature and a 36% drop in oil mist concentration while studying AISI 1040 steel utilizing Fe₃O₄ and ZnO nanoparticles in mineral oil. Youssef et al. [5] machined AISI 1045 steel using alumina nanoparticles dissolved in used cooking oil. This resulted in a 20.29% decrease in surface roughness and a little 2.36% decrease in cutting force. Using graphene nanofluids with water on M42 steel, Anandan et al. [6] observed improved material removal rates and a 15% increase in machining performance. The use of Al₂O₃, TiO₂, and SiO₂ nanoparticles in mineral oil for AISI 1040 steel and SAE 20W-40 was studied by Patole et al. [9]. The results showed a 15% reduction in cutting force and a 21.75% reduction in surface roughness. Cu nanofluids in mineral oil were found to enhance machining performance for stainless steel by 15%, according to Anup et al. [10], with MQL turning operations seeing a 12% gain in efficiency. Tool wear was decreased by almost 50% and surface roughness by 40% for Nickel-Based Alloy employing hybrid NF-MQL using palm oil with graphene and hexagonal boron nitride (hBN) nanoparticles, according to Kaushik et al. [26]. Using hybrid nanofluids containing coconut oil, Al₂O₃, and MoS₂ nanoparticles tool wear 51.65%. Surface roughness reduced by 38.75%. Miriyala et al. [27] reduced the cutting temperature and surface roughness of AISI 4340 steel. According to Kulkarni et al. [28], hybrid NF-MQL with Al₂O₃ and MWCNT in palm oil for Inconel 718 performed better, lowering cutting temperature by 10.6%, decreasing surface roughness by 12.3%, and extending tool life by 18.34%. In comparison to dry MQL, Natalia et al. [30] discovered that the NF-MQL method for Titanium Alloy using polyolester oil with Al₂O₃ nanoparticles decreased wear-cutting temperature by about 12%, surface roughness by

10.02%, and tool flank wear by 73.3% and 65.7%. Using hybrid NF-MQL with palm oil, silicon carbide, and TiO_2 for AISI 1040 steel, Popat et al. [31] reported improvements in material removal rate and surface roughness, with surface roughness decreasing from 0.567 μ m to 0.357 μ m. Table 1 illustrates the summary of research articles on material turning using nanofluids.

 Table 1. Research Articles on Material Turning using Nanofluids

.

Authors	Work piece	Nanoparticles,	Primary Findings
		Base fluid	
Vinay et al	AA6	SiO ₂ ,MgO,	SiO ₂ showed a 12.5% machining
[1]	061 Steel	Fe ₂ O ₃ ,Vegetable	Performance Improvement. MgO and
		oil	Fe ₂ O ₃ showed 10.05%., Machining
			performance improvement each.
Rahul et al.	Inconel 718	MoS ₂ , Water	Reduction in friction coefficient
[2]			11.05%.Cutting forces, surface
			roughness, and wear. Tool tip
			temperature reduction from 867 K to
			526.7K
A.V	Stainless	Alumina,	Nano alumina/oil cutting fluid
Pradeep et	steel 304	Vegetable oil	improved Tool life by 25%. Surface
al. [3]			roughness was reduced by 15% with
			nano alumina/oil cutting fluid.
Tao et al.	AISI 1040	Fe ₃ O ₄ , ZnO	Cutting temperature was reduced by
[4]	steel	Mineral oil	17% with NMQL. Oil mist
	Steel		concentration decreased by 36%
			compared to traditional MQL.
Youssef et	AISI 1045	Alumina,	Surface roughness was reduced by
al. [5]	steel	Wasted cooking	20.29% with hybrid nanofluid MQL.
		oil	Cutting force was slightly reduced by
			2.36% with hybrid nanofluid MQL.

