
Journal of Electronics and Informatics (ISSN: 2582-3825)
www.irojournals.com/iroei/

Journal of Electronics and Informatics, June 2025, Volume 7, Issue 2, Pages 95-111 95
DOI: https://doi.org/10.36548/jei.2025.2.002

Received: 03.04.2025, received in revised form: 27.04.2025, accepted: 11.05.2025, published: 20.05.2025
© 2025 Inventive Research Organization. This is an open access article under the Creative Commons Attribution-NonCommercial International (CC BY-NC 4.0) License

A Comparative Study on Hashing

Algorithms for Data Integrity and

Efficiency

Atshaya R.1, Bhavatharni J.2, Darshana S.B.3, Ismankhan Y.M.4

Computer Science and Engineering, Sri Ramakrishna Engineering College, Coimbatore, India

E-mail: 1atshaya.2201028@srec.ac.in, 2bhavatharni.2201030@srec.ac.in, 3darshana.2201033@srec.ac.in,
4ismankhan.ym@srec.ac.in

Abstract

In recent years, the widespread availability of image editing tools has led to the

proliferation of phony and manipulated photos on the Internet and social media. Various

techniques have been developed to detect image forgery and identify altered or fabricated

regions, with a growing emphasis on deep learning (DL) methods. This study explores recent

advances in DL-based forgery detection algorithms, focusing on the detection of copy-move

and splicing attacks two of the most common image tampering techniques. Additionally, the

challenges posed by DeepFake-generated content, which often mimics splicing manipulation,

are discussed. The study also compares hashing algorithms (SHA-256, CRC32, Random

Projection Hashing, and Count-Min Sketch) for use in data integrity, similarity searches, and

frequency estimation. Finally, recommendations for selecting suitable algorithms and hybrid

approaches are provided to enhance image authentication and large-scale data analysis.

Keywords: Image forgery detection, deep learning, copy-move attack, splicing attack, Deep

Fake detection, data integrity, hashing algorithms, SHA-256, CRC32, Random Projection

Hashing, Count-Min Sketch, similarity detection, streaming data analytics, probabilistic data

structures

 Introduction

Image comparison is a critical operation in applications such as digital forensics,

content authentication, and multimedia analysis. Verification of authenticity using image

similarity and forgery detection is essential. This article proposes a system developed using the

A Comparative Study on Hashing Algorithms for Data Integrity and Efficiency

ISSN: 2582-3825 96

Django framework based on hashing and pixel-wise comparison approaches to determine

image similarity and detect tampering. The system is modular, with components designed for

efficient processing, extensive analysis, and simple result presentation. Software such as

Photoshop, GIMP, and CorelDraw makes it difficult to identify a tampered image from an

original image. Most of the conventional image forgery detection methods are based on

manually extracted features. The disadvantage of these conventional methods is that most are

capable of detecting different types of tampering by searching for specific features in the image.

Nowadays, image forgery detection is performed using deep learning-based techniques. Thee

capability of these techniques to extract complex information from images has led to claims of

higher accuracy compared to conventional methods. In this work, we present a comprehensive

study and results of deep learning-based techniques for image forgery detection, along with

information about publicly available image forgery datasets.

 Related work

Image forgery detection has progressed from conventional statistical methods to

advanced deep learning architectures, overcoming issues presented by tampered digital

content. Initial attempts were based on detecting lighting inconsistencies [3] and chromatic

aberration [4], whereas signal-based methods like moment features with the Hilbert-Huang

Transform [5] and higher-order statistics [6] were used to unveil splicing. Natural image

models were utilized to detect spliced areas [7]. With the advent of deep learning, convolutional

neural networks (CNNs) took center stage, with models identifying copy-move forgeries [2],

and Busternet exhibiting source/target localization ability [8]. More recent research by Ali et

al. [1] introduced the use of recompression-based preprocessing to improve CNN performance.

