Journal of Electronics and Informatics (ISSN: 2582-3825) Gotrongy
www.irojournals.com/iroei/ fED

ety .A:

_—

A Comparative Study on Hashing
Algorithms for Data Integrity and
Efficiency

Atshaya R.!, Bhavatharni J.2, Darshana S.B.3, Ismankhan Y.M.*

Computer Science and Engineering, Sri Ramakrishna Engineering College, Coimbatore, India

E-mail: 'atshaya.2201028@srec.ac.in, bhavatharni.2201030@srec.ac.in, 3darshana.2201033@srec.ac.in,
“ismankhan.ym@srec.ac.in

Abstract

In recent years, the widespread availability of image editing tools has led to the
proliferation of phony and manipulated photos on the Internet and social media. Various
techniques have been developed to detect image forgery and identify altered or fabricated
regions, with a growing emphasis on deep learning (DL) methods. This study explores recent
advances in DL-based forgery detection algorithms, focusing on the detection of copy-move
and splicing attacks two of the most common image tampering techniques. Additionally, the
challenges posed by DeepFake-generated content, which often mimics splicing manipulation,
are discussed. The study also compares hashing algorithms (SHA-256, CRC32, Random
Projection Hashing, and Count-Min Sketch) for use in data integrity, similarity searches, and
frequency estimation. Finally, recommendations for selecting suitable algorithms and hybrid

approaches are provided to enhance image authentication and large-scale data analysis.

Keywords: Image forgery detection, deep learning, copy-move attack, splicing attack, Deep
Fake detection, data integrity, hashing algorithms, SHA-256, CRC32, Random Projection
Hashing, Count-Min Sketch, similarity detection, streaming data analytics, probabilistic data

structures

1. Introduction

Image comparison is a critical operation in applications such as digital forensics,
content authentication, and multimedia analysis. Verification of authenticity using image

similarity and forgery detection is essential. This article proposes a system developed using the
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Django framework based on hashing and pixel-wise comparison approaches to determine
image similarity and detect tampering. The system is modular, with components designed for
efficient processing, extensive analysis, and simple result presentation. Software such as
Photoshop, GIMP, and CorelDraw makes it difficult to identify a tampered image from an
original image. Most of the conventional image forgery detection methods are based on
manually extracted features. The disadvantage of these conventional methods is that most are
capable of detecting different types of tampering by searching for specific features in the image.
Nowadays, image forgery detection is performed using deep learning-based techniques. Thee
capability of these techniques to extract complex information from images has led to claims of
higher accuracy compared to conventional methods. In this work, we present a comprehensive
study and results of deep learning-based techniques for image forgery detection, along with

information about publicly available image forgery datasets.

2. Related work

Image forgery detection has progressed from conventional statistical methods to
advanced deep learning architectures, overcoming issues presented by tampered digital
content. Initial attempts were based on detecting lighting inconsistencies [3] and chromatic
aberration [4], whereas signal-based methods like moment features with the Hilbert-Huang
Transform [5] and higher-order statistics [6] were used to unveil splicing. Natural image
models were utilized to detect spliced areas [7]. With the advent of deep learning, convolutional
neural networks (CNNs) took center stage, with models identifying copy-move forgeries [2],
and Busternet exhibiting source/target localization ability [8]. More recent research by Ali et
al. [1] introduced the use of recompression-based preprocessing to improve CNN performance.
Surveys by Zanardelli et al. [11], Singh and Kumar [12], Deb et al. [13], and Pham and Park
[15] thoroughly examine these trends, pointing out important challenges like generalization
across datasets, post-processing robustness, and explainability. Real-world implementations
such as Python- and OpenCV-based detection tools [9][10] and MD5 checksum verification
[9]. The use of deep learning for inpainting forgery [14] and the investigation of end-to-end
systems for hybrid manipulation detection highlight the current direction of research. Together,
the area is moving toward stronger, data-driven systems capable of identifying more

sophisticated forgeries in real-world applications.
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Table 1. Comparison of Existing Methods

Sr. No. Author Method Used (Forgery Type| Model Accuracy
1. | AliS.S[1] Recompression | Copy move CNN 67.71
and CNN and Image 61.31
splicing 61.83
62.23
2. | WuY, Abd- BusterNet Copy-move VGG16 76% -
Almageed W, (pixel based) 80.49%
Natarajan P
3. Shi, Y.Q., Chen, | Moments of Image SVM 61.87%
C.,Chen, W [7] | characteristic splicing with
functions of RBF
wavelet kernel
subbands
4. |Fuetal. [5] HHT and Image SVM 80.15%
Wavelet splicing
Decomposition
5. | Ng, T., Chang, Bicoherence Image SVM 62-70%
S., Sun, Q [6] features splicing

Table 1 presents the accuracy of the method used, the forgery type, and the model

employed in the existing studies of different authors.