Anandan et	M42 steel	Graphene,Water	Graphene nanofluid improved
al.[6]			machining performance by 15%.
			Enhanced material removal rate.
			Significant enhancement in
			environmental factors during turning of
			M42 steel.
Anup et al.	AISI 1040	Al ₂ O ₃₊ SiO ₂ ,SAE	Turning performance improved by
[7]	steel	40 oil	23.5%. Hybrid nanofluid and MQL
			utilization enhanced performance
			significantly.
Tanmani et		Al ₂ O ₃ ,SiO ₂ ,	Hybrid nanofluids improved turning
al. [8]	. 707 10 10	TiO ₂ ,Water,	performance by 15.05%. Enhanced
	AISI 4340	Ethylene glycol,	machining efficiency by 21%.
		Mineral oil	
Patole et al.	AISI 1040	Al ₂ O ₃ , TiO ₂ ,	Surface roughness was reduced by
[9]	steel	SiO ₂ , SAE 20W-	21.75% using nanofluids. Cutting force
		40, Mineral oil	reduced by 15% with MQL turning.
Junankar,et	Stainless	Cu ,Mineral oil	Cu nanofluid showed almost 15%
al. [10]	steel		improvement in machining
			performance. MQL turning operation
			exhibited 12 % increase in efficiency.
			,
Suresh,et al.	Ti-6Al-4V	Graphene,	Performance improvement 13.75%
[11]		Vegetable oil	surface roughness, reduced by flank
			wear 6.45%. enhanced tool life.
Sarthak et	Inconel 718	Graphene,	NFMQL shows lower tool flank wear
al. [12]		Jatropha oil	up 11.05%., providing surface
		_	roughness reduced by 13.75%.

Lim et al.	Ti-6Al-4V	Al ₂ O ₃ ,	Reduced surface roughness by 8.76%.
[13]		Vegetable oil	Reduction in cutting temperature by
			7.45%.
Talwinder	Ti-6Al-4V	Metals,	MQL with hybrid nanofluids shows
et al.[14]		Composites and	improved lubrication properties,
		ceramics,	nanoparticle enhances machining
		Vegetable oil	Performance and tool life.
Minh et al.	Steels and	MoS ₂ ,Al ₂ O ₃	Reduced by surface roughness,
[15]	alloys	Emulsion	Approximately 65 %. Reduced by
			Cutting force 42%.
Vineet et al.	AISI 1045	CuO, Soyabean	Nano-cutting fluid contains
[16]	steel	oil	nanoparticles for improved lubrication
			and cooling properties. Improve
			machining efficiency.
Anjali et al.	AISI 1040	Al ₂ O ₃ ,MWCNT,	20% MWCNT reduced Surface
[17]	steel	Vegetable oil	roughness by 13.6%.40% MWCNT
			reduced Surface roughness by 6.86%.
Tran et al.	90CrSi steel	MWCNT,	Reduced surface roughness by
[18]		Vegetable oil	11.76%.Improved cutting temperature
[20]			by 10.45%. Improve material removal
			rate.
Ariffin et al.	Al 7075	Al ₂ O ₃ ,TiO ₂ ,	Hybrid nano-cutting fluid Improved
[19]	alloy	Mineral oil	surface finish 12.45%. Enhanced by
			tool life 10.05%.
Syh et al.	Chrome	Al ₂ O ₃ , graphene,	45% reduction in friction coefficient
[20]	steel bars	Ethylene glycol	achieved and reduced machining
			temperature.

