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Abstract 

One of the most significant developments in quantum computing is the Harrow-

Hassidim-Lloyd (HHL) method, which can solve linear equation systems at exponential 

speedup. Because linear systems are essential to many scientific fields, including physics, 

engineering, and machine learning, this approach has great potential to revolutionize 

computational paradigms. The HHL algorithm is thoroughly examined in this work, with 

particular attention paid to its theoretical framework, real-world application utilizing IBM's 

Qiskit platform, and the difficulties in simulating quantum algorithms on noisy intermediate-

scale quantum (NISQ) devices. Using parameters like fidelity, time complexity, and scalability, 

the research further evaluates the HHL algorithm's performance in comparison to traditional 

methods. According to the findings, quantum simulations work well for small-scale matrices 

like 2x2 and 4x4, but expanding the approach to bigger systems is still difficult because of 

hardware and software constraints. Finally, the research emphasizes the key directions for 

advancing quantum hardware and algorithms to overcome current scalability challenges, 

enabling broader applicability of the HHL algorithm in solving complex linear systems. 

Keywords: HHL Algorithm, Quantum Computing, Linear Systems of Equations, Quantum 

Phase Estimation, IBM Qiskit, Noisy Intermediate-Scale Quantum Devices, Fidelity Analysis. 
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 Introduction 

With the potential to transform problem-solving in domains where classical computing 

is constrained by exponential time complexity, the science of quantum computing has attracted 

enormous attention in recent years. A common challenge in many scientific, technical, and 

financial applications is the solving of linear systems of equations. Effectively resolving these 

systems can result in advances in the analysis of big datasets, process optimization, and 

modeling of intricate phenomena. Conventionally, linear systems of equations are solved using 

classical algorithms that do not scale well with the size of the issue. Under some circumstances, 

iterative techniques like conjugate gradient have time complexities of O(N2), but direct 

techniques like Gaussian elimination have time difficulties of O(N3). When working with big 

datasets or high-dimensional systems, this exponential scaling becomes unaffordable. 

1.1 Quantum Computing:A Revolutionary Approach to Linear Systems 

Quantum computing provides a radically different method. The ability of quantum 

algorithms to manipulate superpositions of states enables them to analyze enormous volumes 

of data at once. The Harrow-Hassidim-Lloyd (HHL) algorithm was one of the earliest quantum 

algorithms created to solve linear equation systems. It was initially presented in 2009. The 

HHL algorithm claims to lower the time complexity of solving linear systems to O(logN) by 

utilizing quantum phase estimates and controlled rotations. Under ideal circumstances, this 

would result in an exponential speedup. HHL is especially appealing for applications in 

domains where big equation systems are frequently encountered, like differential equation 

solvers, quantum machine learning, and cryptography, because of this speedup. Due to 

limitations in current quantum hardware, the HHL algorithm is still difficult to implement in 

practice, despite its theoretical promise. The algorithm is hard to scale beyond small matrices 

because of the noise in quantum systems, the complexity of quantum gates, and the number of 

qubits needed. This study examines the HHL algorithm's theoretical foundations, provides an 

implementation utilizing IBM's Qiskit platform, and evaluates the algorithm's effectiveness on 

small systems. The difficulties that arise during simulation, such as software incompatibilities, 

import errors, and fidelity problems, are discussed, and solutions are suggested. 

 Related Work 

The solution of linear systems of equations, a basic issue in many scientific fields, could 

be completely transformed by quantum computing. Under favourable circumstances, iterative 
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techniques like conjugate gradient reduce the time complexity of solving these systems to 

O(N2), although classical algorithms like Gaussian elimination usually solve them with time 

complexity scaling as O(N3). On the other hand, the Harrow-Hassidim-Lloyd (HHL) algorithm, 

which was first presented by Harrow et al. in 2009 [1], offers an exponential speedup and, in 

the best-case scenario, solves linear systems in O(logN) time. Because of its potential use in 

computationally demanding domains like quantum machine learning and large-scale data 

analysis, the HHL algorithm has now grown to be one of the most studied quantum algorithms. 