3. Proposed Work

The Input Module is the basis of the image comparison pipeline by ensuring that the
input images supplied are in the correct format and conform to specific requirements prior to
being further processed. The module is tasked with accepting user-uploaded image files via a
web interface based on Django. The system will check the input against several parameters,
including file type, size, resolution, and color depth, in an effort to block incompatible or

corrupted images from being processed.
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Validation of files is performed through Django's built-in validators and custom logic
to verify the MIME type and file extensions (e.g., JPEG, PNG, BMP). In addition, the module
applies size restrictions to ensure efficiency and prevent performance bottlenecks during
comparison. Invalid files trigger informative error messages, guiding users to acceptable input
formats. This rigorous validation pipeline guarantees the integrity of the subsequent analysis
while offering a user-friendly interface. The Input Module is the central component of the
image comparison pipeline, responsible for ensuring that only valid and suitable image files
are passed to further processing. It accepts user-uploaded images through a Django-based web

interface with support for multiple formats, including JPEG, PNG, BMP, and TIFF.

Rigorous validation criteria are utilized to guarantee the integrity and compatibility of
the images. These include MIME type checks, file extension checks, resolution consistency
(e.g., a minimum of 512x512 pixels), and size restrictions to prevent performance bottlenecks
with extremely large files. In addition, the module ensures color depth consistency (e.g., 8-bit
or 16-bit per channel) to guarantee accuracy during comparison. Invalid files trigger descriptive
error messages, such as the reporting of unsupported formats or large files, thus guiding users
to correct errors. This rigorous validation pipeline ensures that all images processed are of
sufficient quality for meaningful comparison, providing a sound foundation for follow-up

analytical modules.

nnnnnnnnn
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Figure 1. Work Flow

Fig.1 shows the workflow of the image forgery detection process. Two images are given
as input, which are processed by the OpenCV library. In the pixel comparison, if the pixels
vary, then hashing algorithms are applied. If the hash values differ, then the report is generated.
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System Workflow
Step 1: Image Input

e The process begins with the uploading of two images that are to be compared for

similarity or forgeries.
Step 2: Similarity Check with OpenCV

e OpenCV is utilized to conduct an initial comparison. The process compares the visual
similarity between the two images, representing the probability of duplication or

manipulation.
Step 3: Duplicate Detection Conclusion

e Where the images are not visually identical, the process concludes with a report stating

that there is no duplication.
e Ifthe images are visually similar, the system goes to a higher level of detailed analysis.

e Hashing-Based Verification: Both pictures are subjected to a hashing algorithm. The
algorithm calculates hash values from the pixel values of the images such that even a

minor change would be detected.
Step 4: Hash Comparison
The system compares the hash values of both images:

e If the hash values are identical, then it indicates that the images are most likely

duplicates or unaltered copies, and a positive report is generated.

Where the hash values differ, the images, although they appear the same, are
determined to be different, and a negative report is provided. Report Generation: Based on the
results of the analysis, the system generates a lengthy report stating whether the images are the

same or have been tampered with.
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3.1 SHA-256 (Secure Hash Algorithm 256-bit)

Cryptography is also crucial in other applications such as digital signatures and
blockchain technologies, including popular platforms like Bitcoin and Ethereum. It secures
integrity of data by authenticating hash values, thus guaranteeing that files have not been
tampered with while in storage or transit. It is also employed in password security through
password hashing and derivation functions, as well as in securing sensitive data. However, it
has its shortcomings, such as being computationally costly, which renders it slow in
comparison to simple hashing operations. This makes it less suited for real-time applications
with high-speed processing. Its deterministic nature also makes it unsuitable for approximate
nearest neighbor search, which is commonly used in machine learning and information retrieval
processes. When it comes to precision, cryptographic processes have been demonstrated to
possess accuracy levels of 0.4349, meaning that they are less effective for use in applications
where the detection of similarity or other high-precision activities is required. Such factors
should be thoughtfully considered when choosing cryptographic techniques for applications,
particularly where speed and precision are priorities. It is applied to secure data against

unauthorized access.