Venkatesan	Inconel X-	Silver (Ag),	Reduced Surface roughness 6.83%.
et al. [21]	750."	Coconut oil	Cutting Force 47.13%, and residual stress by 51.70%.
Pravin et al. [22]	Inconel 718	CuO, Soyabean oil	Surface roughness reduced by 32.43% With CuO nanofluid. Tool wear reduced by 24.97%. Improve material removal rate.
Mustafa et al. [23]	AISI 52100	ZnO,(palm oil, peanut oil, and coconut oil)	Palm oil-based NFs at (0.125%) reduced surface roughness by 57%, and sunflower oil-based NFs at the same concentration decreased coefficient of friction by 13%.
Hassan et al [24]	HSLA steel	H ₂ O,SiO ₂	NF-MQL machining condition resulted in 28.34% surface roughness and 5.09% improvement in material removal rate.
Vamsi et al [25]	AISI 1040	MWCNT,MoS ₂ , Sesame oil	NF-MQL Reduces the cutting forces 7.05% cutting temperature 21.65%, surface roughness 10.25%, and tool flank wear 12.23%.
Kaushik at el. [26]	Inconel 718	Graphene, hexagonal boron nitride, Palm oil	Hybrid NF-MQL reduces tool wear by 51.65%. Surface roughness reduced by 38.75% compared to dry machining.
Miriyala et al. [27]	AISI 4340 Steel	Al ₂ O ₃ ,MoS ₂ , Coconut oil	Hybrid nanofluids with MQL fluid surface roughness reduced 0.988 μm from 0.757μm, reduced cutting temperature 10.68%.

Kulkarni et	Inconel 718	Al ₂ O ₃ ,MWCNT,	Hybrid NF-MQL performed better than
al [28]		Palm oil	unitary nanofluid 10.6% reduced
			cutting temperature, 12.3% surface
			roughness, and improved 18.34% tool
			life.
Karthikraja	AISI 4130	Al ₂ O ₃ ,Cu,MWC	Hybrid NF-MQL performed decreased
et al [29]		NT,Mineral oil	cutting tool temperature 25.43%,
			increase tool life 12.45%.
Szczotkarz,	Ti-6Al-4V	Al_2O_3 ,	The use NF-MQL process reduced
et al [30]		Polyolester oil	wear-cutting temperature by almost
			12%, surface roughness 10.02%, and
			tool flank wear 14%.
Popat et al,	AISI 1040	Silicon Carbide,	Using Hybrid NF-MQL improvements
[31]	Steel AISI	TiO ₂ , Palm oil	in material removal rate 12.09% and
	1040 Steel		surface roughness reduced from
			0.567μm from 0.357μm.

4. Discussions

Significant advancements in machining performance in turning of hybrid nanofluids (NFs) in Minimum Quantity Lubrication (MQL) have been shown by the research works. The hybrid NF studies reviewed demonstrate that when hybridized with a mixture of nanoparticles (Al₂O₃, MWCNT, TiO₂, SiO₂, MoS₂, graphene) into decreased frictional force potential, with different base fluids (olive oil, vegetable oil, mineral oil, polyolester oil and other) it is extremely successful in improving machining efficiency in a variety of materials. Common steels (e.g., AISI 1040, 1045, 4130, 6061, 52100), stainless steels, Titanium alloys (e.g., Ti-6Al -4 V), Inconel 718, and aluminum alloys (e.g., Al7075) are considered to be these materials. Utilization of hybrid NFs results in several measurable benefits such as improved surface finish, enhanced tool life, and reduced cutting temperatures. Using SiO₂ nanoparticles Vinay et al [1] observed a 12.5% increase in machining performance and Anup et.al [2] observed 23.5% improvement in turning performance with a combination of Al₂O₃ and SiO₂

in SAE 40 oil. Room for improvement was also reported by Tanmani et al. [8] who enhanced their turning performance up to 15.05% with an Al₂O₃, SiO₂, TiO₂ mixed with a blend of water and ethylene glycol during their study.

Additionally, hybrid NFs are found to exhibit superior mechanical properties over single nanoparticle fluids. Enhanced thermal conductivity, better lubrication, and less friction can be achieved through sequential mixing of different nanoparticles into one fluid. The work of Kaushik et al. [26] also highlighted this synergy by demonstrating that hybrid nanofluids can reduce tool wear by 51.65% and surface roughness by 38.75% against the dry machining process. This improvement is due to improved lubrication and cooling properties of hybrid nanoparticles. The use of environmentally friendly base fluids such as vegetable oils and lubricants in hybrid NFs follows the strong trend towards green manufacturing strategies. For example, several studies, such as those by Anup et al., [11] showed that the use of bio lubricants in hybrid NF does not only improve machining performance but also helps in reducing ecosystem-related impact due to the machining process. Coupling MQL with the hybrid NFs greatly reduces the amount of coolant required while still achieving high machining performance, making the hybrid NFs and the hybrid NFs/MQL a cost-effective solution. Lower overall operational costs result from reduced coolant usage, better lubrication and increased tool life. Moreover, hybrid NFs and MQL can enable more sustainable and energy-efficient manufacturing.

