Journal of Electronics and Informatics (ISSN: 2582-3825) Gotrony
www.irojournals.com/iroei/ @

Elvis: A Highly Scalable Virtual

Internet Simulator

Dheeraj Kumar Boddu

Department of Computer Science, University of Maryland, Baltimore County, USA

E-mail: dc32292@umbc.edu
Abstract

Elvis is a highly scalable virtual Internet simulator that can simulate up to a hundred
thousand networked machines communicating over TCP/IP on a single off-the-shelf desktop
computer. This research describes the construction of Elvis in Rust, a new memory-safe
systems programming language, and the design patterns that enabled us to reach scalability
targets. Traffic in the simulation is generated from models based on user behavior research and
profiling of large web servers. Additionally, a Network Description Language (NDL) was
designed to describe large Internet simulations.

Keywords: Network Simulation, Rust Programming, Large-Scale Internet Simulation,
TCP/IP, Scalable Networking.

1. Introduction

Elvis is a highly scalable simulation of a virtual Internet. It runs cross-platform on
Linux, Mac, and Windows computers and is shown to accommodate simulations of more than
twenty thousand machines sending and receiving TCP and UDP traffic on a standard, off-the-
shelf Linux workstation. Elvis is intended as a research tool, both for developing new
networking protocols and for evaluating those protocols in a large network. It is also intended
as a pedagogical tool for students to explore networking scenarios that are infeasible to realize
without simulation, such as Distributed Denial of Service (DDOS) attacks.

Elvis is written in Rust[1], a memory-safe systems programming language. Elvis was

used to explore how Rust can simplify the development of systems software. The software

Journal of Electronics and Informatics, December 2024, Volume 6, Issue 4, Pages 357-374 357
DOI: https://doi.org/10.36548/jei.2024.4.006

Received: 26.12.2024, received in revised form: 22.01.2025, accepted: 01.02.2025, published: 13.02.2025
© 2024 Inventive Research Organization. This is an open access article under the Creative Commons Attribution-NonCommercial International (CC BY-NC 4.0) License

Elvis: A Highly Scalable Virtual Internet Simulator

frameworks and design patterns required to construct very large-scale simulations are also
explored. Some key design choices rely on language constructs for protocol stack isolation
rather than OS-level virtualization, true zero copy of memory data throughout the simulation,
as well as predicating concurrency on lightweight user-level coroutines rather than kernel
threads. A Network Description Language was also developed to specify very large

simulations.

2. Related Work

The x-Kernel was an early approach to network simulation[8]. The x-Kernel
architecture exemplified a highly modular approach to implementing networking protocols in
operating systems. Later work extended this into running the x-Kernel as a simulation.
However, the goal was more focused on simulations to test protocol implementations rather

than large-scale simulations of the Internet.

Many commercial programs exist that allow users to construct simulated networks and
learn how to configure network devices from different manufacturers. For example, the Cisco
Packet Tracer provides a drag-and-drop interface to create networks of Cisco-specific devices

[3]. Simulation sizes are typically small, in the order of tens of machines.

A common approach to researching internet simulators is to use OS mechanisms to
isolate network stacks. For example, the Common Open Research Emulator (CORE)[4] uses
Free BSD OS support to virtualize the kernel network structures that run on separate virtualized

jails. CORE reaches scales of a hundred virtual machines on one desktop computer.

A further example is the SEED Internet Emulator [5], a Python library that implements
autonomous systems and routers, including protocols like BGP. The system is geared toward
cybersecurity pedagogy and allows users to set up a virtual Internet that can be used to emulate
scenarios like BGP poisoning or blockchain attacks. SEED is based on Docker [2] containers

to provide isolation between machines in the simulation.

Elvis differs from previous work in that high scalability is a primary goal of the
simulation. In one experiment wherein many machines send a single UDP message to a single
receiver, scaling was achieved up to more than 100,000 machines. In a separate experiment
where all machines in the simulation continuously and concurrently send and receive data,

scaling reached 20,000 machines in a single simulation before memory limits were

ISSN: 2582-3825 358

Dheeraj Kumar Boddu

encountered. Elvis also provides ground-up, parallelizable constructions of key protocols,
including TCP/IP, DNS, and DHCP. Rather than rely on existing OS implementations and
virtualization technologies for isolation between machines. Instead, Elvis runs entirely in user
space, vastly reducing both memory usage and overhead due to context switches. Concurrency

is achieved with the Tokio[6] lightweight coroutine library [9-11].