SHA 256

Fctual

Predicted

Figure 2. Confusion Matrix of SHA 256

Fig 2 shows the confusion matrix of the SHA 256 algorithm. It does a moderate job, as

it misclassifies many instances.
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Figure 3. Dependency Graph

Fig 3 shows the dependency graph of the SHA 256 algorithm. The graph indicates that
the testing accuracy is lower than the training accuracy. this suggest that the model has low

accuracy and poor generalization, pointing to underfitting and weak features.
3.2 CRC32 (Cyclic Redundancy Check 32-bit)

CRC32, or Cyclic Redundancy Check 32, is a non-cryptographic hash function that
finds extensive applications in the detection of errors in networking and digital storage. It
operated by performing polynomial division on a stream of input data over a generator
polynomial. The function divides the the data stream by a pre-determined polynomial, and the
resultant remainder is the 32-bit hash, better known as the checksum. The checksum is
subsequently appended to the data so that the receiving side can verify itsintegrity by
performing the calculation again. A match with the computed checksum implies, that the data

was error-free during transmission.

CRC32 is used across a broad scope of applications. One of its most significant uses is
in communication networking, in protocols like TCP/IP, where it serves as a checksum to
detect errors in sent data packets. CRC32 is also used in file integrity checks, particularly in
common file formats like ZIP files, where it ensures that files are not corrupted during
compression or transfer. Most data transmission protocols also employ CRC32 to verify that

data packets are not altered or corrupted in transit, offering an extra layer of error detection.

While effective at finding random errors, CRC32 has its own limitations. It is not
cryptographically secure, making it reversible or spoofable by a malicious attacker. It is also

unsuitable for applications requiring high data security, such as password storage or data
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encryption. Additionally, CRC32 can be prone to collisions when used on large data sets,

allowing two inputs to produce the same checksum. This weakness restricts its use in

applications that demand high levels of uniqueness security.

In terms of its performance, CRC32 is reported to have an accuracy of 0.5034, which

is very good for verifying data integrity. However, this accuracy is not sufficient for

applications requiring resistance against data tampering by malicious intent or for high-security

applications. Therefore, although CRC32 is a useful tool for detecting unintended errors in

data, it should not be utilized as an alternative to cryptographic hash functions in applications

where data integrity and tamper resistance are crucial. Its use is best restricted to error detection

rather than security enforcement.
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Figure 4. Confusion Matrix of CRC32

Fig 4 shows that the CRC32-based classifier performs slightly bit better than the SHA-

256-based one, especially in identifying positive cases (forged, if that's the class label 1), but

it still has moderate classification errors.
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Fig 5 shows the dependency graph for CRC 32. It shows slight underfitting during
training but still generalizes better than SHA 256. However, the accuracy of CRC 32 is also

low.
3.3 Random Projection Hashing

Random Projection Hashing (RPH) is an LSH algorithm tailored to accommodate the
approximate nearest neighbor (ANN) search in high-dimensional spaces. The technique is very
effective under circumstances where the similarity location of points in vast data sets is of
utmost importance. The inherent process of RPH involves projecting high-dimensional points
into lower-dimensional subspaces through random hyperplanes. The data is separated by these
hyperplanes such that points similar to one another in the high-dimensional space will not
become too distant from one another in the mapped lower-dimensional space. Because of this
feature, RPH allows for very efficient computations by greatly lowering the complexity

requirement, thus serving asa fast solution to vast similarity searches.

RPH has extensive applications in various fields. In machine learning, it is essential in
recommendation systems, where it is utilized to identify items with similar user interactions or
interests. It is also used in text classification to classify similar documents or messages for
efficient classification. In image recognition, RPH is employed in feature matching and image
similarity detection, where it is utilized to quickly compare images for duplicate image
detection or content-based image retrieval. It is also a common approach for ANN searches,
offering an efficient, scalable solution for processing large data sets while preserving the

accuracy of similarity measures.