Finally, the performance of the machining using hybrid nanofluids in MQL is improved significantly. Multiple nanoparticles in the same fluid in one fluid work together to improve lubricity, decrease surface roughness, reduce heat when cutting, and provide longer tool life. In addition, the inclusion of eco-friendly base fluids enhances the sustainability of this technology by current manufacturing trends toward environmentally sustainable manufacturing. Hybrid NF results from the studies studied indicate its ability to transform turning operation on most of materials.

5. Future Scope

The tuning procedure employing hybrid nanofluid with Minimum Quantity Lubrication (MQL) opens up new opportunities for future study, particularly in examining the usage of multi-base fluids and combinations of multi-nanoparticles. These advancements might lead to considerable increases in heat conductivity, lubrication, and overall machining performance. Further optimization of nanoparticle size and distribution, together with the interplay between multiple fluid bases, might minimize tool wear and increase surface finish quality.

Incorporating Pico fluids (10⁻¹²m) and sophisticated nanoparticle combinations affords the possibility to fine-tune the thermal and lubrication qualities of the fluid even further. This method might lead to advancements in precision machining, especially in complicated or sensitive procedures. Future study might potentially examine the environmental benefits of these sophisticated fluids, seeking to produce more sustainable and efficient industrial processes. Electronic sensors could be incorporated into advanced MQL systems to provide real-time monitoring of machining parameters like temperature, lubricant flow rates, and tool wear. Remote monitoring, predictive maintenance, and dynamic lubrication rate modifications based on real-time data can all be made possible by these sensors in conjunction with IoTenabled devices. Additionally, by analyzing machining data, informatics tools like machine learning algorithms could optimize MQL settings and nanofluid formulations, decreasing the need for trial-and-error experiments and increasing efficiency. Manufacturers might forecast results under various scenarios by simulating machining operations using the idea of digital twins. Integrating real-time monitoring technologies with AI might further enhance the application of these fluids, assuring maximum performance and tool lifespan in varied industrial contexts.

6. Conclusion

The complete analysis of current studies on hybrid nanofluids (NFs) in Minimum Quantity Lubrication (MQL) for turning shows considerable advances and the transformational potential of this technology in modern machining. Hybrid nanofluids, including nanoparticles like Al₂O₃, MWCNT, TiO₂, SiO₂, MoS₂, graphene, and others, have shown significant increases in machining performance indicators in various base oils (e.g., vegetable, mineral, polyol ester). Across varied materials, including steels (AISI 1040, 1045, 4130, 6061, 52100), stainless steels, titanium alloys (Ti-6Al-4V), Inconel 718, and aluminium alloys (Al 7075), hybrid NFs have been demonstrated to increase surface roughness, lengthen tool life, lower cutting temperatures, and minimize tool wear. The synergistic benefits of integrating distinct nanoparticles in hybrid nanofluids are clear, as they provide higher lubrication, better thermal conductivity, and superior mechanical characteristics compared to single nanoparticle fluids. This synergy not only improves the lubrication regime but also mitigates common machining issues such as high friction, excessive heat production, and quick tool deterioration. Additionally, the use of eco-friendly base oils such vegetable oils and bio lubricants in these hybrid NFs corresponds with the rising need for sustainable and ecologically responsible

production procedures. Moreover, the integration of hybrid NFs with MQL processes has shown to be a cost-effective and efficient strategy, delivering considerable savings in coolant usage and environmental impact while retaining great machining performance. The flexibility of hybrid NFs to diverse machining conditions and materials further highlights their versatility and extensive use in the industry