3. Rust

Rust is a general-purpose programming language that is focused on performance and
memory- safety. Unlike languages like Java or C# that maintain memory-safety with a garbage
collector, Rust maintains memory-safety by requiring that all references point to valid memory

through the use of the compiler.

Memory in Rust is reclaimed when owning variables goes out of scope. The potent
result of this is that a Rust program that compiles has a much lower risk of leaking memory
and is also guaranteed to never have a segmentation fault due to the invalid access of memory.

Without a garbage collector, Rust is also as fast as C or C++ [7].
3.1 Rust and Memory Safety

The Rust borrow checker tracks the lifetimes of pointers, making sure that all references
are valid and a heap allocation is not freed until all references are released. Only one variable
can “own” a pointer. Assigning the pointer to another variable transfers ownership of the
pointer, and the pointer can no longer be accessed with the original variable. This is
conceptually similar to C++’s unique per smart pointer, but Rust enforces this strictly at
compile time. Temporary references to a pointer may be passed to functions to use, but the
compiler ensures that the lifetimes of those references never exceed the lifetime of the owning
variable. When the owning variable goes out of scope, the memory that the pointer references
is freed.

In situations where it is critical for multiple references to exist for shared data, Rust
pro- vides reference-counted smart pointers R<T> (reference-counted pointers of type T). For
reference counted pointers that work across threads, Rust provides Arc<T> (atomically

reference counted pointers of type T). Elvis makes liberal use of these language features.

Journal of Electronics and Informatics, December 2024, Volume 6, Issue 4 359

Elvis: A Highly Scalable Virtual Internet Simulator

3.2 Unsafe Rust

Programmers can circumvent Rust’s memory-safety by marking a region of code
“unsafe”. This is usually needed when Rust calls into C-code, which is by nature unsafe. The
onus is on the programmer to make sure that memory safety is preserved in unsafe Rust code.

Elvis makes no use of unsafe Rust. Memory safety is maintained throughout the simulation.
3.3 Concurrency

Rust provides native support for concurrency through the thread:module. In Unix, this

is a wrapper on top of POSIX threads.

Instead, the implementation was based on the Tokio [6] library. Tokio provides users
with the ability for asynchronous programming using async/await functions. More important
to Elvis, Tokio allows user-level coroutines to be multiplexed on top of kernel threads.
Coroutine resource usage is significantly lower than threads that require both a user-level stack
as well as a kernel-level stack.

3.4 Trade Offs

The drawback to Rust is that the programming paradigm requires a much steeper
learning curve. Programmers new to Rust often report “fighting the borrow checker”. This
situation improves with experience but is certainly a real impediment. Based on experience,
students new to the Elvis research group typically spend one academic quarter simply
becoming comfortable with Rust.

4. Architecture
4.1 Elvis Core

The two main constructs in Elvis are machines and networks. Machines model some
device running an operating system, such as a computer or smartphone. Each machine is
modeled after the x-Kernel design. A machine is a container for a set of protocol objects which
interact with one another through an abstract interface. Some standard protocols that are
included in most machines are IPv4, UDP, and TCP. User applications such as client and server
programs are also modeled as protocols for uniformity. Each protocol can create sessions,

which are objects that represent a particular network connection. Sessions are created either

ISSN: 2582-3825 360

Dheeraj Kumar Boddu

when an upstream protocol makes an active one open to a remote host or when a packet comes
in for which there is no existing connection and an upstream protocol is listening, as in the case

of server programs. Sessions form a chain, with each contributing protocol providing a link.

For example, a user application may hold a TCP session which in turn holds an IPv4
session. Sessions take charge of sending packets by appending headers and forwarding the
packets to downstream sessions, while protocols receive incoming packets and decide which

session to demo each packet to based on network headers as shown in Figure.1.

e G e G
‘ /
Top Sesh op
‘ /
¥

y
=

Figure 1. Receive and Send Paths in x-Kernel Protocol Graph.

Machines are connected to networks, which are the conduit through which packet traffic
passes. Networks are designed to abstractly model a variety of real-world networking
technologies, such as Ethernet, Wi-Fi, and point-to-point communication. To simulate a variety
of underlying technologies, networks can be configured with different throughput, latency,
packet loss, and packet corruption characteristics. In this way, Elvis models are networking
down to the data link layer. In keeping with the focus on large-scale simulation, the details of
any particular physical networking protocol were omitted for the sake of performance and
uniformity. Instead, an Elvis network provides functionality that is common to most data link
protocols, such as unicast, multicast, broadcast, and standard frame header information such as
MAC addresses.

