
Journal of Electronics and Informatics (ISSN: 2582-3825)  
www.irojournals.com/iroei/    

 

Journal of Electronics and Informatics, June 2025, Volume 7, Issue 2, Pages 95-111 95 
DOI: https://doi.org/10.36548/jei.2025.2.002 

Received: 03.04.2025, received in revised form: 27.04.2025, accepted: 11.05.2025, published: 20.05.2025  
© 2025 Inventive Research Organization. This is an open access article under the Creative Commons Attribution-NonCommercial International (CC BY-NC 4.0) License 

 

A Comparative Study on Hashing 

Algorithms for Data Integrity and 

Efficiency 

Atshaya R.1, Bhavatharni J.2, Darshana S.B.3, Ismankhan Y.M.4  

Computer Science and Engineering, Sri Ramakrishna Engineering College, Coimbatore, India 

E-mail: 1atshaya.2201028@srec.ac.in, 2bhavatharni.2201030@srec.ac.in, 3darshana.2201033@srec.ac.in, 
4ismankhan.ym@srec.ac.in 

Abstract  

In recent years, the widespread availability of image editing tools has led to the 

proliferation of phony and manipulated photos on the Internet and social media. Various 

techniques have been developed to detect image forgery and identify altered or fabricated 

regions, with a growing emphasis on deep learning (DL) methods. This study explores recent 

advances in DL-based forgery detection algorithms, focusing on the detection of copy-move 

and splicing attacks two of the most common image tampering techniques. Additionally, the 

challenges posed by DeepFake-generated content, which often mimics splicing manipulation, 

are discussed. The study also compares hashing algorithms (SHA-256, CRC32, Random 

Projection Hashing, and Count-Min Sketch) for use in data integrity, similarity searches, and 

frequency estimation. Finally, recommendations for selecting suitable algorithms and hybrid 

approaches are provided to enhance image authentication and large-scale data analysis. 

Keywords: Image forgery detection, deep learning, copy-move attack, splicing attack, Deep 

Fake detection, data integrity, hashing algorithms, SHA-256, CRC32, Random Projection 

Hashing, Count-Min Sketch, similarity detection, streaming data analytics, probabilistic data 

structures 

 Introduction 

Image comparison is a critical operation in applications such as digital forensics, 

content authentication, and multimedia analysis. Verification of authenticity using image 

similarity and forgery detection is essential. This article proposes a system developed using the 
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Django framework based on hashing and pixel-wise comparison approaches to determine 

image similarity and detect tampering. The system is modular, with components designed for 

efficient processing, extensive analysis, and simple result presentation. Software such as 

Photoshop, GIMP, and CorelDraw makes it difficult to identify a tampered image from an 

original image. Most of the conventional image forgery detection methods are based on 

manually extracted features. The disadvantage of these conventional methods is that most are 

capable of detecting different types of tampering by searching for specific features in the image. 

Nowadays, image forgery detection is performed using deep learning-based techniques. Thee 

capability of these techniques to extract complex information from images has led to claims of 

higher accuracy compared to conventional methods. In this work, we present a comprehensive 

study and results of deep learning-based techniques for image forgery detection, along with 

information about publicly available image forgery datasets. 

 Related work 

Image forgery detection has progressed from conventional statistical methods to 

advanced deep learning architectures, overcoming issues presented by tampered digital 

content. Initial attempts were based on detecting lighting inconsistencies [3] and chromatic 

aberration [4], whereas signal-based methods like moment features with the Hilbert-Huang 

Transform [5] and higher-order statistics [6] were used to unveil splicing. Natural image 

models were utilized to detect spliced areas [7]. With the advent of deep learning, convolutional 

neural networks (CNNs) took center stage, with models identifying copy-move forgeries [2], 

and Busternet exhibiting source/target localization ability [8]. More recent research by Ali et 

al. [1] introduced the use of recompression-based preprocessing to improve CNN performance. 

