
Journal of Electronics and Informatics (ISSN: 2582-3825)
www.irojournals.com/iroei/

Journal of Electronics and Informatics, December 2024, Volume 6, Issue 4, Pages 357-374 357
DOI: https://doi.org/10.36548/jei.2024.4.006

Received: 26.12.2024, received in revised form: 22.01.2025, accepted: 01.02.2025, published: 13.02.2025
© 2024 Inventive Research Organization. This is an open access article under the Creative Commons Attribution-NonCommercial International (CC BY-NC 4.0) License

Elvis: A Highly Scalable Virtual

Internet Simulator

Dheeraj Kumar Boddu

Department of Computer Science, University of Maryland, Baltimore County, USA

E-mail: dc32292@umbc.edu

Abstract

Elvis is a highly scalable virtual Internet simulator that can simulate up to a hundred

thousand networked machines communicating over TCP/IP on a single off-the-shelf desktop

computer. This research describes the construction of Elvis in Rust, a new memory-safe

systems programming language, and the design patterns that enabled us to reach scalability

targets. Traffic in the simulation is generated from models based on user behavior research and

profiling of large web servers. Additionally, a Network Description Language (NDL) was

designed to describe large Internet simulations.

Keywords: Network Simulation, Rust Programming, Large-Scale Internet Simulation,

TCP/IP, Scalable Networking.

 Introduction

Elvis is a highly scalable simulation of a virtual Internet. It runs cross-platform on

Linux, Mac, and Windows computers and is shown to accommodate simulations of more than

twenty thousand machines sending and receiving TCP and UDP traffic on a standard, off-the-

shelf Linux workstation. Elvis is intended as a research tool, both for developing new

networking protocols and for evaluating those protocols in a large network. It is also intended

as a pedagogical tool for students to explore networking scenarios that are infeasible to realize

without simulation, such as Distributed Denial of Service (DDOS) attacks.

Elvis is written in Rust[1], a memory-safe systems programming language. Elvis was

used to explore how Rust can simplify the development of systems software. The software

Elvis: A Highly Scalable Virtual Internet Simulator

ISSN: 2582-3825 358

frameworks and design patterns required to construct very large-scale simulations are also

explored. Some key design choices rely on language constructs for protocol stack isolation

rather than OS-level virtualization, true zero copy of memory data throughout the simulation,

as well as predicating concurrency on lightweight user-level coroutines rather than kernel

threads. A Network Description Language was also developed to specify very large

simulations.

 Related Work

The x-Kernel was an early approach to network simulation[8]. The x-Kernel

architecture exemplified a highly modular approach to implementing networking protocols in

operating systems. Later work extended this into running the x-Kernel as a simulation.

However, the goal was more focused on simulations to test protocol implementations rather

than large-scale simulations of the Internet.

Many commercial programs exist that allow users to construct simulated networks and

learn how to configure network devices from different manufacturers. For example, the Cisco

Packet Tracer provides a drag-and-drop interface to create networks of Cisco-specific devices

[3]. Simulation sizes are typically small, in the order of tens of machines.

A common approach to researching internet simulators is to use OS mechanisms to

isolate network stacks. For example, the Common Open Research Emulator (CORE)[4] uses

Free BSD OS support to virtualize the kernel network structures that run on separate virtualized

jails. CORE reaches scales of a hundred virtual machines on one desktop computer.

A further example is the SEED Internet Emulator [5], a Python library that implements

autonomous systems and routers, including protocols like BGP. The system is geared toward

cybersecurity pedagogy and allows users to set up a virtual Internet that can be used to emulate

scenarios like BGP poisoning or blockchain attacks. SEED is based on Docker [2] containers

to provide isolation between machines in the simulation.