Surveys by Zanardelli et al. [11], Singh and Kumar [12], Deb et al. [13], and Pham and Park

[15] thoroughly examine these trends, pointing out important challenges like generalization

across datasets, post-processing robustness, and explainability. Real-world implementations

such as Python- and OpenCV-based detection tools [9][10] and MD5 checksum verification

[9]. The use of deep learning for inpainting forgery [14] and the investigation of end-to-end

systems for hybrid manipulation detection highlight the current direction of research. Together,

the area is moving toward stronger, data-driven systems capable of identifying more

sophisticated forgeries in real-world applications.

 Atshaya R., Bhavatharni J., Darshana S.B., Ismankhan Y.M.

Journal of Electronics and Informatics, June 2025, Volume 7, Issue 2 97

Table 1. Comparison of Existing Methods

Sr. No. Author Method Used Forgery Type Model Accuracy

1. Ali S.S.[1] Recompression

and CNN

Copy move

and Image

splicing

CNN 67.71

61.31

61.83

62.23

2. Wu Y, Abd-

Almageed W,

Natarajan P

BusterNet

(pixel based)

Copy-move VGG16 76% -

80.49%

3. Shi, Y.Q., Chen,

C., Chen, W [7]

Moments of

characteristic

functions of

wavelet

subbands

Image

splicing

SVM

with

RBF

kernel

61.87%

4. Fu et al. [5] HHT and

Wavelet

Decomposition

Image

splicing

SVM 80.15%

5. Ng, T., Chang,

S., Sun, Q [6]

Bicoherence

features

Image

splicing

SVM 62-70%

Table 1 presents the accuracy of the method used, the forgery type, and the model

employed in the existing studies of different authors.

 Proposed Work

The Input Module is the basis of the image comparison pipeline by ensuring that the

input images supplied are in the correct format and conform to specific requirements prior to

being further processed. The module is tasked with accepting user-uploaded image files via a

web interface based on Django. The system will check the input against several parameters,

including file type, size, resolution, and color depth, in an effort to block incompatible or

corrupted images from being processed.

A Comparative Study on Hashing Algorithms for Data Integrity and Efficiency

ISSN: 2582-3825 98

Validation of files is performed through Django's built-in validators and custom logic

to verify the MIME type and file extensions (e.g., JPEG, PNG, BMP). In addition, the module

applies size restrictions to ensure efficiency and prevent performance bottlenecks during

comparison. Invalid files trigger informative error messages, guiding users to acceptable input

formats. This rigorous validation pipeline guarantees the integrity of the subsequent analysis

while offering a user-friendly interface. The Input Module is the central component of the

image comparison pipeline, responsible for ensuring that only valid and suitable image files

are passed to further processing. It accepts user-uploaded images through a Django-based web

interface with support for multiple formats, including JPEG, PNG, BMP, and TIFF.

Rigorous validation criteria are utilized to guarantee the integrity and compatibility of

the images. These include MIME type checks, file extension checks, resolution consistency

(e.g., a minimum of 512x512 pixels), and size restrictions to prevent performance bottlenecks

with extremely large files. In addition, the module ensures color depth consistency (e.g., 8-bit

or 16-bit per channel) to guarantee accuracy during comparison. Invalid files trigger descriptive

error messages, such as the reporting of unsupported formats or large files, thus guiding users

to correct errors. This rigorous validation pipeline ensures that all images processed are of

sufficient quality for meaningful comparison, providing a sound foundation for follow-up

analytical modules.

Figure 1. Work Flow

Fig.1 shows the workflow of the image forgery detection process. Two images are given

as input, which are processed by the OpenCV library. In the pixel comparison, if the pixels

vary, then hashing algorithms are applied. If the hash values differ, then the report is generated.

 Atshaya R., Bhavatharni J., Darshana S.B., Ismankhan Y.M.

Journal of Electronics and Informatics, June 2025, Volume 7, Issue 2 99

System Workflow

Step 1: Image Input

• The process begins with the uploading of two images that are to be compared for

similarity or forgeries.