In order to make networking as efficient as possible, these simulation uses a bespoke
message data structure that allows the addition and removal of headers, slicing, and sharing
without copying or moving bytes. This helps us avoid serialization and deserialization of
network traffic for efficiency gains. All of these protocols are written from scratch to take

advantage of this data structure. For example, where most TCP implementations expect flat

Journal of Electronics and Informatics, December 2024, Volume 6, Issue 4 361

Elvis: A Highly Scalable Virtual Internet Simulator

byte arrays for input and copy segment text into ring buffers, this implementation uses zero-
copy concatenation of messages and accesses bytes through an iterator interface to circumvent
the need for serialization.

With this model, machines are isolated from one another without heavy-duty
mechanisms such as containers. Instead, asynchronous functions were used to deliver packets
over networks and avoid context switches. Because of Rust’s guarantees, users need not worry
that unsafe memory accesses will break isolation such that a malfunction in one machine can

affect another.
4.2 Network Description Language

Previously, simulations in Elvis required a great deal of manual setup using Rust. The
solution to this was a Network Description Language (NDL) to allow not only easier setup but

also for the possibility of large-scale simulations.

Using Rust to define these simulations would cause core problems for users for two
main reasons. First, not all end users will be fluent in Rust, and due to the intricacies of how
simulations must be defined, this is a major limiting factor. A user would have to manually
define each part of the simulation in Rust and be familiar with each part of Elvis to do so.
Second, large-scale simulations would not be possible to define, but tremendously difficult and
time-consuming. Each machine and application written out and defined in Rust would mean
some of the larger-scale simulations would need hundreds if not thousands of lines of code just
to be run. NDL simplifies the process of programming by enabling the creation of easily
definable and reproducible sections. This, in turn, facilitates the rapid development of large-
scale simulations. Typical NDLs use a variety of different languages to define their protocols.
Some choices initially considered were XML and JSON, however, given the idea of protocols
being contained within parts of the simulations, a language was created using tabbed blocks.
This allows nesting of sub-protocols and definitions within other sections and allows for

repeatability of these sections.

To define a simulation, two core components are required: a set of Networks and a set
of Machines. Within those, there can be as many Network and Machine sections as needed.
Each Network can currently contain either statically defined single IPs or a range of IPs. As
many single IPs or a range of IPs may be defined in the Network sections. Following that
pattern, a machine will have a similar structure. Each machine must contain Protocols,

ISSN: 2582-3825 362

Dheeraj Kumar Boddu

Applications, and Networks. These three components help clearly define the location and
function that the Machine will serve. Protocols such as UDP or TCP may be used, a set of
Applications such as sending or receiving messages may be used, and finally, a set of Networks
the machine is on must be defined. See Figure 2 for an example of the NDL. Each of those
sections is defined using a tabbed structure. A core declaration will be tabbed zero times, a sub
declaration will be tabbed one time, and so on. For example, a Networks section will be at zero
tabs, a Network defined in that section will be at one tab, and each IP definition for that

Network will be tabbed twice.

[Networks]
[Network id='3']
[IP ip='123.45.67.89']
[Machines]
[Machine name='sender']
[Networks]
[Network id='3']
[Protocols]
[Protocol name='IPv4']
[Protocol name='UDP']
[Applications]
[Application name='send_message' message='Hello!'
to='capturer' port='Oxbeef']
[Machine name='capturer']
[Networks]
[Network id='3']
[Protocols]
[Protocol name='IPv4']
[Protocol name='UDP']
[Applications]
[Application name='capture' message='Hello!'
ip='123.45.67.89' port='0Oxbeef' message_count='1"']

Figure 2. Basic Example Simulation.