Elvis differs from previous work in that high scalability is a primary goal of the

simulation. In one experiment wherein many machines send a single UDP message to a single

receiver, scaling was achieved up to more than 100,000 machines. In a separate experiment

where all machines in the simulation continuously and concurrently send and receive data,

scaling reached 20,000 machines in a single simulation before memory limits were

 Dheeraj Kumar Boddu

Journal of Electronics and Informatics, December 2024, Volume 6, Issue 4 359

encountered. Elvis also provides ground-up, parallelizable constructions of key protocols,

including TCP/IP, DNS, and DHCP. Rather than rely on existing OS implementations and

virtualization technologies for isolation between machines. Instead, Elvis runs entirely in user

space, vastly reducing both memory usage and overhead due to context switches. Concurrency

is achieved with the Tokio[6] lightweight coroutine library [9-11].

 Rust

Rust is a general-purpose programming language that is focused on performance and

memory- safety. Unlike languages like Java or C# that maintain memory-safety with a garbage

collector, Rust maintains memory-safety by requiring that all references point to valid memory

through the use of the compiler.

Memory in Rust is reclaimed when owning variables goes out of scope. The potent

result of this is that a Rust program that compiles has a much lower risk of leaking memory

and is also guaranteed to never have a segmentation fault due to the invalid access of memory.

Without a garbage collector, Rust is also as fast as C or C++ [7].

3.1 Rust and Memory Safety

The Rust borrow checker tracks the lifetimes of pointers, making sure that all references

are valid and a heap allocation is not freed until all references are released. Only one variable

can “own” a pointer. Assigning the pointer to another variable transfers ownership of the

pointer, and the pointer can no longer be accessed with the original variable. This is

conceptually similar to C++’s unique per smart pointer, but Rust enforces this strictly at

compile time. Temporary references to a pointer may be passed to functions to use, but the

compiler ensures that the lifetimes of those references never exceed the lifetime of the owning

variable. When the owning variable goes out of scope, the memory that the pointer references

is freed.

In situations where it is critical for multiple references to exist for shared data, Rust

pro- vides reference-counted smart pointers R<T> (reference-counted pointers of type T). For

reference counted pointers that work across threads, Rust provides Arc<T> (atomically

reference counted pointers of type T). Elvis makes liberal use of these language features.

Elvis: A Highly Scalable Virtual Internet Simulator

ISSN: 2582-3825 360

3.2 Unsafe Rust

Programmers can circumvent Rust’s memory-safety by marking a region of code

“unsafe”. This is usually needed when Rust calls into C-code, which is by nature unsafe. The

onus is on the programmer to make sure that memory safety is preserved in unsafe Rust code.

Elvis makes no use of unsafe Rust. Memory safety is maintained throughout the simulation.

3.3 Concurrency

Rust provides native support for concurrency through the thread:module. In Unix, this

is a wrapper on top of POSIX threads.

Instead, the implementation was based on the Tokio [6] library. Tokio provides users

with the ability for asynchronous programming using async/await functions. More important

to Elvis, Tokio allows user-level coroutines to be multiplexed on top of kernel threads.

Coroutine resource usage is significantly lower than threads that require both a user-level stack

as well as a kernel-level stack.

3.4 Trade Offs

The drawback to Rust is that the programming paradigm requires a much steeper

learning curve. Programmers new to Rust often report “fighting the borrow checker”. This

situation improves with experience but is certainly a real impediment. Based on experience,

students new to the Elvis research group typically spend one academic quarter simply

becoming comfortable with Rust.

 Architecture

4.1 Elvis Core

The two main constructs in Elvis are machines and networks. Machines model some

device running an operating system, such as a computer or smartphone. Each machine is

modeled after the x-Kernel design. A machine is a container for a set of protocol objects which

interact with one another through an abstract interface. Some standard protocols that are

included in most machines are IPv4, UDP, and TCP. User applications such as client and server

programs are also modeled as protocols for uniformity. Each protocol can create sessions,

which are objects that represent a particular network connection. Sessions are created either

 Dheeraj Kumar Boddu

Journal of Electronics and Informatics, December 2024, Volume 6, Issue 4 361

when an upstream protocol makes an active one open to a remote host or when a packet comes

in for which there is no existing connection and an upstream protocol is listening, as in the case

of server programs. Sessions form a chain, with each contributing protocol providing a link.