Step 2: Similarity Check with OpenCV

• OpenCV is utilized to conduct an initial comparison. The process compares the visual

similarity between the two images, representing the probability of duplication or

manipulation.

Step 3: Duplicate Detection Conclusion

• Where the images are not visually identical, the process concludes with a report stating

that there is no duplication.

• If the images are visually similar, the system goes to a higher level of detailed analysis.

• Hashing-Based Verification: Both pictures are subjected to a hashing algorithm. The

algorithm calculates hash values from the pixel values of the images such that even a

minor change would be detected.

Step 4: Hash Comparison

The system compares the hash values of both images:

• If the hash values are identical, then it indicates that the images are most likely

duplicates or unaltered copies, and a positive report is generated.

Where the hash values differ, the images, although they appear the same, are

determined to be different, and a negative report is provided. Report Generation: Based on the

results of the analysis, the system generates a lengthy report stating whether the images are the

same or have been tampered with.

A Comparative Study on Hashing Algorithms for Data Integrity and Efficiency

ISSN: 2582-3825 100

3.1 SHA-256 (Secure Hash Algorithm 256-bit)

Cryptography is also crucial in other applications such as digital signatures and

blockchain technologies, including popular platforms like Bitcoin and Ethereum. It secures

integrity of data by authenticating hash values, thus guaranteeing that files have not been

tampered with while in storage or transit. It is also employed in password security through

password hashing and derivation functions, as well as in securing sensitive data. However, it

has its shortcomings, such as being computationally costly, which renders it slow in

comparison to simple hashing operations. This makes it less suited for real-time applications

with high-speed processing. Its deterministic nature also makes it unsuitable for approximate

nearest neighbor search, which is commonly used in machine learning and information retrieval

processes. When it comes to precision, cryptographic processes have been demonstrated to

possess accuracy levels of 0.4349, meaning that they are less effective for use in applications

where the detection of similarity or other high-precision activities is required. Such factors

should be thoughtfully considered when choosing cryptographic techniques for applications,

particularly where speed and precision are priorities. It is applied to secure data against

unauthorized access.

Figure 2. Confusion Matrix of SHA 256

Fig 2 shows the confusion matrix of the SHA 256 algorithm. It does a moderate job, as

it misclassifies many instances.

 Atshaya R., Bhavatharni J., Darshana S.B., Ismankhan Y.M.

Journal of Electronics and Informatics, June 2025, Volume 7, Issue 2 101

Figure 3. Dependency Graph

Fig 3 shows the dependency graph of the SHA 256 algorithm. The graph indicates that

the testing accuracy is lower than the training accuracy. this suggest that the model has low

accuracy and poor generalization, pointing to underfitting and weak features.

3.2 CRC32 (Cyclic Redundancy Check 32-bit)

CRC32, or Cyclic Redundancy Check 32, is a non-cryptographic hash function that

finds extensive applications in the detection of errors in networking and digital storage. It

operated by performing polynomial division on a stream of input data over a generator

polynomial. The function divides the the data stream by a pre-determined polynomial, and the

resultant remainder is the 32-bit hash, better known as the checksum. The checksum is

subsequently appended to the data so that the receiving side can verify itsintegrity by

performing the calculation again. A match with the computed checksum implies, that the data

was error-free during transmission.

CRC32 is used across a broad scope of applications. One of its most significant uses is

in communication networking, in protocols like TCP/IP, where it serves as a checksum to

detect errors in sent data packets. CRC32 is also used in file integrity checks, particularly in

common file formats like ZIP files, where it ensures that files are not corrupted during

compression or transfer. Most data transmission protocols also employ CRC32 to verify that

data packets are not altered or corrupted in transit, offering an extra layer of error detection.