Surveys by Zanardelli et al. [11], Singh and Kumar [12], Deb et al. [13], and Pham and Park 

[15] thoroughly examine these trends, pointing out important challenges like generalization 

across datasets, post-processing robustness, and explainability. Real-world implementations 

such as Python- and OpenCV-based detection tools [9][10] and MD5 checksum verification 

[9]. The use of deep learning for inpainting forgery [14] and the investigation of end-to-end 

systems for hybrid manipulation detection highlight the current direction of research. Together, 

the area is moving toward stronger, data-driven systems capable of identifying more 

sophisticated forgeries in real-world applications. 
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Table 1. Comparison of Existing Methods 

Sr. No. Author Method Used Forgery Type Model Accuracy 

1. Ali S.S.[1] Recompression 

and CNN 

Copy move 

and Image 

splicing 

CNN 67.71 

61.31 

61.83 

62.23 

2. Wu Y, Abd-

Almageed W, 

Natarajan P 

BusterNet 

(pixel based) 

Copy-move VGG16 76% - 

80.49% 

3. Shi, Y.Q., Chen, 

C., Chen, W  [7] 

Moments of 

characteristic 

functions of 

wavelet 

subbands 

Image 

splicing 

SVM 

with 

RBF 

kernel 

61.87% 

4. Fu et al. [5] HHT and 

Wavelet 

Decomposition 

Image 

splicing 

SVM 80.15% 

5. Ng, T., Chang, 

S., Sun, Q [6] 

Bicoherence 

features 

Image 

splicing 

SVM 62-70% 

 

Table 1 presents the accuracy of the method used, the forgery type, and the model 

employed in the existing studies of different authors.  

 Proposed Work 

The Input Module is the basis of the image comparison pipeline by ensuring that the 

input images supplied are in the correct format and conform to specific requirements prior to 

being further processed. The module is tasked with accepting user-uploaded image files via a 

web interface based on Django. The system will check the input against several parameters, 

including file type, size, resolution, and color depth, in an effort to block incompatible or 

corrupted images from being processed. 
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Validation of files is performed through Django's built-in validators and custom logic 

to verify the MIME type and file extensions (e.g., JPEG, PNG, BMP). In addition, the module 

applies size restrictions to ensure efficiency and prevent performance bottlenecks during 

comparison. Invalid files trigger informative error messages, guiding users to acceptable input 

formats. This rigorous validation pipeline guarantees the integrity of the subsequent analysis 

while offering a user-friendly interface. The Input Module is the central component of the 

image comparison pipeline, responsible for ensuring that only valid and suitable image files 

are passed to further processing. It accepts user-uploaded images through a Django-based web 

interface with support for multiple formats, including JPEG, PNG, BMP, and TIFF. 

Rigorous validation criteria are utilized to guarantee the integrity and compatibility of 

the images. These include MIME type checks, file extension checks, resolution consistency 

(e.g., a minimum of 512x512 pixels), and size restrictions to prevent performance bottlenecks 

with extremely large files. In addition, the module ensures color depth consistency (e.g., 8-bit 

or 16-bit per channel) to guarantee accuracy during comparison. Invalid files trigger descriptive 

error messages, such as the reporting of unsupported formats or large files, thus guiding users 

to correct errors. This rigorous validation pipeline ensures that all images processed are of 

sufficient quality for meaningful comparison, providing a sound foundation for follow-up 

analytical modules. 

 

Figure 1. Work Flow 

Fig.1 shows the workflow of the image forgery detection process. Two images are given 

as input, which are processed by the OpenCV library. In the pixel comparison, if the pixels 

vary, then hashing algorithms are applied. If the hash values differ, then the report is generated. 
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System Workflow 

Step 1: Image Input 

• The process begins with the uploading of two images that are to be compared for 

similarity or forgeries. 

Step 2: Similarity Check with OpenCV 

• OpenCV is utilized to conduct an initial comparison. The process compares the visual 

similarity between the two images, representing the probability of duplication or 

manipulation. 

Step 3: Duplicate Detection Conclusion 

• Where the images are not visually identical, the process concludes with a report stating 

that there is no duplication. 

• If the images are visually similar, the system goes to a higher level of detailed analysis. 

• Hashing-Based Verification: Both pictures are subjected to a hashing algorithm. The 

algorithm calculates hash values from the pixel values of the images such that even a 

minor change would be detected. 

Step 4: Hash Comparison 

The system compares the hash values of both images: 

• If the hash values are identical, then it indicates that the images are most likely 

duplicates or unaltered copies, and a positive report is generated. 