Arguments for subsections can be defined freely. Other than the core needs of a specific
application or protocol, such as the name of the protocol or the IP range of a network, users
can define any such argument needed, and it will be read. This argument then gets stored with
the rest of the arguments, core or otherwise, and can be accessed in the generator code. Users
have no extra steps in defining new applications or protocols for use other than adding checks
for those new applications or arguments and then accessing and using them. Putting all of those

sections together results in a complete language for defining in-depth simulations for Elvis.
4.3 Socket API

One of the goals in designing Elvis was retaining the ability to easily port existing
applications into the simulation. In order to achieve this, In order to achieve this, a socket API

Journal of Electronics and Informatics, December 2024, Volume 6, Issue 4 363

Elvis: A Highly Scalable Virtual Internet Simulator

was needed which closely mimicked UNIX sockets, with the functionality of creating sockets,
using sockets to connect to a server machine or listen and accept incoming client connections,
as well as sending and receiving messages over the network. A challenge in doing this is the
fact that the machines in Elvis operate using an x-Kernel style protocol stack, which is
incompatible with writing UNIX-style applications. The Elvis socket API serves as an interface
between the two. A second drawback is that UNIX-style sockets have undesirable aspects to
their implementation, such as pointer casting. Elvis presents a modernized implementation

while retaining all the functionality needed.

The resulting socket API is familiar and easy to use for anyone who has experience
writing server-client applications using UNIX sockets, with the only noticeable differences
being syntactical ones and the fact that applications utilizing it are written in Rust instead of C.
This allows for convenient conversion and porting of existing UNIX server-client applications
into Elvis applications. Note that it is not the goal of Elvis to support full OS-level functionality
in the simulation. Elvis applications are limited to using the Elvis Socket API to create network

connections and send/receive data.
4.4 Web Traffic

In order to create realistic simulations of the Internet within Elvis, realistic traffic was
required. One primary category of traffic is web traffic between clients and servers. To do this,
first step is to characterize servers on the internet. That means gathering data from top servers
on the size, number of links, number of images, and the size of images for each page on a web
server. The distribution of that data was then used to model the distribution of web pages on
that type of website. Simulated web servers will generate html pages for “users” to browse

based on the distribution of size, number of links, and images sizes for that category of website.

A web scraper was created in Rust that recursively traverses a website and outputs the
links and images on each page as well as the size. yahoo.com was chosen for testing this scraper
since it is a large site and most of the links on Yahoo lead to other pages on the site. Over

200,000 pages were scraped.

When analyzed, each attribute measured revealed specific trends and patterns, the
majority of pages tended to fall within a narrow range of values, with the rest fairly scattered
and without a clear distribution. This made it difficult to find a simple mathematical model of
the distribution. Instead, a program was created that went through the data for each page

ISSN: 2582-3825 364

Dheeraj Kumar Boddu

characteristic (size, number of links, etc.) and sorted it into buckets while keeping track of how
many pages fell into each bucket. This information was saved in a csv, which can then be
passed into the web server program to inform the characteristics of the html pages it generates
so the web server can mimic the servers from which data was gathered. Figure 3 depicts the

distribution of webpage sizes on yahoo.com.

Page Size

60000

50000

v 40000
o

f Pag

© 30000
-]

N

20000

10000 4

0 200 400 600 800 1000 1200 1400
Page Size (KB)

Figure 3. Distribution of Web Page Sizes on Yahoo.com

Further work led to the development of an application that mimics how users typically

be- have when browsing web pages.

5. Experimental Results
5.1 Scalability

To test Elvis’ scalability, a variety of simulations were run on two core simulation
types. The two types used were a low bandwidth high machine count simulation and a high
bandwidth lower machine count simulation. The low bandwidth focuses on a higher machine
count but does not keep the machines running concurrently, meaning the machines send
messages one at a time to keep the overall system load low and simulate an environment where
users could be connecting to a server and then disconnecting when they are done. The high
bandwidth focuses on keeping the machines concurrent, leading to a lower overall machine
count. This means that the machines are all trying to send their 1,000 messages at once to the

server. This better simulates a massive load on Elvis.

A robust testing system was needed to accomplish these simulations. A Bash script and
Python-based system were designed to run various simulations and tracks memory usage, CPU

usage, and execution times of the simulations. This data is then compiled into JSON for storage

Journal of Electronics and Informatics, December 2024, Volume 6, Issue 4 365

Elvis: A Highly Scalable Virtual Internet Simulator

which is then used to generate graphs automatically using Python’s Matplotlib. Additionally,
all the following tests were run on an Intel Core i15-8279U CPU, with 16 GB of RAM.

Low Bandwidth Simulations: The first set of simulations ran to test Elvis capabilities
with lots of machines all running at once. To do this, the simulations were designed to generate
a set amount of machines, all sending a message to a single machine. That machine is then
configured to receive the same amount of messages as the number of machines created. This

was tested on machine counts ranging from one thousand to one million.