While effective at finding random errors, CRC32 has its own limitations. It is not

cryptographically secure, making it reversible or spoofable by a malicious attacker. It is also

unsuitable for applications requiring high data security, such as password storage or data

A Comparative Study on Hashing Algorithms for Data Integrity and Efficiency

ISSN: 2582-3825 102

encryption. Additionally, CRC32 can be prone to collisions when used on large data sets,

allowing two inputs to produce the same checksum. This weakness restricts its use in

applications that demand high levels of uniqueness security.

In terms of its performance, CRC32 is reported to have an accuracy of 0.5034, which

is very good for verifying data integrity. However, this accuracy is not sufficient for

applications requiring resistance against data tampering by malicious intent or for high-security

applications. Therefore, although CRC32 is a useful tool for detecting unintended errors in

data, it should not be utilized as an alternative to cryptographic hash functions in applications

where data integrity and tamper resistance are crucial. Its use is best restricted to error detection

rather than security enforcement.

Figure 4. Confusion Matrix of CRC32

Fig 4 shows that the CRC32-based classifier performs slightly bit better than the SHA-

256-based one, especially in identifying positive cases (forged, if that's the class label 1), but

it still has moderate classification errors.

Figure 5. Dependency Graph

 Atshaya R., Bhavatharni J., Darshana S.B., Ismankhan Y.M.

Journal of Electronics and Informatics, June 2025, Volume 7, Issue 2 103

Fig 5 shows the dependency graph for CRC 32. It shows slight underfitting during

training but still generalizes better than SHA 256. However, the accuracy of CRC 32 is also

low.

3.3 Random Projection Hashing

Random Projection Hashing (RPH) is an LSH algorithm tailored to accommodate the

approximate nearest neighbor (ANN) search in high-dimensional spaces. The technique is very

effective under circumstances where the similarity location of points in vast data sets is of

utmost importance. The inherent process of RPH involves projecting high-dimensional points

into lower-dimensional subspaces through random hyperplanes. The data is separated by these

hyperplanes such that points similar to one another in the high-dimensional space will not

become too distant from one another in the mapped lower-dimensional space. Because of this

feature, RPH allows for very efficient computations by greatly lowering the complexity

requirement, thus serving asa fast solution to vast similarity searches.

RPH has extensive applications in various fields. In machine learning, it is essential in

recommendation systems, where it is utilized to identify items with similar user interactions or

interests. It is also used in text classification to classify similar documents or messages for

efficient classification. In image recognition, RPH is employed in feature matching and image

similarity detection, where it is utilized to quickly compare images for duplicate image

detection or content-based image retrieval. It is also a common approach for ANN searches,

offering an efficient, scalable solution for processing large data sets while preserving the

accuracy of similarity measures.

Although effective, RPH is not perfect. It excels in measuring similarity but not

uniqueness, such as cryptographic hashes. This renders it inappropriate for applications where

there is a requirement for robust data integrity and tamper-resistance. The performance of RPH

is also greatly affected by the number of random projections. Insufficient random projections

can lead to improper similarity measurement, while too many projections can have the side

effect of being computationally costly, negating its efficiency benefit.

As far as accuracy is concerned, RPH has been found to be 0.7877 accurate, which is

much higher than that of cryptographic hashes such as SHA-256 and non-cryptographic hashes

such as CRC32 for approximate data similarity matching. Such high accuracy renders RPH a

first choice for similarity search and clustering-oriented applications. Nevertheless, its non-

A Comparative Study on Hashing Algorithms for Data Integrity and Efficiency

ISSN: 2582-3825 104

determinism and dependence on randomness also imply that parameter tuning is necessary for

optimal performance in particular use cases. Overall, RPH is a good and efficient method for

approximate similarity detection in high-dimensional, large datasets.

Figure 6. Confusion Matrix of Random Projection Hashing

Fig 6 shows the confusion matrix of the random projection hashing. From the confusion

matrix, we interpret that the accuracy achieved is moderate.