Although effective, RPH is not perfect. It excels in measuring similarity but not
uniqueness, such as cryptographic hashes. This renders it inappropriate for applications where
there is a requirement for robust data integrity and tamper-resistance. The performance of RPH
is also greatly affected by the number of random projections. Insufficient random projections
can lead to improper similarity measurement, while too many projections can have the side

effect of being computationally costly, negating its efficiency benefit.

As far as accuracy is concerned, RPH has been found to be 0.7877 accurate, which is
much higher than that of cryptographic hashes such as SHA-256 and non-cryptographic hashes
such as CRC32 for approximate data similarity matching. Such high accuracy renders RPH a

first choice for similarity search and clustering-oriented applications. Nevertheless, its non-
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determinism and dependence on randomness also imply that parameter tuning is necessary for
optimal performance in particular use cases. Overall, RPH is a good and efficient method for

approximate similarity detection in high-dimensional, large datasets.

Random Projection Hashing
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Figure 6. Confusion Matrix of Random Projection Hashing

Fig 6 shows the confusion matrix of the random projection hashing. From the confusion

matrix, we interpret that the accuracy achieved is moderate.
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Figure 7. Dependency Graph

Fig 7 shows the dependency graph of the random projection hashing algorithm. The
model does not overfit and generalizes consistently. It also suggests that the algorithm, as a

standalone feature might not perform well due to the achieved accuracy.
3.4 Count-Min Sketch

Count-Min Sketch (CMS) is a probabilistic data structure employed to estimate

frequency counts for large datasets efficiently particularly for streaming data analysis and real-
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time processing. The largest benefit of CMS is that it can provide space-efficient
approximations without storing the entire dataset in memory. The CMS mechanism operates
by using a 2D array of hash functions to project the incoming data elements into frequency
counters in various hash tables. Rather than storing the exact count of each element, CMS
hashes the element into multiple locations, and the frequency estimate is taken as the minimum
value across all the hash tables. This results in frequency estimates that are conservatively

biased, making over estimation less likely to occur.

CMS is extensively utilized in various applications. In big data analytics, CMS is used
in databases to predict query frequencies and in traffic measurement to process large-scale data
streams without excessive memory usage. In network traffic monitoring, CMS assists in
detecting anomalies such as Denial-of-Service (DoS) attacks by identifying unusual frequency
patterns in packet streams. Furthermore, CMS is a standard tool in streaming data processing
platforms like Apache Kafka, where it facilitates real-time analytics by providing rapid,

approximate frequency insights into events without storing or reprocessing the entire datasets.

While it has its benefits, CMS also has some limitations. Since it provides coarse
frequency estimates, low-frequency items have a higher chance of errors, which may be
obscured by hash collisions with more frequent items. There is also a trade-off between
memory usage and estimation accuracy allocating more memory can enhance accuracy but at
the cost of increased resource consumption. Conversely, reducing memory consumption can

lead to less accurate frequency estimates.

In terms of accuracy, CMS is reported to have an accuracy of 0.8877, making it the
most space-efficient among the algorithms available for similarity detection and approximate
data analysis applications. With its high accuracy and space efficiency, CMS can be utilized in
scalable frequency estimation applications on big data. However, its approximate nature and
sensitivity to the quality of the hash function implementation expose it to careful parameter
tuning to achieve optimal performance in specific applications. Overall, CMS is a space-
efficient tool for real-time data analysis and streaming analytics, striking a balance between

memory efficiency and estimation accuracy to effectively process large data streams.
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Count-Min Sketch
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Figure 8. Confusion Matrix of Count-Min Sketch

Fig 8 shows the confusion matrix of the Count-Min Sketch algorithm. It indicates the

Count-Min Sketch algorithm achieves the best accuracy when compared to the other hashing

algorithms.
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Figure 9. Dependency Graph

Fig 9 shows the dependency graph of the Count-Min sketch algorithm. It indicates that

the model generalizes consistently and avoids overfitting.

4, Results and Discussion

Simulation models are used extensively to test and verify the performance and accuracy
of image forgery detection systems. These models replicate real-world scenarios, allowing
controlled experimentation and testing without exposing the system to real-world deployment
threats. In this project, simulation models replicate various image forgeries such as splicing,
copy-move, and Al manipulations. Deterministic models, such as SHA-256 hash comparison,

always produce the same result from the same input and are thus best used to detect duplicate
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images. Stochastic models are used to simulate uncertainties, such as image noise or
compression artifacts, that may affect the detection accuracy. Both static models (testing
individual image pairs) and dynamic models (testing real-time image streams) are employes to

assess system robustness under different conditions.