Excecution Time Comparisons

ion Time in seconds

Average Execut
o
[
s

0.05

2000 4000 6000 8000 10000
Machine Counts

Figure 4. Execution Times of Low Bandwidth Simulation with Machine Counts from
1,000 to 10,000.

Memory Usage Comparisons

100 4

B0 1

60 1

Average Memory Usage in M

]

~
S

2000 4000 6000 8000 10000
Machine Counts

Figure 5. Memory Usage of low Bandwidth Simulation with Machine Counts from
1,000 to 10,000.

As seen in Figures 4 through 5, low bandwidth simulations with 1,000 to 10,000
machines start to develop a distinct pattern. As machine count increases, overall execution time

and memory usage increases linearly. Memory usage per machine in the simulation decreases

ISSN: 2582-3825 366

Dheeraj Kumar Boddu

as the simulation’s overhead is amortized over more machines. The average memory usage per

simulated machine is slightly above 16 KB.

High-Bandwidth Simulations: The next set of simulations ran to test Elvis's
capabilities with lots of machines all running at once; however, each machine now sends 1000
messages. This means that the total count of messages sent is machine count multiplied by
1000 and it also means that each machine lives for longer within the simulation. The goal with

this was to

Memory Usage Comparisons Per Machine

=
©
o

-
®
n

-
@™
o

-
=]
n

-
=
=}

=
o
wn

Average Memory Usage in KB Per Machine

o
=

2000 4000 6000 8000 10000
Machine Counts

Figure 6. Memory Usage Per Machine of High Bandwidth Simulation with Machine
Counts from 1,000 to 10,000.

Excecution Time Comparisons

25

20

15

10

Average Execution Time in seconds

0.0 0.2 0.4 0.6 0.8 1.0
Machine Counts le6

Figure 7. Execution times of High Bandwidth Simulation with Machine Counts from
1,000 to 1,000,000.

generate machines in such a way that for concurrent full usage of Elvis could be
identified, rather than just the single message per machine case. Figures 6 and 7 depicts the

memory usage and the execution times per machine of high bandwidth.

Journal of Electronics and Informatics, December 2024, Volume 6, Issue 4 367

Elvis: A Highly Scalable Virtual Internet Simulator

In Figures 8 and 14 the pattern differs from the low bandwidth tests. From 1,000 to
20,000 machines, it follows a similar linear pattern of growth. However, passing the 20,000-
machine mark, the system has reached the full usage of 16 GB of RAM. At that point Elvis
requires more physical memory than is available, resulting in continuous paging as the system
enters a thrashing state. Execution time becomes more static as the system can only handle so
much at once, along with memory usage, which stays pegged at 16 GB for the remaining
simulations. Interestingly, memory usage per machine starts to decrease rapidly at this point,
as they cannot use more than the 16 GB available, and the CPU begins paging. This is why
these simulations were only scaled up to 100,000 machines rather than 1,000,000. It is believed
that with more available memory, this simulation could easily be run, but it may require

upwards of 32 GB of memory.

Another factor to consider is the CPU usage of the simulations. Figure 8 shows that as
it reaches that memory limit of 16 GB, CPU usage skyrockets. This is due to the resulting
thrashing.

Memeory Usage Comparisons

16000

14000

12000

10000

8000

6000

4000

Average Memory Usage in MB

2000

0.0 0.2 0.4 0.6 0.8 10
Machine Counts le6

Figure 8. Memory Usage of Low Bandwidth Simulation with Machine Counts from
1,000 to 1,000,000.

ISSN: 2582-3825 368

Dheeraj Kumar Boddu

Memory Usage Comparisons Per Machine

-
©
=]

-
@
wn

-
@
=3

-
o
wn

,_.
~
=3

-
o
n

Average Memory Usage in KB Per Machine
=
o
=]

AL 1

T
0.0 0.2 0.4 0.6 0.8 1.0
Machine Counts le6

-
7]
n

Figure 9. Memory Usage Per Machine of High Bandwidth Simulation with Machine
Counts from 1,000 to 1,000,000.