The HHL algorithm solves the linear system by effectively computing a matrix's eigenvalues 

through quantum phase estimation (QPE). This method simultaneously explores huge solution 

areas by taking advantage of the intrinsic qualities of quantum systems, such as entanglement 

and superposition. HHL provides significant speedups over traditional solvers as a result, 

especially for sparse matrices where traditional algorithms have trouble keeping up with the 

computing demands.  

HHL has been shown to have promise in both theoretical and experimental settings. 

The foundation for HHL's quantum advantage was established by Harrow et al. [1], who 

demonstrated its exponential speedup for large, sparse matrices. Using a photonic quantum 

processor, Cai et al. [2] achieved the first experimental realization of the HHL algorithm, 

solving a 2x2 system with great fidelity. Their research has shown that while scaling to bigger 

systems remained difficult because of hardware constraints and quantum noise, quantum 

computing could provide workable solutions for small-scale linear systems.  

Pan et al. [3] extended this research by implementing the HHL algorithm on a 

superconducting quantum processor. They explored both 2x2 and 4x4 matrices, achieving 

reasonable fidelity for small systems but encountering significant errors as the matrix size and 

complexity increased. Their work highlighted the importance of matrix sparsity and condition 

number, with sparse, well-conditioned matrices yielding the best results in quantum 

experiments. 

 The practical implementation of the HHL algorithm, however, faces considerable 

challenges, primarily due to the limitations of current quantum hardware. Ji and Meng [4] 

conducted a detailed study of HHL on IBM’s Qiskit platform, demonstrating that while small 

matrices (e.g., 2x2) could be solved with high fidelity, the fidelity rapidly degraded as matrix 

size increased to 4x4. They identified quantum gate errors and noise in NISQ (Noisy 

Intermediate-Scale Quantum) devices as the primary obstacles to scaling the algorithm. Their 
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findings align with earlier works by Cai et al. [2] and Pan et al. [3], both of which emphasize 

the difficulty of implementing HHL on larger matrices due to noise and gate fidelity issues. 

In addition to hardware challenges, software limitations also hinder the widespread 

application of the HHL algorithm. Qiskit, the primary development platform for quantum 

algorithms, has undergone rapid development, leading to frequent updates that sometimes 

introduce incompatibilities between versions. Ji and Meng [4] noted issues with importing 

necessary modules, resulting in errors during implementation. This has been a common issue 

for quantum developers, who often face compatibility problems as quantum software platforms 

evolve. 

 Comparative studies between quantum and classical solvers provide further insights 

into the current capabilities of quantum algorithms. Adedoyin et al. [5] examined the 

performance of HHL in comparison with classical solvers such as Gaussian elimination and 

conjugate gradient methods. Their study concluded that while HHL holds theoretical 

advantages, classical methods often outperform quantum solvers in practical scenarios, 

particularly for dense matrices where quantum noise significantly impacts fidelity. However, 

for well-conditioned, sparse matrices, HHL offers a promising alternative that could 

outperform classical solvers as quantum hardware continues to improve. 

 Research by Barz et al. [6] investigated the use of HHL in solving machine learning 

problems, particularly in the context of linear regression. Their work demonstrated that HHL 

could provide a quantum advantage in regression analysis, but only under certain conditions, 

such as when dealing with high-dimensional, sparse datasets. For poorly conditioned matrices 

or dense systems, classical regression methods remain more reliable, given the current state of 

quantum hardware.  

In 2024, Morgan et al. [7] proposed a hybrid modification to the HHL algorithm, 

integrating enhanced quantum eigenvalue estimations with refined classical processing 

techniques. This combination led to improved accuracy when solving linear systems, 

particularly in cases of sparse and well-conditioned matrices. Their approach highlights 

potential strategies for enhancing the performance of the HHL algorithm on current quantum 

hardware, which is especially relevant to the goals of this research. 

Ginzburg et al. [8] conducted a study in 2024 focusing on the convergence of error in 

quantum linear system solvers. Their research addressed the behavior of the HHL algorithm 
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under the influence of quantum noise, and identified the key factors that affect the scalability 

and precision of the method. Their findings are significant to this research, as they provide 

insights into overcoming challenges with fidelity in the implementation of HHL on IBM Qiskit. 

Tsemo et al. [9] in 2024 introduced a modified version of the HHL algorithm known as 

Psi-HHL, designed to tackle the challenges posed by large condition numbers in linear systems. 