References

- [1] Singh, Vinay Hiralal, Maddali Anil Kumar, Shaik Annar, Gajanan C. Upadhye, Yanala Srinivasa Reddy, and S. Pratima Kumari. 2022. "Influence of SiO₂, MgO, and Fe₂O₃ Metallic Nano Cutting Fluids of AA6061 in MQL Environment." Materials Today Proceedings 69 (January): 1103–9. https://doi.org/10.1016/j.matpr.2022.08.174.
- [2] Shukla, Rahul, Arun Kumar Tiwari, and Sanjay Agarawal. 2022. "Assessment of Machining Performance Parameters of Nanofluid-based MQL-turning: An Experimental Analysis and CFD Modelling." Proceedings of the Institution of Mechanical Engineers Part E Journal of Process Mechanical Engineering, August. https://doi.org/10.1177/09544089221122049.
- [3] Pradeep, A., N. Kavitha, T.V. Janardhana Rao, and S. Vijayakumar. 2022. "Influence of Nano Alumina/Vegetable Oil Based Cutting Fluid on MQL Turning of Stainless Steel 304." Materials Today Proceedings 69 (January): 658–61. https://doi.org/10.1016/j.matpr.2022.06.547.
- [4] Lv, Tao, Aibing Yu, Guiyang Jin, and Xuefeng Xu. 2022. "AEROSOL CHARACTERISTICS AND TURNING PERFORMANCE OF MAGNETIC MINIMUM QUANTITY LUBRICATION." Multiphase Science and Technology 34 (4): 57–73. https://doi.org/10.1615/multscientechn.2022042369.
- [5] Touggui, Youssef, Alper Uysal, Uğur Emiroglu, Eshreb Dzhemilov, and Salim Belhadi. 2021. "Improvement of the MQL Efficiency in Machining Stainless Steel by Adding Nanoparticles to the Cutting Fluid." In Lecture Notes in Mechanical Engineering, 219–28. https://doi.org/10.1007/978-3-030-91327-4_22.
- [6] Anandan, V., M. Naresh Babu, M. Vetrivel Sezhian, Cagri Vakkas Yildirim, andM. Dinesh Babu. 2021. "Influence of Graphene Nanofluid on Various

- Environmental Factors During Turning of M42 Steel." Journal of Manufacturing Processes 68 (July): 90–103. https://doi.org/10.1016/j.jmapro.2021.07.019.
- [7] Junankar, Anup A., Sachin R. Parate, Pratik K. Dethe, Nikhil R. Dhote, Dinesh G. Gadkar, Devanand D. Gadkar, and Samyak A. Gajbhiye. 2020. "A Review: Enhancement of Turning Process Performance by Effective Utilization of Hybrid Nanofluid and MQL." Materials Today Proceedings 38 (June): 44–47. https://doi.org/10.1016/j.matpr.2020.05.603.
- [8] Geetha, C.H. Tanmai Sai, Asish Kumar Dash, B. Kavya, and M. Amrita. 2021. "Analysis of Hybrid Nanofluids in Machining AISI 4340 Using Minimum Quantity Lubrication." Materials Today Proceedings 43 (January): 579–86. https://doi.org/10.1016/j.matpr.2020.12.083.
- [9] Patole, P.B., G.J. Pol, A.A. Desai, and S.B. Kamble. 2021. "Analysis of Surface Roughness and Cutting Force Under MQL Turning Using Nano Fluids." Materials Today Proceedings 45 (January): 5684–88. https://doi.org/10.1016/j.matpr.2021.02.501.
- [10] Junankar, A.A., None Yashpal, J.K. Purohit, G.M. Gohane, J.S. Pachbhai, P.M. Gupta, and A.R. Sayed. 2020. "Performance Evaluation of Cu Nanofluid in Bearing Steel MQL Based Turning Operation." Materials Today Proceedings 44 (November): 4309–14. https://doi.org/10.1016/j.matpr.2020.10.550.
- [11] Suresh, S., N. Sateesh, None Ramsubbiah, B. Ch Nookaraju, D. Sivanagaraju, and A. Anitha Lakshmi. 2021. "Performance Evaluation of MQL With Graphene Mixed Nano Fluids Prepared at Different Concentrations in Turning of Pure Titanium (TI6Al4V) Alloy." E3S Web of Conferences 309 (January): 01041. https://doi.org/10.1051/e3sconf/202130901041.
- [12] Sahoo, Sarthak Prasad, and Saurav Datta. 2020. "Dry, MQL, and Nanofluid MQL Machining of Ti–6Al–4V Using Uncoated WC–Co Insert: Application of Jatropha Oil as Base Cutting Fluid and Graphene Nanoplatelets as Additives." Arabian Journal for Science and Engineering 45 (11): 9599–9618. https://doi.org/10.1007/s13369-020-04849-0.