Aside from that anomaly, it is important to note that the average CPU usage before the
spike settles around forty to forty-two percent for the high-bandwidth simulations. This does
not grow linearly alongside the machine counts but rather grows more in line with the
bandwidth the simulation uses. From the low-bandwidth to high-bandwidth simulations for
similar machine counts, the average usage grows from 25 percent to 42 percent, as found in the

high-bandwidth versions.
5.2 TCP Performance

On the test machine, data transfer over TCP achieves a rate of 1GB per 2.6 seconds on
a single thread, approximately three times faster than an ideal gigabit Internet connection.
Significant potential for performance improvement remains. Enabling multi-threading
currently reduces throughput by 33%, indicating that the existing parallelism approach
introduces unnecessary contention and leaves a great deal of performance on the table.
Profiling results show that only 30% of CPU time spent in Elvis code, with the other 70% being
shared between the Tokio async runtime and system calls. For future work, Future efforts will

focus on refactoring the

Journal of Electronics and Informatics, December 2024, Volume 6, Issue 4 369

Elvis: A Highly Scalable Virtual Internet Simulator

CPU Usage Comparisons on Intel(R) Core(TM) i5-8279U CPU @ 2-40GH

27
26

25

24

Average CPU Usage in Percentages

0.0 0.2 0.4 0.6 0.8 10
Machine Counts le6

Figure 10. CPU usage of Low Bandwidth Simulation with Machine Counts from
1,000 to 1,000,000.

Excecution Time Comparisons

100

80

60

Average Execution Time in seconds

0 20000 40000 60000 80000 100000
Machine Counts

Figure 11. Execution time of High Bandwidth Simulation with Machine Counts from
1,000 to 100,000

core simulation to maximize CPU utilization within Elvis and improve multi-core
efficiency. At the time of publication, An initial implementation of a custom task system
already achieves 170% of the throughput of the Tokio-based approach described in this study.

This demonstrates the potential for substantial gains in TCP throughput.
5.3 Socket API Performance

The performance impact of socket usage was evaluated by comparing simulations that
utilize the Socket API with those that do not. The runtimes of several simulations are shown in
Table 1.

ISSN: 2582-3825 370

Dheeraj Kumar Boddu

Table 1. Socket Performance

Basic |Ping Pong Server
No Sockets|0.063 1.55MS | 4.15MS
Sockets [0.094 2.30 5.00

The usage of sockets is expected to slow down simulations since there are several
blocking functions in the implementation, with accept() and rice() as the most notable. These
functions

Memory Usage Comparisons

Average Memory Usage in MB
®
=]
[=3
o

0 20000 40000 60000 80000 100000
Machine Counts

Figure 12. Memory usage of Low Bandwidth Simulation with Machine Counts from
1,000 to 100,000

Memory Usage Comparisons Per Machine

-
=1
-]

~
=1
=1

@
=]
=)

w
=]
=3

]
3

w
-1
-]

N
o
L

Average Memory Usage in KB Per Machine

o 20000 40000 60000 80000 100000
Machine Counts

Figure 13. Memory Usage Per Machine of High Bandwidth Simulation With
Machine Counts from 1,000 to 100,000

block when waiting for an incoming connection or when waiting for an incoming
message, respectively. The runtimes in the above table indicate that usage of the socket API
can cause as much as a 50% increase in runtime for simple simulations like Basic and Ping

Pong, and as much as a 20% increase for more complex simulations like Server Client. These

Journal of Electronics and Informatics, December 2024, Volume 6, Issue 4 371

Elvis: A Highly Scalable Virtual Internet Simulator

metrics indicate that performance is not optimal. Work is in progress to reduce Elvis’s Socket

overhead.

6. Limitations of the Approach

The original goal was 50,000 nodes in the simulation. While the low bandwidth test
demonstrated that double that amount could be achieved, the more realistic high bandwidth test
showed that memory limits were reached on a 16G workstation with 20,000 nodes. The
experiments nevertheless demonstrate the feasibility of large-scale simulations with memory-

safe language constructs that provide isolation between nodes.

While memory safety is enforced, the current approach lacks a mechanism to divide
resources between nodes, a capability present in more heavyweight, container-based solutions.
For example, assigning higher priority to specific nodes or tasks is not yet possible. Since
scalability is predicated on green-threaded cooperative co-routines, it is entirely possible that
one task may run for long periods, depriving other tasks of execution time.