For example, a user application may hold a TCP session which in turn holds an IPv4

session. Sessions take charge of sending packets by appending headers and forwarding the

packets to downstream sessions, while protocols receive incoming packets and decide which

session to demo each packet to based on network headers as shown in Figure.1.

Figure 1. Receive and Send Paths in x-Kernel Protocol Graph.

Machines are connected to networks, which are the conduit through which packet traffic

passes. Networks are designed to abstractly model a variety of real-world networking

technologies, such as Ethernet, Wi-Fi, and point-to-point communication. To simulate a variety

of underlying technologies, networks can be configured with different throughput, latency,

packet loss, and packet corruption characteristics. In this way, Elvis models are networking

down to the data link layer. In keeping with the focus on large-scale simulation, the details of

any particular physical networking protocol were omitted for the sake of performance and

uniformity. Instead, an Elvis network provides functionality that is common to most data link

protocols, such as unicast, multicast, broadcast, and standard frame header information such as

MAC addresses.

In order to make networking as efficient as possible, these simulation uses a bespoke

message data structure that allows the addition and removal of headers, slicing, and sharing

without copying or moving bytes. This helps us avoid serialization and deserialization of

network traffic for efficiency gains. All of these protocols are written from scratch to take

advantage of this data structure. For example, where most TCP implementations expect flat

Elvis: A Highly Scalable Virtual Internet Simulator

ISSN: 2582-3825 362

byte arrays for input and copy segment text into ring buffers, this implementation uses zero-

copy concatenation of messages and accesses bytes through an iterator interface to circumvent

the need for serialization.

With this model, machines are isolated from one another without heavy-duty

mechanisms such as containers. Instead, asynchronous functions were used to deliver packets

over networks and avoid context switches. Because of Rust’s guarantees, users need not worry

that unsafe memory accesses will break isolation such that a malfunction in one machine can

affect another.

4.2 Network Description Language

Previously, simulations in Elvis required a great deal of manual setup using Rust. The

solution to this was a Network Description Language (NDL) to allow not only easier setup but

also for the possibility of large-scale simulations.

Using Rust to define these simulations would cause core problems for users for two

main reasons. First, not all end users will be fluent in Rust, and due to the intricacies of how

simulations must be defined, this is a major limiting factor. A user would have to manually

define each part of the simulation in Rust and be familiar with each part of Elvis to do so.

Second, large-scale simulations would not be possible to define, but tremendously difficult and

time-consuming. Each machine and application written out and defined in Rust would mean

some of the larger-scale simulations would need hundreds if not thousands of lines of code just

to be run. NDL simplifies the process of programming by enabling the creation of easily

definable and reproducible sections. This, in turn, facilitates the rapid development of large-

scale simulations. Typical NDLs use a variety of different languages to define their protocols.

Some choices initially considered were XML and JSON, however, given the idea of protocols

being contained within parts of the simulations, a language was created using tabbed blocks.

This allows nesting of sub-protocols and definitions within other sections and allows for

repeatability of these sections.

To define a simulation, two core components are required: a set of Networks and a set

of Machines. Within those, there can be as many Network and Machine sections as needed.

Each Network can currently contain either statically defined single IPs or a range of IPs. As

many single IPs or a range of IPs may be defined in the Network sections. Following that

pattern, a machine will have a similar structure. Each machine must contain Protocols,

 Dheeraj Kumar Boddu

Journal of Electronics and Informatics, December 2024, Volume 6, Issue 4 363

Applications, and Networks. These three components help clearly define the location and

function that the Machine will serve. Protocols such as UDP or TCP may be used, a set of

Applications such as sending or receiving messages may be used, and finally, a set of Networks

the machine is on must be defined. See Figure 2 for an example of the NDL. Each of those

sections is defined using a tabbed structure. A core declaration will be tabbed zero times, a sub

declaration will be tabbed one time, and so on. For example, a Networks section will be at zero

tabs, a Network defined in that section will be at one tab, and each IP definition for that

Network will be tabbed twice.