Figure 7. Dependency Graph

Fig 7 shows the dependency graph of the random projection hashing algorithm. The

model does not overfit and generalizes consistently. It also suggests that the algorithm, as a

standalone feature might not perform well due to the achieved accuracy.

3.4 Count-Min Sketch

Count-Min Sketch (CMS) is a probabilistic data structure employed to estimate

frequency counts for large datasets efficiently particularly for streaming data analysis and real-

 Atshaya R., Bhavatharni J., Darshana S.B., Ismankhan Y.M.

Journal of Electronics and Informatics, June 2025, Volume 7, Issue 2 105

time processing. The largest benefit of CMS is that it can provide space-efficient

approximations without storing the entire dataset in memory. The CMS mechanism operates

by using a 2D array of hash functions to project the incoming data elements into frequency

counters in various hash tables. Rather than storing the exact count of each element, CMS

hashes the element into multiple locations, and the frequency estimate is taken as the minimum

value across all the hash tables. This results in frequency estimates that are conservatively

biased, making over estimation less likely to occur.

CMS is extensively utilized in various applications. In big data analytics, CMS is used

in databases to predict query frequencies and in traffic measurement to process large-scale data

streams without excessive memory usage. In network traffic monitoring, CMS assists in

detecting anomalies such as Denial-of-Service (DoS) attacks by identifying unusual frequency

patterns in packet streams. Furthermore, CMS is a standard tool in streaming data processing

platforms like Apache Kafka, where it facilitates real-time analytics by providing rapid,

approximate frequency insights into events without storing or reprocessing the entire datasets.

While it has its benefits, CMS also has some limitations. Since it provides coarse

frequency estimates, low-frequency items have a higher chance of errors, which may be

obscured by hash collisions with more frequent items. There is also a trade-off between

memory usage and estimation accuracy allocating more memory can enhance accuracy but at

the cost of increased resource consumption. Conversely, reducing memory consumption can

lead to less accurate frequency estimates.

In terms of accuracy, CMS is reported to have an accuracy of 0.8877, making it the

most space-efficient among the algorithms available for similarity detection and approximate

data analysis applications. With its high accuracy and space efficiency, CMS can be utilized in

scalable frequency estimation applications on big data. However, its approximate nature and

sensitivity to the quality of the hash function implementation expose it to careful parameter

tuning to achieve optimal performance in specific applications. Overall, CMS is a space-

efficient tool for real-time data analysis and streaming analytics, striking a balance between

memory efficiency and estimation accuracy to effectively process large data streams.

A Comparative Study on Hashing Algorithms for Data Integrity and Efficiency

ISSN: 2582-3825 106

Figure 8. Confusion Matrix of Count-Min Sketch

Fig 8 shows the confusion matrix of the Count-Min Sketch algorithm. It indicates the

Count-Min Sketch algorithm achieves the best accuracy when compared to the other hashing

algorithms.

Figure 9. Dependency Graph

Fig 9 shows the dependency graph of the Count-Min sketch algorithm. It indicates that

the model generalizes consistently and avoids overfitting.

 Results and Discussion

Simulation models are used extensively to test and verify the performance and accuracy

of image forgery detection systems. These models replicate real-world scenarios, allowing

controlled experimentation and testing without exposing the system to real-world deployment

threats. In this project, simulation models replicate various image forgeries such as splicing,

copy-move, and AI manipulations. Deterministic models, such as SHA-256 hash comparison,

always produce the same result from the same input and are thus best used to detect duplicate

 Atshaya R., Bhavatharni J., Darshana S.B., Ismankhan Y.M.

Journal of Electronics and Informatics, June 2025, Volume 7, Issue 2 107

images. Stochastic models are used to simulate uncertainties, such as image noise or

compression artifacts, that may affect the detection accuracy. Both static models (testing

individual image pairs) and dynamic models (testing real-time image streams) are employes to

assess system robustness under different conditions.

To create and execute these simulations, a range of simulation software tools is used.