CPU Usage Comparisons on Intel(R) Core(TM) i5-8279U CPU @ 2-40GH

£ & & 8 B

Average CPU Usage in Percentages

B
]

B
s

o 20000 40000 60000 80000 100000
Machine Counts

Figure 14. CPU usage of High Bandwidth Simulation with Machine Counts from
1,000 to 100,000

Ongoing research is focused on developing a custom co-routine runtime to address
these issues, as well as challenges related to TCP and socket performance.
7. Conclusion

Elvis is a highly scalable virtual Internet simulator developed in Rust, designed to
simulate large-scale network environments on commodity hardware. This study has

demonstrated that Elvis can support up to 100,000 simulated machines communicating over

ISSN: 2582-3825 372

Dheeraj Kumar Boddu

TCP/IP while maintaining efficiency through lightweight concurrency, zero-copy message
handling, and memory- safe design principles. Unlike traditional simulation approaches that
rely on OS-level virtualization, Elvis utilizes Rust’s built-in safety guarantees and Tokio’s
coroutine-based concurrency model to maximize performance and scalability. The introduction
of the Network Description Language (NDL) further enhances usability by allowing
researchers and educators to specify complex network topologies with ease. Experimental
results highlight Elvis’s ability to handle both high- and low-bandwidth simulations, revealing
that memory, rather than CPU, is the primary constraint in large-scale simulations. While the
system can process high volumes of UDP and TCP traffic, additional optimizations, such as
improved parallelism and resource allocation strategies, are necessary to enhance performance
further the study also identified challenges in integrating a socket API that balances ease of use
with execution efficiency, as similar trade-offs have been observed in other networking
emulators such as CORE and SEED. These insights open new directions for future work,
including extending protocol support to DNS, DHCP, ICMP, and web-based simulations that
emulate real-world Internet traffic patterns. Future enhancements to Elvis will focus on
increasing simulation fidelity, incorporating machine learning-based network behavior
modeling, and expanding support for distributed execution across multiple physical machines.
Previous research in network simulation scalability, such as the ns-3 simulator, has shown that
efficient resource management is essential for performance, which will be a key area of
improvement in Elvis. Furthermore, integrating Elvis with existing cybersecurity and network
analysis frameworks could significantly benefit researchers studying network resilience,
distributed denial- of-service (DDoS) attacks, and large-scale data transmission protocols.
Overall, Elvis provides a powerful foundation for scalable network research, enhancing

innovation in Internet simulation, protocol development, and network education.
References

[1] Steve Kalanick and Carol Nichols. The Rust Programming Language. No Starch Press,
2020.

[2] D.Merkel. “Docker: Lightweight Linux Containers for Consistent Development and De-
ployment”. In: Linux Journal 2014.239 (2014), 2.

[3] Tracer, Cisco Packet. "Cisco Packet Tracer." URL: http://www. cisco.

com/web/learning/netacad/coursecatalog/PacketTracer. html (2013).

Journal of Electronics and Informatics, December 2024, Volume 6, Issue 4 373

Elvis: A Highly Scalable Virtual Internet Simulator

[4] Ahrenholz, Jeff, Claudiu Danilov, Thomas R. Henderson, and Jae H. Kim. "CORE: A
real-time network emulator.” In MILCOM 2008-2008 IEEE Military Communications
Conference, IEEE, 2008. 1-7.

[5] Du, Wenliang, and Honghao Zeng. "The SEED internet emulator and its applications in
cybersecurity education.” arXiv preprint arXiv:2201.03135 (2022).

[6] Carl Lerche. Announcing Tokio 1.0. Retrieved December 11, 2022. 2022. URL.: https:
/ltokio.rs/blog/2020-12-tokio-1-0.

[7] Ivanov, Nikolay. "Is rust c++-fast? benchmarking system languages on everyday
routines.” arXiv preprint arXiv:2209.09127 (2022).

[8] Druschel, Peter, Mark B. Abbott, Michael A. Pagels, and Larry L. Peterson. "Network
subsystem design." IEEE network 7, no. 4 (1993): 8-17.

[9] Jakob Nielsen. How Long Do Users Stay on Web Pages? 2011. URL.: https://www.

nngroup.com/articles/how-long-do-users-stay-on-web-pages/.

[10] Riley, George F., and Thomas R. Henderson. "The ns-3 network simulator.” In Modeling
and tools for network simulation, pp. 15-34. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010.

[11] M. Fiedler, T. Hossfeld, and P. Tran-Gia. “A Generic Quantitative Relationship Between
Quality of Experience and Quality of Service”. In: IEEE Network24.2 (2010), 36— 41.

ISSN: 2582-3825 374