- [13] Kai, Lim Syh, and Ahmad Razlan Yusoff. 2023. "Effects of Hybrid Nanocooling-Lubricants MQCL on Machining Temperature and Tool Wear Mechanisms Under Turning Process of Titanium Alloy." Tribology Online 18 (6): 385–95. https://doi.org/10.2474/trol.18.385.
- [14] Singh, Talwinder, Chandan Deep Singh, and Rajdeep Singh. 2023. "A Review on Minimum Quantity Lubrication (MQL) Assisted Machining Processes Using Mono and Hybrid Nanofluids." Industrial Lubrication and Tribology 75 (9): 1054–76. https://doi.org/10.1108/ilt-05-2023-0131.
- [15] Ngo, Minh Tuan Ngo Tuan. 2023. "Influence of Technology Parameters on the Total Cutting Force in the Hard Turning Process With NF MQL and NF MQCL Method Using Nanofluids." Tribology in Industry 45 (1): 272–84. https://doi.org/10.24874/ti.1453.02.23.05.
- [16] Yadav, Ratnakar, Vineet Dubey, and Anuj Kumar Sharma. 2023. "Investigation of Cutting Forces in MQL Turning Using Mono and Hybrid Nano Cutting Fluid." Materials Today Proceedings, May. https://doi.org/10.1016/j.matpr.2023.05.188.
- [17] Gupta, Anjali, Rajesh Kumar, Harmesh Kumar Kansal, and Harry Garg. 2023. "Effect of Nanoparticles Mixing-ratio of Al 2 O 3 -MWCNT Hybrid Nano-cutting Fluid During MQL Turning." Materials and Manufacturing Processes 39 (1): 43–54. https://doi.org/10.1080/10426914.2023.2187825.
- [18] Ngoc, Tran Bao, Tran Minh Duc, Ngo Minh Tuan, Vu Lai Hoang, and Tran Long. 2023. "Machinability Assessment of Hybrid Nano Cutting Oil for Minimum Quantity Lubrication (MQL) in Hard Turning of 90CrSi Steel." Lubricants 11 (2): 54. https://doi.org/10.3390/lubricants11020054.
- [19] Arifuddin, Ariffin, Abd Aziz Mohammad Redhwan, Wan Hamzah Azmi, and Nurul Nadia Mohd Zawawi. 2022. "Performance of Al2O3/TiO2 Hybrid Nano-Cutting Fluid in MQL Turning Operation via RSM Approach." Lubricants 10 (12): 366. https://doi.org/10.3390/lubricants10120366.
- [20] Lim, Syh Kai, Wan Hamzah Azmi, Ahmad Shahir Jamaludin, and Ahmad Razlan Yusoff. 2022. "Characteristics of Hybrid Nanolubricants for MQL Cooling