Their work showed that this improved algorithm works more efficiently on well-conditioned 

quantum systems, especially in situations where traditional HHL methods face difficulties. 

This research is relevant to the research’s focus on evaluating the efficiency of HHL for sparse 

matrices using Qiskit. 

Kumar et al. [10] explored the quantum resources necessary for implementing the HHL 

algorithm in a study published in 2024. Their research looked into the requirements for 

entanglement and coherence, offering suggestions for optimizing quantum resource utilization 

and overcoming practical limitations. This is closely aligned with the objectives of the research, 

which aims to assess the resources required to implement HHL effectively. 

Duan et al. [11] re-evaluated the performance of the HHL algorithm in the context of 

quantum machine learning. They proposed modifications to improve its efficiency under real-

world conditions, suggesting that while HHL shows promise, practical limitations must be 

addressed. This work supports the research’s goal of optimizing HHL for real-world 

applications. 

Qinghai et al. [12], explored the use of the HHL algorithm in solving linear systems in 

finance, particularly for portfolio optimization. Their work demonstrated the potential of HHL 

to solve complex financial equations efficiently. This highlights the versatility of the algorithm 

and its relevance to the research, which aims to explore its use in diverse real-world scenarios. 

Xiaonan et al. [13] conducted a thorough review of the HHL algorithm’s 

implementation and effectiveness. They focused on emerging research directions and the 

advancements needed to overcome current hardware limitations. This aligns with the research’s 

focus on identifying challenges in scaling up HHL and implementing it on quantum platforms 

like IBM Qiskit. 

Angara et al. [14] proposed a hybrid quantum-classical approach for the 

implementation of the HHL algorithm on NISQ devices. Their study showed promising results 
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when using small-scale systems, bridging the gap between theoretical research and practical 

hardware constraints. This is directly relevant to the research’s goal of evaluating HHL’s 

performance on existing quantum hardware. 

Zhang et al [15] demonstrated a improved circuit implementation of the HHL algorithm 

and its simulations on QISKIT for 2x2 and 4x4 matrix linear system and showed that the 

improved circuit implementation of the HHL algorithm can effectively reduce quantum 

resources without losing the fidelity of the results.  

In summary, while the HHL algorithm holds significant promise for solving large-scale 

linear systems, its practical implementation is currently limited by quantum hardware and 

software challenges. As quantum technology advances, particularly with improvements in 

qubit coherence and gate fidelity, the HHL algorithm may become a more viable option for 

solving complex linear systems in scientific and engineering applications.    

 Proposed Work 

The Harrow-Hassidim-Lloyd (HHL) algorithm is a quantum algorithm designed to 

solve systems of linear equations, offering exponential speedup over classical algorithms under 

specific conditions. The classical problem can be expressed as 𝐴𝑥⃗  = 𝑏⃗  where A is a 𝑁 × 𝑁 

matrix, 𝑥⃗  is the vector of unknowns, and 𝑏⃗  is the known vector of constants. In quantum 

computing, the equivalent formulation is 𝐴 ∣ 𝑥⃗⟩ =∣ 𝑏⃗⟩, ∣ x⟩ and ∣ b⟩, are quantum states 

corresponding to the vectors 𝑥⃗ and b , respectively. 

 The HHL algorithm consists of the following key steps:  

A. Quantum Phase Estimation 

 At the heart of the HHL algorithm is quantum phase estimation (QPE), a procedure 

that estimates the eigenvalues of a unitary operator. Given a matrix A, quantum phase 

estimation decomposes it into its eigenvalues 𝜆𝑖 and eigen vectors ∣ 𝑢𝑖⟩ such that 𝐴 ∣ 𝑢𝑖⟩ = 𝜆𝑖 ∣ 

𝑢𝑖⟩. This decomposition is crucial for efficiently solving the linear system since quantum 

computers can process all eigenvalues and eigenvectors in superposition. The output of the 

QPE step is a quantum state encoding the eigenvalues of Ā, which are stored in an ancillary 

qubit register. 
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B. Controlled Rotation  

Once the eigenvalues are extracted, a controlled rotation is applied based on these 

values. The goal of this step is to invert the eigenvalues to compute A−1 . However, a direct 

inversion would cause issues if any eigenvalues are close to zero. Therefore, controlled 

rotations are performed on the ancillary qubits to approximate 
1 

𝜆𝑖
, thus allowing the system to 

invert 𝐴. This step encodes the solution to the system of equations into the quantum state. 