Python, along with OpenCV, is the primary tool utilized for image processing, with

functionalities such as filtering, feature detection, and comparison. Django serves asthe web

framework for simulating user interactions, including image uploading and displaying results.

Hashlib is used for generating secure SHA-256 hashes, which provide the basis for the forgery

detection algorithm. More advanced tools like MATLAB can also be utilized for visual

simulations and detailed image analysis, while optional tools such as Binwalk and ExifTool

provide malware detection and metadata analysis for images. The performance of these

environments was tested on different parameters, including ease of use, speed, flexibility, and

visualization. Python using OpenCV worked very well in real-time image processing and was

highly flexible, while Django allowed easy interface for web-based simulation. Hashlib was

very fast and secure for hash operations but lacked any facility for visualization. MATLAB

was highly analytical and graphical in nature, making it suitable for complex image

simulations. Comparative evaluation indicated that the average time taken for image hashing

and detection was less than 2–3 seconds and that users greatly appreciated the interface for

navigation and output clarity. These simulation environments collectively ensured that the

system could detect doctored images in various sreal-world scenarios with high performance.

Table 2. Comparative Analysis

Algorithm Type Output

Size

Best Use Case Security

Level

Accuracy

SHA-256 Cryptographic

Hash

256-bit Digital Signatures,

Blockchain

Very

High

0.4349

CRC32 Error

Detection

32-bit Network

Communication,

File Integrity

Low 0.5034

Random

Projection

Hashing

Locality-

Sensitive

Variable Approximate

Nearest Neighbors

Medium 0.7877

Count-Min

Sketch

Frequency

Estimation

Variable Streaming Data,

Big Data Analytics

Low 0.8877

A Comparative Study on Hashing Algorithms for Data Integrity and Efficiency

ISSN: 2582-3825 108

Table 2 shows the accuracy comparison of SHA256, CRC32, Random projection

hashing, Count-Min Sketch hashing algorithms.

Table 3. Performance Metrics

Model Precision Recall F1-score

Count-Min sketch 0.38 0.06 0.11

CRC32 0.59 0.65 0.62

Random Projection Hashing 0.55 0.64 0.59

SHA 256 0.55 0.53 0.54

Table 3 shows the performance metrics comparison of SHA256, CRC32, Random

projection hashing, Count-Min Sketch hashing algorithms.

Figure 10. Prototype of the Webpage

Fig 10 shows the prototype of the webpage. It takes two images as input and generates

an originality report.

 Atshaya R., Bhavatharni J., Darshana S.B., Ismankhan Y.M.

Journal of Electronics and Informatics, June 2025, Volume 7, Issue 2 109

Figure 11. PDF Generation

Fig 11 shows the PDF generation by the website. It displays the detection time, results,

similarity score and the original and tampered images.

 Conclusion

This paper presents a comparative study of four widely used hashing algorithms SHA-

256, CRC32, Random Projection Hashing (RPH), and Count-Min Sketch (CMS) analyzing

their accuracy, use cases, and limitations. Each algorithm is designed with specific goals, such

as cryptographic security, error detection, similarity search, or frequency estimation. SHA-256

is ideal for high-security applications like password storage, digital signatures, and blockchain

due to its collision resistance, but it is computationally intensive. CRC32, though not secure,

is lightweight and effective for error detection in communication protocols and file integrity

checks. RPH, a locality-sensitive hashing method, excels in approximate similarity searches,

particularly in machine learning applications involving high-dimensional data. However, it

lacks collision resistance, limiting its accuracy. CMS is a probabilistic data structure suited for

estimating frequencies in large or streaming datasets, offering high efficiency with minimal

memory, though with approximations. The study concludes that the choice of hashing

algorithm should align with application needs, balancing accuracy, efficiency, and resource

use. Future research should explore hybrid hashing approaches that combine cryptographic

strength, similarity detection, and probabilistic estimation to address emerging challenges in

A Comparative Study on Hashing Algorithms for Data Integrity and Efficiency

ISSN: 2582-3825 110

big data analytics, IoT, and edge computing. Such integration could lead to more secure,

scalable, and accurate hashing techniques.