Figure 2. Basic Example Simulation.

Arguments for subsections can be defined freely. Other than the core needs of a specific

application or protocol, such as the name of the protocol or the IP range of a network, users

can define any such argument needed, and it will be read. This argument then gets stored with

the rest of the arguments, core or otherwise, and can be accessed in the generator code. Users

have no extra steps in defining new applications or protocols for use other than adding checks

for those new applications or arguments and then accessing and using them. Putting all of those

sections together results in a complete language for defining in-depth simulations for Elvis.

4.3 Socket API

One of the goals in designing Elvis was retaining the ability to easily port existing

applications into the simulation. In order to achieve this, In order to achieve this, a socket API

Elvis: A Highly Scalable Virtual Internet Simulator

ISSN: 2582-3825 364

was needed which closely mimicked UNIX sockets, with the functionality of creating sockets,

using sockets to connect to a server machine or listen and accept incoming client connections,

as well as sending and receiving messages over the network. A challenge in doing this is the

fact that the machines in Elvis operate using an x-Kernel style protocol stack, which is

incompatible with writing UNIX-style applications. The Elvis socket API serves as an interface

between the two. A second drawback is that UNIX-style sockets have undesirable aspects to

their implementation, such as pointer casting. Elvis presents a modernized implementation

while retaining all the functionality needed.

The resulting socket API is familiar and easy to use for anyone who has experience

writing server-client applications using UNIX sockets, with the only noticeable differences

being syntactical ones and the fact that applications utilizing it are written in Rust instead of C.

This allows for convenient conversion and porting of existing UNIX server-client applications

into Elvis applications. Note that it is not the goal of Elvis to support full OS-level functionality

in the simulation. Elvis applications are limited to using the Elvis Socket API to create network

connections and send/receive data.

4.4 Web Traffic

In order to create realistic simulations of the Internet within Elvis, realistic traffic was

required. One primary category of traffic is web traffic between clients and servers. To do this,

first step is to characterize servers on the internet. That means gathering data from top servers

on the size, number of links, number of images, and the size of images for each page on a web

server. The distribution of that data was then used to model the distribution of web pages on

that type of website. Simulated web servers will generate html pages for “users” to browse

based on the distribution of size, number of links, and images sizes for that category of website.

A web scraper was created in Rust that recursively traverses a website and outputs the

links and images on each page as well as the size. yahoo.com was chosen for testing this scraper

since it is a large site and most of the links on Yahoo lead to other pages on the site. Over

200,000 pages were scraped.

When analyzed, each attribute measured revealed specific trends and patterns, the

majority of pages tended to fall within a narrow range of values, with the rest fairly scattered

and without a clear distribution. This made it difficult to find a simple mathematical model of

the distribution. Instead, a program was created that went through the data for each page

 Dheeraj Kumar Boddu

Journal of Electronics and Informatics, December 2024, Volume 6, Issue 4 365

characteristic (size, number of links, etc.) and sorted it into buckets while keeping track of how

many pages fell into each bucket. This information was saved in a csv, which can then be

passed into the web server program to inform the characteristics of the html pages it generates

so the web server can mimic the servers from which data was gathered. Figure 3 depicts the

distribution of webpage sizes on yahoo.com.

Figure 3. Distribution of Web Page Sizes on Yahoo.com

Further work led to the development of an application that mimics how users typically

be- have when browsing web pages.

 Experimental Results

5.1 Scalability

To test Elvis’ scalability, a variety of simulations were run on two core simulation

types. The two types used were a low bandwidth high machine count simulation and a high

bandwidth lower machine count simulation. The low bandwidth focuses on a higher machine

count but does not keep the machines running concurrently, meaning the machines send

messages one at a time to keep the overall system load low and simulate an environment where

users could be connecting to a server and then disconnecting when they are done. The high

bandwidth focuses on keeping the machines concurrent, leading to a lower overall machine

count. This means that the machines are all trying to send their 1,000 messages at once to the

server. This better simulates a massive load on Elvis.