C. Inverse Quantum Phase Estimation 

 After the controlled rotation, inverse quantum phase estimation is applied to return the 

system to its original basis, yielding a quantum state ∣x⟩, which is the solution to the linear 

system. The quantum state now represents the vector 𝑥⃗ such that 𝐴𝑥⃗  = 𝑏⃗ . This state can be 

measured to obtain an approximation of the solution. 

D. Conditions for Optimal Performance 

 For the HHL algorithm to achieve its theoretical exponential speedup, the matrix 𝐴 

must satisfy specific conditions. First, 𝐴 must be Hermitian, i.e., A=A†, where A† is the 

conjugate transpose of 𝐴 [4]. Non-Hermitian matrices can be transformed into Hermitian ones 

by augmenting the matrix with an ancillary system, but this increases the overall computational 

complexity. Moreover, the matrix should have a well-conditioned spectrum, meaning that the 

ratio of the largest to smallest eigenvalue should not be too large. Poorly conditioned matrices 

introduce significant errors during phase estimation, leading to degraded accuracy in the final 

solution. 

Lastly, sparsity is yet another crucial element. Because the technique simplifies 

quantum operations, it is especially effective when A is sparse. Dense matrices increase the 

probability of mistakes due to noise on quantum hardware since the method needs more 

quantum gates [5]. 

 Results and Discussion 

This section presents the results obtained from running the HHL algorithm, followed 

by an analysis of how well the quantum solution approximates the exact classical solution. 
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A. Exact versus Experimental Solution  

   The system of linear equations 𝐴x  = 𝑏⃗  solved using both classical and quantum 

methods. The classical solution was calculated using conventional numerical methods, 

providing the following exact solution: 

                            Exact Solution = [
4

−1
] 

   The quantum solution obtained from the HHL algorithm, after running the quantum 

circuit and applying post-selection, was: 

                             Experimental solution=[
3.99999935 −  1.59 ×  10 − 14j

−1.00000261 +  5.38 ×  10 − 15j
] 

   The error between the classical and quantum solutions was computed to be:  

                              𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∶ 2.69 × 10−6  

   This minimal error demonstrates that the HHL algorithm successfully approximated 

the solution with high accuracy. 

B. State vector Real Amplitude Visualization 

 To further analyze the quantum state, the study visualized the real part of the state 

vector after the HHL algorithm was applied. Figure 1 shows the bar chart of the real amplitudes 

of the quantum state components, illustrating the superposition of states generated by the 

algorithm 

 

Figure 1. Real Amplitude of Quantum State after HHL Algorithm 
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This visualization highlights the contribution of each quantum state to the final solution. 

The dominant amplitudes correspond to the quantum state components that contribute most to 

the solution, confirming that the algorithm has encoded the correct solution vector.  

C. Measurement Results and Histogram  

After applying the HHL algorithm, the quantum state was measured using the QASM 

simulator, which simulates quantum measurements with a large number of shots. The 

measurement results were aggregated into a histogram, shown in Figure 2, representing the 

frequency of each quantum state after measurement  

 

Figure 2. Histogram of Measurement Results 

The histogram demonstrates the likelihood of different quantum states being observed, 

indicating the probabilities of specific outcomes in the quantum circuit. The majority of 

measurements correspond to the correct quantum states, reinforcing the fidelity of the HHL 

algorithm in solving the linear system.  

The HHL algorithm has been implemented using the IBM Qiskit framework to solve 

both 2 × 2 and 4 × 4 systems of linear equations. In this section, we analyze the performance 

of the algorithm on these systems, evaluating key metrics such as fidelity, computational 

efficiency, and the algorithm’s robustness on current quantum hardware. 
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D. 2 × 2 Matrix Case Study  

The 2 × 2 system chosen for simulation is simple and well-conditioned, allowing the 

HHL algorithm to achieve near-ideal results. The matrix 𝐴 and vector 𝑏⃗  for this case are as 

follows: 

A =[
1 0.5

0.5 1
], 𝑏⃗  = [

1
1
] 

This system was solved on the IBM Qiskit state vector simulator, a quantum simulator 

designed to run quantum circuits in a noise-free environment, allowing us to focus solely on 

the algorithm's performance. Figure 1 presents the quantum circuit generated for this 

implementation, which utilizes quantum phase estimation and controlled rotation to compute 

the solution. 

