IRO Journals

Journal of Innovative Image Processing

Diabetic Retinopathy Detection Using Machine Learning
Volume-4 | Issue-1

Monocular Depth Estimation using a Multi-grid Attention-based Model
Volume-4 | Issue-3

Speedy Image Crowd Counting by Light Weight Convolutional Neural Network
Volume-3 | Issue-3

Construction of Efficient Smart Voting Machine with Liveness Detection Module
Volume-3 | Issue-3

An Economical Robotic Arm for Playing Chess Using Visual Servoing
Volume-2 | Issue-3

Triplet loss for Chromosome Classification
Volume-4 | Issue-1

Unstructured Noise Removal for Industrial Sensor Imaging Unit by Hybrid Adaptive Median Algorithm
Volume-3 | Issue-4

Real Time Sign Language Recognition and Speech Generation
Volume-2 | Issue-2

Analysis of Artificial Intelligence based Image Classification Techniques
Volume-2 | Issue-1

Design of ANN Based Machine Learning Method for Crop Prediction
Volume-3 | Issue-3

A REVIEW ON IOT BASED MEDICAL IMAGING TECHNOLOGY FOR HEALTHCARE APPLICATIONS
Volume-1 | Issue-1

COMPUTER VISION BASED TRAFFIC SIGN SENSING FOR SMART TRANSPORT
Volume-1 | Issue-1

Diabetic Retinopathy Detection Using Machine Learning
Volume-4 | Issue-1

Accurate Segmentation for Low Resolution Satellite images by Discriminative Generative Adversarial Network for Identifying Agriculture Fields
Volume-3 | Issue-4

Deep Learning based Handwriting Recognition with Adversarial Feature Deformation and Regularization
Volume-3 | Issue-4

State of Art Survey on Plant Leaf Disease Detection
Volume-4 | Issue-2

Optimal Compression of Remote Sensing Images Using Deep Learning during Transmission of Data
Volume-3 | Issue-4

OverFeat Network Algorithm for Fabric Defect Detection in Textile Industry
Volume-3 | Issue-4

VIRTUAL RESTORATION OF DAMAGED ARCHEOLOGICAL ARTIFACTS OBTAINED FROM EXPEDITIONS USING 3D VISUALIZATION
Volume-1 | Issue-2

Two-Stage Frame Extraction in Video Analysis for Accurate Prediction of Object Tracking by Improved Deep Learning
Volume-3 | Issue-4

Home / Archives / Volume-3 / Issue-4 / Article-1

Volume - 3 | Issue - 4 | december 2021

Unstructured Noise Removal for Industrial Sensor Imaging Unit by Hybrid Adaptive Median Algorithm
Pages: 284-297
Published
22 November, 2021
Abstract

Thermal noise is the most common type of contamination in digital image acquisition operations, and is caused by the temperature condition of the industrial sensor devices used in the process. When it comes to picture improvement, removing noise from the image is one of the most crucial steps. However, in image processing, it is more critical to retain the characteristics of the original picture while eliminating the noise. Thermal noise removal is a challenging problem in image denoising. This article provides a strategy based on a Hybrid Adaptive Median (HAM) filtering approach for removing thermal noise from the image output of an industrial sensor. The demonstration of this proposed approach's ability, is to successfully detect and reduce thermal noise. In addition, this study examines an adaptive hybrid adaptive median filtering approach that has significant computational advantages, making it highly practical. Finally, this research report on experiments shows the high-quality industrial sensor imaging systems that have been successfully implemented in the real world.

Keywords

Noise model industrial sensor adaptive median filtering thermal noise non-local filtering

Full Article PDF Download Article PDF 
×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

To access the full PDF, please complete the payment process.

Subscription Details

Category Fee
Article Access Charge
For single article (Indian)
1,200 INR
Article Access Charge
For single article (non-Indian)
15 USD
Open Access Fee (Indian) 5,000 INR
Open Access Fee (non-Indian) 80 USD
Annual Subscription Fee
For 1 Journal (Indian)
15,000 INR
Annual Subscription Fee
For 1 Journal (non-Indian)
200 USD
secure PAY INR / USD
Subscription form: click here