To create and execute these simulations, a range of simulation software tools is used.
Python, along with OpenCV, is the primary tool utilized for image processing, with
functionalities such as filtering, feature detection, and comparison. Django serves asthe web
framework for simulating user interactions, including image uploading and displaying results.
Hashlib is used for generating secure SHA-256 hashes, which provide the basis for the forgery
detection algorithm. More advanced tools like MATLAB can also be utilized for visual
simulations and detailed image analysis, while optional tools such as Binwalk and ExifTool
provide malware detection and metadata analysis for images. The performance of these
environments was tested on different parameters, including ease of use, speed, flexibility, and
visualization. Python using OpenCV worked very well in real-time image processing and was
highly flexible, while Django allowed easy interface for web-based simulation. Hashlib was
very fast and secure for hash operations but lacked any facility for visualization. MATLAB
was highly analytical and graphical in nature, making it suitable for complex image
simulations. Comparative evaluation indicated that the average time taken for image hashing
and detection was less than 2-3 seconds and that users greatly appreciated the interface for
navigation and output clarity. These simulation environments collectively ensured that the

system could detect doctored images in various sreal-world scenarios with high performance.

Table 2. Comparative Analysis

Algorithm | Type Output Best Use Case Security | Accuracy
Size Level
SHA-256 Cryptographic | 256-bit Digital Signatures, | Very 0.4349
Hash Blockchain High
CRC32 Error 32-bit Network Low 0.5034
Detection Communication,
File Integrity
Random Locality- Variable | Approximate Medium | 0.7877
Projection | Sensitive Nearest Neighbors
Hashing
Count-Min | Frequency Variable | Streaming Data, Low 0.8877
Sketch Estimation Big Data Analytics
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Table 2 shows the accuracy comparison of SHA256, CRC32, Random projection
hashing, Count-Min Sketch hashing algorithms.

Table 3. Performance Metrics

Model Precision Recall F1-score
Count-Min sketch 0.38 0.06 0.11
CRC32 0.59 0.65 0.62
Random Projection Hashing 0.55 0.64 0.59
SHA 256 0.55 0.53 0.54

Table 3 shows the performance metrics comparison of SHA256, CRC32, Random
projection hashing, Count-Min Sketch hashing algorithms.

Image Forgery Detection

Original Image:
Browse... Im1_2_col.jpg
Tampered Image:

Browse... Iml_col2.jpg

Show & Download PDF

Figure 10. Prototype of the Webpage

Fig 10 shows the prototype of the webpage. It takes two images as input and generates

an originality report.
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Image Forgery Detection Report

Detection Time: 2025-05-04 17:38:39

Result: Tampered
Similarity Score: 0.8923

Original Image:

Figure 11. PDF Generation

Fig 11 shows the PDF generation by the website. It displays the detection time, results,

similarity score and the original and tampered images.

5. Conclusion

This paper presents a comparative study of four widely used hashing algorithms SHA-
256, CRC32, Random Projection Hashing (RPH), and Count-Min Sketch (CMS) analyzing
their accuracy, use cases, and limitations. Each algorithm is designed with specific goals, such
as cryptographic security, error detection, similarity search, or frequency estimation. SHA-256
is ideal for high-security applications like password storage, digital signatures, and blockchain
due to its collision resistance, but it is computationally intensive. CRC32, though not secure,
is lightweight and effective for error detection in communication protocols and file integrity
checks. RPH, a locality-sensitive hashing method, excels in approximate similarity searches,
particularly in machine learning applications involving high-dimensional data. However, it
lacks collision resistance, limiting its accuracy. CMS is a probabilistic data structure suited for
estimating frequencies in large or streaming datasets, offering high efficiency with minimal
memory, though with approximations. The study concludes that the choice of hashing
algorithm should align with application needs, balancing accuracy, efficiency, and resource
use. Future research should explore hybrid hashing approaches that combine cryptographic

strength, similarity detection, and probabilistic estimation to address emerging challenges in
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big data analytics, IoT, and edge computing. Such integration could lead to more secure,

scalable, and accurate hashing techniques.
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