 The classical solution to this system, obtained using conventional numerical methods, 

is: 

𝑥⃗ classical = [
0.7866
0.6175

] 

The quantum solution generated using the HHL algorithm on Qiskit is 

𝑥⃗ quantum =[
0.7866
0.6175

] 

 The fidelity, a measure of how closely the quantum solution matches the classical 

solution, was computed using the inner product of the normalized quantum and classical states. 

For this 2 × 2matrix, the fidelity was approximately 0.9999, indicating near-perfect accuracy 

in solving the system. The runtime for this implementation was minimal, demonstrating that 

the HHL algorithm is well-suited to small, well-conditioned systems of linear equations on 

quantum simulators [1], [4]. 

The high fidelity achieved in the 2 × 2 case highlights the potential of the HHL 

algorithm to deliver accurate solutions when the matrix is small, sparse, and well-conditioned. 

However, this result was obtained on a simulator free from the noise and errors inherent in real 

quantum hardware. Thus, while the result is promising, the performance may differ when the 

same experiment is run on actual quantum devices. 
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E. 4 × 4 Matrix Case Study  

Next, the study applied the HHL algorithm to a more complex 4 × 4 system to evaluate 

its scalability and performance on larger matrices. The matrix 𝐴 and vector 𝑏⃗  for this case are: 

𝐴 =[

2 0 0 1
1 1 0 0
0 0 3 0
1 0 0 2

], 𝑏⃗  = [

1
0
0
1

] 

This system was solved using the same Qiskit simulator with the HHL algorithm. The 

classical solution for this system was computed as: 

𝑥⃗ classical = [

0.3333
−0.3333

0
0.3333

] 

The quantum solution produced by the HHL algorithm for this 4x4 matrix was:  

𝑥⃗ quantum = [

0.349
−0.088

0
0.306

] 

The fidelity for this system was calculated to be approximately 0.823, significantly 

lower than in the 2 × 2 case. The reduction in fidelity is largely due to the increased size of the 

matrix and the challenges of simulating larger quantum circuits. As more qubits and gates are 

used, the likelihood of errors increases, even in simulated environments [4], [5].  

The lower fidelity in the 4 × 4 case demonstrates the challenges of scaling the HHL 

algorithm to larger matrices. While the algorithm still provides an approximation of the 

solution, the accuracy diminishes as matrix size grows. This issue is further compounded in 

real quantum devices, where noise and qubit decoherence can drastically affect performance. 

These results suggest that while the HHL algorithm performs well on small systems, its 

scalability remains limited by current hardware and algorithmic constraints. 

 Conclusion 

Using the concepts of quantum computing, the Harrow-Hassidim-Lloyd (HHL) 

algorithm offers a novel method for solving systems of linear equations with the potential for 
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exponential speedups over traditional algorithms. The HHL algorithm's theoretical framework, 

IBM Qiskit implementation, and performance on small-scale linear systems have all been 

examined in this work. The findings show that although the HHL algorithm works very well 

for small, well-conditioned matrices, the present limits of quantum hardware and the inherent 

noise in quantum calculations make it difficult to scale. As shown in the analysis, the HHL 

algorithm achieved high fidelity in solving a 2x2 system but faced difficulties when applied to 

a larger 4x4 system, where the fidelity dropped significantly. This highlights the need for 

ongoing research to enhance the robustness of quantum algorithms, particularly in dealing with 

larger and more complex matrices. The potential applications of the HHL algorithm span 

various fields, including quantum machine learning, financial modeling, and quantum 

chemistry, making it a topic of substantial interest for researchers and practitioners alike. The 

HHL method represents a promising frontier in quantum computing, despite its present 

drawbacks. Unlocking the full potential of the HHL algorithm for real-world applications 

requires ongoing developments in quantum hardware, error correction methods, and 

algorithmic improvements. For quantum algorithms to become a usual computational tool, 

future studies should concentrate on experimental implementations on actual quantum devices, 

tackling both hardware and software issues. 
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