Where the hash values differ, the images, although they appear the same, are 

determined to be different, and a negative report is provided. Report Generation:  Based on the 

results of the analysis, the system generates a lengthy report stating whether the images are the 

same or have been tampered with. 
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3.1 SHA-256 (Secure Hash Algorithm 256-bit) 

Cryptography is also crucial in other applications such as digital signatures and 

blockchain technologies, including popular platforms like Bitcoin and Ethereum. It secures 

integrity of data by authenticating hash values, thus guaranteeing that files have not been 

tampered with while in storage or transit. It is also employed in password security through 

password hashing and derivation functions, as well as in securing sensitive data.  However, it 

has its shortcomings, such as being computationally costly, which renders it slow in 

comparison to simple hashing operations. This makes it less suited for real-time applications 

with high-speed processing. Its deterministic nature also makes it unsuitable for approximate 

nearest neighbor search, which is commonly used in machine learning and information retrieval 

processes. When it comes to precision, cryptographic processes have been demonstrated to 

possess accuracy levels of 0.4349, meaning that they are less effective for use in applications 

where the detection of similarity or other high-precision activities is required. Such factors 

should be thoughtfully considered when choosing cryptographic techniques for applications, 

particularly where speed and precision are priorities. It is applied to secure data against 

unauthorized access. 

 

Figure 2. Confusion Matrix of SHA 256 

Fig 2 shows the confusion matrix of the SHA 256 algorithm. It does a moderate job, as 

it misclassifies many instances. 
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Figure 3. Dependency Graph 

Fig 3 shows the dependency graph of the SHA 256 algorithm. The graph indicates that 

the testing accuracy is lower than the training accuracy. this suggest that the model has low 

accuracy and poor generalization, pointing to underfitting and weak features. 

3.2 CRC32 (Cyclic Redundancy Check 32-bit) 

CRC32, or Cyclic Redundancy Check 32, is a non-cryptographic hash function that 

finds extensive applications in the detection of errors in networking and digital storage. It 

operated by performing polynomial division on a stream of input data over a generator 

polynomial. The function divides the the data stream by a pre-determined polynomial, and the 

resultant remainder is the 32-bit hash, better known as the checksum. The checksum is 

subsequently appended to the data so that the receiving side can verify itsintegrity by 

performing the calculation again. A match with the computed checksum implies, that the data 

was error-free during transmission. 

CRC32 is used across a broad scope of applications. One of its most significant uses is 

in communication networking, in protocols like TCP/IP, where it serves as a checksum to 

detect errors in sent data packets. CRC32 is also used in file integrity checks, particularly in 

common file formats like ZIP files, where it ensures that files are not corrupted during 

compression or transfer. Most data transmission protocols also employ CRC32 to verify that 

data packets are not altered or corrupted in transit, offering an extra layer of error detection. 

While effective at finding random errors, CRC32 has its own limitations. It is not 

cryptographically secure, making it reversible or spoofable by a malicious attacker. It is also 

unsuitable for applications requiring high data security, such as password storage or data 
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encryption. Additionally, CRC32 can be prone to collisions when used on large data sets, 

allowing two inputs to produce the same checksum. This weakness restricts its use in 

applications that demand high levels of uniqueness security. 

In terms of its performance, CRC32 is reported to have an accuracy of 0.5034, which 

is very good for verifying data integrity. However, this accuracy is not sufficient for 

applications requiring resistance against data tampering by malicious intent or for high-security 

applications. Therefore, although CRC32 is a useful tool for detecting unintended errors in 

data, it should not be utilized as an alternative to cryptographic hash functions in applications 

where data integrity and tamper resistance are crucial. Its use is best restricted to error detection 

rather than security enforcement. 

 

 

 

 

 

Figure 4. Confusion Matrix of CRC32 

Fig 4 shows that the CRC32-based classifier performs slightly bit better than the SHA-

256-based one, especially in identifying positive cases (forged, if that's the class label 1), but 

it still has moderate classification errors. 

 

 

 

 

 

Figure 5. Dependency Graph 
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Fig 5 shows the dependency graph for CRC 32. It shows slight underfitting during 

training but still generalizes better than SHA 256. However, the accuracy of CRC 32 is also 

low. 

3.3 Random Projection Hashing 

Random Projection Hashing (RPH) is an LSH algorithm tailored to accommodate the 

approximate nearest neighbor (ANN) search in high-dimensional spaces. The technique is very 

effective under circumstances where the similarity location of points in vast data sets is of 

utmost importance. The inherent process of RPH involves projecting high-dimensional points 

into lower-dimensional subspaces through random hyperplanes. The data is separated by these 

hyperplanes such that points similar to one another in the high-dimensional space will not 

become too distant from one another in the mapped lower-dimensional space. Because of this 

feature, RPH allows for very efficient computations by greatly lowering the complexity 

requirement, thus serving asa fast solution to vast similarity searches. 