A robust testing system was needed to accomplish these simulations. A Bash script and

Python-based system were designed to run various simulations and tracks memory usage, CPU

usage, and execution times of the simulations. This data is then compiled into JSON for storage

Elvis: A Highly Scalable Virtual Internet Simulator

ISSN: 2582-3825 366

which is then used to generate graphs automatically using Python’s Matplotlib. Additionally,

all the following tests were run on an Intel Core i5-8279U CPU, with 16 GB of RAM.

Low Bandwidth Simulations: The first set of simulations ran to test Elvis capabilities

with lots of machines all running at once. To do this, the simulations were designed to generate

a set amount of machines, all sending a message to a single machine. That machine is then

configured to receive the same amount of messages as the number of machines created. This

was tested on machine counts ranging from one thousand to one million.

Figure 4. Execution Times of Low Bandwidth Simulation with Machine Counts from

1,000 to 10,000.

Figure 5. Memory Usage of low Bandwidth Simulation with Machine Counts from

1,000 to 10,000.

As seen in Figures 4 through 5, low bandwidth simulations with 1,000 to 10,000

machines start to develop a distinct pattern. As machine count increases, overall execution time

and memory usage increases linearly. Memory usage per machine in the simulation decreases

 Dheeraj Kumar Boddu

Journal of Electronics and Informatics, December 2024, Volume 6, Issue 4 367

as the simulation’s overhead is amortized over more machines. The average memory usage per

simulated machine is slightly above 16 KB.

High-Bandwidth Simulations: The next set of simulations ran to test Elvis's

capabilities with lots of machines all running at once; however, each machine now sends 1000

messages. This means that the total count of messages sent is machine count multiplied by

1000 and it also means that each machine lives for longer within the simulation. The goal with

this was to

Figure 6. Memory Usage Per Machine of High Bandwidth Simulation with Machine

Counts from 1,000 to 10,000.

Figure 7. Execution times of High Bandwidth Simulation with Machine Counts from

1,000 to 1,000,000.

generate machines in such a way that for concurrent full usage of Elvis could be

identified, rather than just the single message per machine case. Figures 6 and 7 depicts the

memory usage and the execution times per machine of high bandwidth.

Elvis: A Highly Scalable Virtual Internet Simulator

ISSN: 2582-3825 368

In Figures 8 and 14 the pattern differs from the low bandwidth tests. From 1,000 to

20,000 machines, it follows a similar linear pattern of growth. However, passing the 20,000-

machine mark, the system has reached the full usage of 16 GB of RAM. At that point Elvis

requires more physical memory than is available, resulting in continuous paging as the system

enters a thrashing state. Execution time becomes more static as the system can only handle so

much at once, along with memory usage, which stays pegged at 16 GB for the remaining

simulations. Interestingly, memory usage per machine starts to decrease rapidly at this point,

as they cannot use more than the 16 GB available, and the CPU begins paging. This is why

these simulations were only scaled up to 100,000 machines rather than 1,000,000. It is believed

that with more available memory, this simulation could easily be run, but it may require

upwards of 32 GB of memory.

Another factor to consider is the CPU usage of the simulations. Figure 8 shows that as

it reaches that memory limit of 16 GB, CPU usage skyrockets. This is due to the resulting

thrashing.

Figure 8. Memory Usage of Low Bandwidth Simulation with Machine Counts from

1,000 to 1,000,000.

 Dheeraj Kumar Boddu

Journal of Electronics and Informatics, December 2024, Volume 6, Issue 4 369

Figure 9. Memory Usage Per Machine of High Bandwidth Simulation with Machine

Counts from 1,000 to 1,000,000.