References

[1] Ali, Syed Sadaf, Iyyakutti Iyappan Ganapathi, Ngoc-Son Vu, Syed Danish Ali,

Neetesh Saxena, and Naoufel Werghi. "Image forgery detection using deep learning

by recompressing images." Electronics 11, no. 3 (2022): 403.

[2] Abdalla, Younis, M. Tariq Iqbal, and Mohamed Shehata. "Convolutional neural

network for copy-move forgery detection." Symmetry 11, no. 10 (2019): 1280.

[3] Johnson, Micah K., and Hany Farid. "Exposing digital forgeries by detecting

inconsistencies in lighting." In Proceedings of the 7th workshop on Multimedia and

security, pp. 1-10. 2005.

[4] Johnson, Micah K., and Hany Farid. "Exposing digital forgeries through chromatic

aberration." In Proceedings of the 8th workshop on Multimedia and security, pp. 48-

55. 2006.

[5] Li, Xuefang, Tao Jing, and Xinghua Li. "Image splicing detection based on moment

features and Hilbert-Huang Transform." In 2010 IEEE international conference on

information theory and information security, pp. 1127-1130. IEEE, 2010.

[6] Ng, Tian-Tsong, Shih-Fu Chang, and Qibin Sun. "Blind detection of photomontage

using higher order statistics." In 2004 IEEE International Symposium on Circuits and

Systems (ISCAS), vol. 5, pp. V-V. IEEE, 2004.

[7] Shi, Yun Q., Chunhua Chen, and Wen Chen. "A natural image model approach to

splicing detection." In Proceedings of the 9th workshop on Multimedia & security,

pp. 51-62. 2007.

[8] Wu, Yue, Wael Abd-Almageed, and Prem Natarajan. "Busternet: Detecting copy-

move image forgery with source/target localization." In Proceedings of the European

conference on computer vision (ECCV), pp. 168-184. 2018.

[9] Shaikh, Mohammad Shahnawaz, Aparajita Biswal, Akruti Pandwal, Nilesh Khodifad,

and Bhavesh Vaghela. "Image Forgery Detection Using MD5 & Open CV." In 2024

International Conference on Emerging Research in Computational Science

(ICERCS), pp. 1-8. IEEE, 2024.

 Atshaya R., Bhavatharni J., Darshana S.B., Ismankhan Y.M.

Journal of Electronics and Informatics, June 2025, Volume 7, Issue 2 111

[10] Mujral, Simran, Divya Kohli, Singh Balibhadra Shri Mahendra Pratap, Lavish Gupta,

and Manpreet Kaur. "Image Forgery Detection Using Python." Kilby 100 (2023): 7th.

[11] Zanardelli, Marcello, Fabrizio Guerrini, Riccardo Leonardi, and Nicola Adami.

"Image forgery detection: a survey of recent deep-learning approaches." Multimedia

Tools and Applications 82, no. 12 (2023): 17521-17566.

[12] Singh, Satyendra, and Rajesh Kumar. "Image forgery detection: comprehensive

review of digital forensics approaches." Journal of Computational Social Science 7,

no. 1 (2024): 877-915.

[13] Deb, Poulomi, Subhrajyoti Deb, Abhijit Das, and Nirmalya Kar. "Image Forgery

Detection Techniques: Latest Trends And Key Challenges." IEEE Access (2024).

[14] Barglazan, Adrian-Alin, Remus Brad, and Constantin Constantinescu. "Image

inpainting forgery detection: A review." Journal of Imaging 10, no. 2 (2024): 42.

[15] Pham, Nam Thanh, and Chun-Su Park. "Toward deep-learning-based methods in

image forgery detection: A survey." IEEE Access 11 (2023): 11224-11237.