RPH has extensive applications in various fields. In machine learning, it is essential in 

recommendation systems, where it is utilized to identify items with similar user interactions or 

interests. It is also used in text classification to classify similar documents or messages for 

efficient classification. In image recognition, RPH is employed in feature matching and image 

similarity detection, where it is utilized to quickly compare images for duplicate image 

detection or content-based image retrieval. It is also a common approach for ANN searches, 

offering an efficient, scalable solution for processing large data sets while preserving the 

accuracy of similarity measures. 

Although effective, RPH is not perfect. It excels in measuring similarity but not 

uniqueness, such as cryptographic hashes. This renders it inappropriate for applications where 

there is a requirement for robust data integrity and tamper-resistance. The performance of RPH 

is also greatly affected by the number of random projections. Insufficient random projections 

can lead to improper similarity measurement, while too many projections can have the side 

effect of being computationally costly, negating its efficiency benefit. 

As far as accuracy is concerned, RPH has been found to be 0.7877 accurate, which is 

much higher than that of cryptographic hashes such as SHA-256 and non-cryptographic hashes 

such as CRC32 for approximate data similarity matching. Such high accuracy renders RPH a 

first choice for similarity search and clustering-oriented applications. Nevertheless, its non-
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determinism and dependence on randomness also imply that parameter tuning is necessary for 

optimal performance in particular use cases. Overall, RPH is a good and efficient method for 

approximate similarity detection in high-dimensional, large datasets. 

 

Figure 6. Confusion Matrix of Random Projection Hashing 

Fig 6 shows the confusion matrix of the random projection hashing. From the confusion 

matrix, we interpret that the accuracy achieved is moderate. 

 

Figure 7. Dependency Graph 

Fig 7 shows the dependency graph of the random projection hashing algorithm. The 

model does not overfit and generalizes consistently. It also suggests that the algorithm, as a 

standalone feature might not perform well due to the achieved accuracy. 

3.4 Count-Min Sketch 

Count-Min Sketch (CMS) is a probabilistic data structure employed to estimate 

frequency counts for large datasets efficiently particularly for streaming data analysis and real-
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time processing. The largest benefit of CMS is that it can provide space-efficient 

approximations without storing the entire dataset in memory. The CMS mechanism operates 

by using a 2D array of hash functions to project the incoming data elements into frequency 

counters in various hash tables. Rather than storing the exact count of each element, CMS 

hashes the element into multiple locations, and the frequency estimate is taken as the minimum 

value across all the hash tables. This results in frequency estimates that are conservatively 

biased, making over estimation less likely to occur. 

CMS is extensively utilized in various applications. In big data analytics, CMS is used 

in databases to predict query frequencies and in traffic measurement to process large-scale data 

streams without excessive memory usage. In network traffic monitoring, CMS assists in 

detecting anomalies such as Denial-of-Service (DoS) attacks by identifying unusual frequency 

patterns in packet streams. Furthermore, CMS is a standard tool in streaming data processing 

platforms like Apache Kafka, where it facilitates real-time analytics by providing rapid, 

approximate frequency insights into events without storing or reprocessing the entire datasets. 

While it has its benefits, CMS also has some limitations. Since it provides coarse 

frequency estimates, low-frequency items have a higher chance of errors, which may be 

obscured by hash collisions with more frequent items. There is also a trade-off between 

memory usage and estimation accuracy allocating more memory can enhance accuracy but at 

the cost of increased resource consumption. Conversely, reducing memory consumption can 

lead to less accurate frequency estimates. 

In terms of accuracy, CMS is reported to have an accuracy of 0.8877, making it the 

most space-efficient among the algorithms available for similarity detection and approximate 

data analysis applications. With its high accuracy and space efficiency, CMS can be utilized in 

scalable frequency estimation applications on big data. However, its approximate nature and 

sensitivity to the quality of the hash function implementation expose it to careful parameter 

tuning to achieve optimal performance in specific applications. Overall, CMS is a space-

efficient tool for real-time data analysis and streaming analytics, striking a balance between 

memory efficiency and estimation accuracy to effectively process large data streams. 
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Figure 8. Confusion Matrix of Count-Min Sketch 

Fig 8 shows the confusion matrix of the Count-Min Sketch algorithm. It indicates the 

Count-Min Sketch algorithm achieves the best accuracy when compared to the other hashing 

algorithms. 

 

Figure 9. Dependency Graph 

Fig 9 shows the dependency graph of the Count-Min sketch algorithm. It indicates that 

the model generalizes consistently and avoids overfitting. 