Aside from that anomaly, it is important to note that the average CPU usage before the

spike settles around forty to forty-two percent for the high-bandwidth simulations. This does

not grow linearly alongside the machine counts but rather grows more in line with the

bandwidth the simulation uses. From the low-bandwidth to high-bandwidth simulations for

similar machine counts, the average usage grows from 25 percent to 42 percent, as found in the

high-bandwidth versions.

5.2 TCP Performance

On the test machine, data transfer over TCP achieves a rate of 1GB per 2.6 seconds on

a single thread, approximately three times faster than an ideal gigabit Internet connection.

Significant potential for performance improvement remains. Enabling multi-threading

currently reduces throughput by 33%, indicating that the existing parallelism approach

introduces unnecessary contention and leaves a great deal of performance on the table.

Profiling results show that only 30% of CPU time spent in Elvis code, with the other 70% being

shared between the Tokio async runtime and system calls. For future work, Future efforts will

focus on refactoring the

Elvis: A Highly Scalable Virtual Internet Simulator

ISSN: 2582-3825 370

Figure 10. CPU usage of Low Bandwidth Simulation with Machine Counts from

1,000 to 1,000,000.

Figure 11. Execution time of High Bandwidth Simulation with Machine Counts from

1,000 to 100,000

core simulation to maximize CPU utilization within Elvis and improve multi-core

efficiency. At the time of publication, An initial implementation of a custom task system

already achieves 170% of the throughput of the Tokio-based approach described in this study.

This demonstrates the potential for substantial gains in TCP throughput.

5.3 Socket API Performance

The performance impact of socket usage was evaluated by comparing simulations that

utilize the Socket API with those that do not. The runtimes of several simulations are shown in

Table 1.

 Dheeraj Kumar Boddu

Journal of Electronics and Informatics, December 2024, Volume 6, Issue 4 371

Table 1. Socket Performance

 Basic Ping Pong Server

Client
No Sockets 0.063

MS

1.55 MS 4.15 MS

Sockets 0.094

MS

2.30

mms

5.00

mms

The usage of sockets is expected to slow down simulations since there are several

blocking functions in the implementation, with accept() and rice() as the most notable. These

functions

Figure 12. Memory usage of Low Bandwidth Simulation with Machine Counts from

1,000 to 100,000

Figure 13. Memory Usage Per Machine of High Bandwidth Simulation With

Machine Counts from 1,000 to 100,000

block when waiting for an incoming connection or when waiting for an incoming

message, respectively. The runtimes in the above table indicate that usage of the socket API

can cause as much as a 50% increase in runtime for simple simulations like Basic and Ping

Pong, and as much as a 20% increase for more complex simulations like Server Client. These

Elvis: A Highly Scalable Virtual Internet Simulator

ISSN: 2582-3825 372

metrics indicate that performance is not optimal. Work is in progress to reduce Elvis’s Socket

overhead.

 Limitations of the Approach

The original goal was 50,000 nodes in the simulation. While the low bandwidth test

demonstrated that double that amount could be achieved, the more realistic high bandwidth test

showed that memory limits were reached on a 16G workstation with 20,000 nodes. The

experiments nevertheless demonstrate the feasibility of large-scale simulations with memory-

safe language constructs that provide isolation between nodes.

While memory safety is enforced, the current approach lacks a mechanism to divide

resources between nodes, a capability present in more heavyweight, container-based solutions.

For example, assigning higher priority to specific nodes or tasks is not yet possible. Since

scalability is predicated on green-threaded cooperative co-routines, it is entirely possible that

one task may run for long periods, depriving other tasks of execution time.

Figure 14. CPU usage of High Bandwidth Simulation with Machine Counts from

1,000 to 100,000

Ongoing research is focused on developing a custom co-routine runtime to address

these issues, as well as challenges related to TCP and socket performance.