- Lubrication Machining Application." Lubricants 10 (12): 350. https://doi.org/10.3390/lubricants10120350.
- [21] K, Venkatesan, Devendiran S, and Murali T. 2022. "A Hybrid Algorithm for Multiobjective Optimisation of Parameters Nanofluid in MQL-turning of Inconel X-750." Advances in Materials and Processing Technologies 9 (4): 1652–82. https://doi.org/10.1080/2374068x.2022.2129825.
- [22] Mane, Pravin A., Anupama N. Kallol, Rajendra L. Doiphode, G. A. Manjunath, Bahaa Saleh, Mohamed Abbas, C. Ahamed Saleel, and Ibrahim M. Alarifi. 2022. "Inconel 718 Turning Process Parameters Optimization With MQL Nanofluid Based on CuO Nanoparticles." Journal of Nanomaterials 2022 (1). https://doi.org/10.1155/2022/1408529.
- [23] Mustafa, Saed Enam, Mohammed Ali, Asif Iqbal, Mohd Bilal Naim Shaikh, and Rafid Hassan. 2020. "Formulation and Analysis of Cost-effective Environment-friendly Metal Cutting Nanofluids Using Zinc Oxide on Turning of AISI 52100 Steel Using MQL." Engineering Research Express 3 (1): 015005. https://doi.org/10.1088/2631-8695/abd0e1.
- [24] Javid, Hassan, Mirza Jahanzaib, Muhammad Jawad, Muhammad Asad Ali, Muhammad Umar Farooq, Catalin I. Pruncu, and Salman Hussain. 2021. "Parametric Analysis of Turning HSLA Steel Under Minimum Quantity Lubrication (MQL) and Nanofluids-based Minimum Quantity Lubrication (NF-MQL): A Concept of One-step Sustainable Machining." The International Journal of Advanced Manufacturing Technology 117 (5–6): 1915–34. https://doi.org/10.1007/s00170-021-07776-y.
- [25] Gugulothu, Srinu, and Vamsi Krishna Pasam. 2020. "Experimental Investigation to Study the Performance of CNT/MoS2 Hybrid Nanofluid in Turning of AISI 1040 Stee." Australian Journal of Mechanical Engineering 20 (3): 814–24. https://doi.org/10.1080/14484846.2020.1756067.
- [26] Makhesana, Mayur A., Kaushik M. Patel, and Prashant J. Bagga. 2022. "Evaluation of Surface Roughness, Tool Wear and Chip Morphology During Machining of Nickel-Based Alloy Under Sustainable Hybrid Nanofluid-MQL Strategy." Lubricants 10 (11): 315. https://doi.org/10.3390/lubricants10110315.

- [27] Miriyala, Veerabhadrarao, Bhushan Patil, Vasim Shaikh, D Sudhakar, and Sujata Deshmukh. 2023. "Investigations of Surface Roughness and Temperatures in Vegetable Oil-based n-MQL Turning of AISI 4340 Steel." Journal of Engineering Project and Production Management, May. https://doi.org/10.32738/jeppm-2024-0003.
- [28] S. Chinchanikar and P. Kulkarni, "Machining Effects and Multi-objective Optimization in Inconel 718 Turning With Unitary and Hybrid Nanofluids Under MQL." Frattura Ed Integrità Strutturale 18 (68): 222–41. https://doi.org/10.3221/igf-esis.68.15.
- [29] M. Karthikraja, "Innovating Sustainable Turning Processes: Exploring Improved Thermal Performance with Computational Fluid Dynamics Simulations of Cu/Al2O3/MWCNT Nanocoolants," Jun. 10, 2024. https://journal.esrgroups.org/jes/article/view/4905
- [30] N. Szczotkarz, K. Adamczuk, D. Dębowski, and M. K. Gupta, "Influence of Aluminium Oxide Nanoparticles Mass Concentrations on the Tool Wear Values During Turning of Titanium Alloy Under Minimum Quantity Lubrication Conditions." Advances in Science and Technology Research Journal 18 (1): 76–88. https://doi.org/10.12913/22998624/175917.
- [31] Popat, Kshirsagar Dattatraya Popat, Venkatesh MA, Vishnu D. Wakchaure, and Prashant N. Nagare. 2024. "Investigation on Effects of Biolubricants Based Hybrid Nanofluids on Turning of AISI 1040 Steel Using Minimum Quantity Lubrication." International Journal of Mechanical Engineering 11 (3): 40–49. https://doi.org/10.14445/23488360/ijme-v11i3p105.