  Results and Discussion 

Simulation models are used extensively to test and verify the performance and accuracy 

of image forgery detection systems. These models replicate real-world scenarios, allowing 

controlled experimentation and testing without exposing the system to real-world deployment 

threats. In this project, simulation models replicate various image forgeries such as splicing, 

copy-move, and AI manipulations. Deterministic models, such as SHA-256 hash comparison, 

always produce the same result from the same input and are thus best used to detect duplicate 
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images. Stochastic models are used to simulate uncertainties, such as image noise or 

compression artifacts, that may affect the detection accuracy. Both static models (testing 

individual image pairs) and dynamic models (testing real-time image streams) are employes to 

assess system robustness under different conditions. 

To create and execute these simulations, a range of simulation software tools is used. 

Python, along with OpenCV, is the primary tool utilized for image processing, with 

functionalities such as filtering, feature detection, and comparison. Django serves asthe web 

framework for simulating user interactions, including image uploading and displaying results. 

Hashlib is used for generating secure SHA-256 hashes, which provide the basis for the forgery 

detection algorithm. More advanced tools like MATLAB can also be utilized for visual 

simulations and detailed image analysis, while optional tools such as Binwalk and ExifTool 

provide malware detection and metadata analysis for images. The performance of these 

environments was tested on different parameters, including ease of use, speed, flexibility, and 

visualization. Python using OpenCV worked very well in real-time image processing and was 

highly flexible, while Django allowed easy interface for web-based simulation. Hashlib was 

very fast and secure for hash operations but lacked any facility for visualization. MATLAB 

was highly analytical and graphical in nature, making it suitable for complex image 

simulations. Comparative evaluation indicated that the average time taken for image hashing 

and detection was less than 2–3 seconds and that users greatly appreciated the interface for 

navigation and output clarity. These simulation environments collectively ensured that the 

system could detect doctored images in various sreal-world scenarios with high performance. 

Table 2. Comparative Analysis 

Algorithm Type Output 

Size 

Best Use Case Security 

Level 

Accuracy 

SHA-256 Cryptographic 

Hash 

256-bit Digital Signatures, 

Blockchain 

Very 

High 

0.4349 

CRC32 Error 

Detection 

32-bit Network 

Communication, 

File Integrity 

Low 0.5034 

Random 

Projection 

Hashing 

Locality-

Sensitive 

Variable Approximate 

Nearest Neighbors 

Medium 0.7877 

Count-Min 

Sketch 

Frequency 

Estimation 

Variable Streaming Data, 

Big Data Analytics 

Low 0.8877 
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Table 2 shows the accuracy comparison of SHA256, CRC32, Random projection 

hashing, Count-Min Sketch hashing algorithms. 

Table 3. Performance Metrics 

Model Precision Recall F1-score 

Count-Min sketch 0.38 0.06 0.11 

CRC32 0.59 0.65 0.62 

Random Projection Hashing 0.55 0.64 0.59 

SHA 256 0.55 0.53 0.54 

 

Table 3 shows the performance metrics comparison of SHA256, CRC32, Random 

projection hashing, Count-Min Sketch hashing algorithms. 

 

Figure 10. Prototype of the Webpage 

Fig 10 shows the prototype of the webpage. It takes two images as input and generates 

an originality report. 
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Figure 11. PDF Generation 

Fig 11 shows the PDF generation by the website. It displays the detection time, results, 

similarity score and the original and tampered images. 

 Conclusion 

This paper presents a comparative study of four widely used hashing algorithms SHA-

256, CRC32, Random Projection Hashing (RPH), and Count-Min Sketch (CMS) analyzing 

their accuracy, use cases, and limitations. Each algorithm is designed with specific goals, such 

as cryptographic security, error detection, similarity search, or frequency estimation. SHA-256 

is ideal for high-security applications like password storage, digital signatures, and blockchain 

due to its collision resistance, but it is computationally intensive. CRC32, though not secure, 

is lightweight and effective for error detection in communication protocols and file integrity 

checks. RPH, a locality-sensitive hashing method, excels in approximate similarity searches, 

particularly in machine learning applications involving high-dimensional data. However, it 

lacks collision resistance, limiting its accuracy. CMS is a probabilistic data structure suited for 

estimating frequencies in large or streaming datasets, offering high efficiency with minimal 

memory, though with approximations. The study concludes that the choice of hashing 

algorithm should align with application needs, balancing accuracy, efficiency, and resource 

use. Future research should explore hybrid hashing approaches that combine cryptographic 

strength, similarity detection, and probabilistic estimation to address emerging challenges in 
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big data analytics, IoT, and edge computing. Such integration could lead to more secure, 

scalable, and accurate hashing techniques. 
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