 Conclusion

Elvis is a highly scalable virtual Internet simulator developed in Rust, designed to

simulate large-scale network environments on commodity hardware. This study has

demonstrated that Elvis can support up to 100,000 simulated machines communicating over

 Dheeraj Kumar Boddu

Journal of Electronics and Informatics, December 2024, Volume 6, Issue 4 373

TCP/IP while maintaining efficiency through lightweight concurrency, zero-copy message

handling, and memory- safe design principles. Unlike traditional simulation approaches that

rely on OS-level virtualization, Elvis utilizes Rust’s built-in safety guarantees and Tokio’s

coroutine-based concurrency model to maximize performance and scalability. The introduction

of the Network Description Language (NDL) further enhances usability by allowing

researchers and educators to specify complex network topologies with ease. Experimental

results highlight Elvis’s ability to handle both high- and low-bandwidth simulations, revealing

that memory, rather than CPU, is the primary constraint in large-scale simulations. While the

system can process high volumes of UDP and TCP traffic, additional optimizations, such as

improved parallelism and resource allocation strategies, are necessary to enhance performance

further the study also identified challenges in integrating a socket API that balances ease of use

with execution efficiency, as similar trade-offs have been observed in other networking

emulators such as CORE and SEED. These insights open new directions for future work,

including extending protocol support to DNS, DHCP, ICMP, and web-based simulations that

emulate real-world Internet traffic patterns. Future enhancements to Elvis will focus on

increasing simulation fidelity, incorporating machine learning-based network behavior

modeling, and expanding support for distributed execution across multiple physical machines.

Previous research in network simulation scalability, such as the ns-3 simulator, has shown that

efficient resource management is essential for performance, which will be a key area of

improvement in Elvis. Furthermore, integrating Elvis with existing cybersecurity and network

analysis frameworks could significantly benefit researchers studying network resilience,

distributed denial- of-service (DDoS) attacks, and large-scale data transmission protocols.

Overall, Elvis provides a powerful foundation for scalable network research, enhancing

innovation in Internet simulation, protocol development, and network education.

References

[1] Steve Kalanick and Carol Nichols. The Rust Programming Language. No Starch Press,

2020.

[2] D. Merkel. “Docker: Lightweight Linux Containers for Consistent Development and De-

ployment”. In: Linux Journal 2014.239 (2014), 2.

[3] Tracer, Cisco Packet. "Cisco Packet Tracer." URL: http://www. cisco.

com/web/learning/netacad/coursecatalog/PacketTracer. html (2013).

Elvis: A Highly Scalable Virtual Internet Simulator

ISSN: 2582-3825 374

[4] Ahrenholz, Jeff, Claudiu Danilov, Thomas R. Henderson, and Jae H. Kim. "CORE: A

real-time network emulator." In MILCOM 2008-2008 IEEE Military Communications

Conference, IEEE, 2008. 1-7.

[5] Du, Wenliang, and Honghao Zeng. "The SEED internet emulator and its applications in

cybersecurity education." arXiv preprint arXiv:2201.03135 (2022).

[6] Carl Lerche. Announcing Tokio 1.0. Retrieved December 11, 2022. 2022. URL: https:

//tokio.rs/blog/2020-12-tokio-1-0.

[7] Ivanov, Nikolay. "Is rust c++-fast? benchmarking system languages on everyday

routines." arXiv preprint arXiv:2209.09127 (2022).

[8] Druschel, Peter, Mark B. Abbott, Michael A. Pagels, and Larry L. Peterson. "Network

subsystem design." IEEE network 7, no. 4 (1993): 8-17.

[9] Jakob Nielsen. How Long Do Users Stay on Web Pages? 2011. URL: https://www.

nngroup.com/articles/how-long-do-users-stay-on-web-pages/.

[10] Riley, George F., and Thomas R. Henderson. "The ns-3 network simulator." In Modeling

and tools for network simulation, pp. 15-34. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2010.

[11] M. Fiedler, T. Hossfeld, and P. Tran-Gia. “A Generic Quantitative Relationship Between

Quality of Experience and Quality of Service”. In: IEEE Network24.2 (2010), 36– 41.

