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Abstract   

Enhancing low-light images under uneven illumination remains a challenging problem 

in computer vision. This study proposes an enhanced version of the Zero-Reference Deep 

Curve Estimation (Zero-DCE) model, named MS-DCE (Multi-Scale Deep Curve Estimation). 

The proposed model incorporates comprehensive architectural modifications and refined loss 

functions to improve performance. Specifically, multi-scale convolution is introduced to 

capture contextual information at varying scales, depth-wise separable convolutions are 

employed to reduce model parameters and computational cost, and traditional up-sampling is 

replaced with PixelShuffle to improve image resolution. Additionally, the loss functions are 

refined to mitigate overexposure while preserving natural colour consistency, thereby 

enhancing visual quality, particularly in regions with uneven lighting. Experimental results on 

the Part 2 subset of the SICE dataset demonstrate substantial improvements in image quality, 

with a 2% increase in PSNR and a 4% improvement in perceptual quality. These modifications 

not only enhance low-light image recovery but also provide a more efficient solution for 

handling complex illumination conditions. 
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 Introduction 

The improvement of images taken at low and uneven lightening has consistently posed 

a significant challenge in the field of image processing, particularly under conditions of uneven 
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illumination [1, 8, 16, 25]. Such scenarios often result in poor image visibility, adversely 

affecting various applications, including surveillance, photography, and medical imaging [4, 5, 

17, 28]. Specifically, images captured under low light conditions typically exhibit high noise 

levels, low contrast, and colour distortions, collectively leading to degraded visual quality, 

making the need for image enhancement particularly urgent. 

 

Figure 1. Visual Comparison of Performance of Proposed. 

Figure 1 is a comparison of a representative of low-light image that demonstrates that 

the proposed method produces visually appealing results, excelling in brightness, colour 

accuracy, contrast, and overall naturalness. 

Historically, a range of techniques has been employed to address the issue of low-light 

image enhancement, from traditional histogram equalization methods to more advanced deep-

learning approaches. Among these, the Zero-DCE algorithm [7] has emerged as a notable 

method due to its ability to enhance images without relying on additional high-light images for 

reference. Zero-DCE dynamically adjusts the light map of an image by learning light-related 

curves, a process that has demonstrated considerable success in general low-light conditions. 
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However, the standard Zero-DCE method often encounters difficulties when 

illumination is unevenly distributed across the image. In this case, the enhancement process 

often causes areas with high exposure to become overexposed. This difference in the 

distribution of light in the image not only results in an enhanced image that is less visually 

appealing but also conceals important details, which is especially problematic in applications 

that require high accuracy. 

To address this challenge, this research introduces several innovative modifications to 

the Zero-DCE model.  Specifically, enhancing the model architecture by incorporating three 

key modifications: 1) The integration of Multi-Scale Convolution for better feature extraction 

across different scales. 2) Depth-wise separable convolutions are utilized to significantly 

reduce the model's parameter count while preserving its performance. 3) The adoption of 

PixelShuffle to replace traditional interpolation methods for more efficient up-sampling. In 

addition, the study proposes two novel loss functions, BrightPenaltyLoss (BPLoss) and 

ColorDynaLoss (CDLoss), designed to effectively handle the issue of uneven illumination in 

low-light images.   

 Related Work 

The field of low-light image improvement has received substantial attention within 

computer vision, striving to mitigate the adverse effects of under or overexposure that 

frequently compromise image quality. Methodological evolution in this field has transitioned 

from conventional enhancement strategies to the implementation of advanced deep learning 

paradigms. 

2.1 Conventional Methods 

Historically, spatial domain manipulation has been central to image quality 

enhancement, with grey-level transformation playing a key role in improving dynamic range 

and contrast.  By adjusting pixel intensity levels, this method enhances visibility, brightening 

dark regions and darkening bright ones. Histogram Equalization (HE) [21] is a commonly 

applied method for redistributing grayscale intensities, which results in a more uniform 

distribution and enhances the contrast. This technique is particularly effective in revealing 

hidden details in images with low contrast, often caused by factors such as glare or inadequate 

lighting. 
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Despite their effectiveness, conventional methods such as HE has limitations under 

complex lighting conditions.  HE can lead to over-enhancement, causing some areas to become 

overly bright or dark, resulting in detail loss and unnatural visuals.  Additionally, it may 

introduce noise and artifacts, especially in low signal-to-noise ratio images.  Retinex-based 

methods [9, 11], while effective in certain contexts, can struggle with colour fidelity and 

balance in scenes with highly variable illumination, leading to colour distortion and 

exaggerated edges.  Their computational complexity also limits their suitability for real-time 

applications. 

2.2 Deep-learning Models 

The integration of deep learning has significantly advanced low-light image 

enhancement, enabling adaptive, algorithm-driven solutions [2, 3, 6]. End-to-end learning 

frameworks [12, 13, 15], such as LLNet [15], that utilize encoder-decoder architectures for 

simultaneous parameter optimization [14, 22, 23, 27]. These frameworks learn complex 

mappings from low-light to enhanced images, ensuring coordinated enhancement across all 

stages and resulting in improved visual quality and consistency across diverse lighting 

conditions. 

Fusion-based approaches combine images captured at different exposures, preserving 

key features from each source to restore details and correct colour imbalances. Techniques like 

Exposure Fusion and Multi-Exposure Image Fusion (MEF), aided by deep learning, merge 

exposures to maintain a natural appearance while enhancing visibility. 

Emerging unpaired learning methods address the challenge of paired datasets by using 

Generative Adversarial Networks (GANs) and adversarial training to learn mappings from 

unpaired data. Models like EnlightenGAN [10] demonstrate impressive flexibility, improving 

unpaired low and normal-light images across various real-world scenarios [20]. Overall, these 

innovations enhance the potential of low-light image enhancement by providing effective and 

adaptable solutions. 

The development in low-light image enhancement emphasizes a pivotal shift from 

dependence on traditional methodologies towards utilizing deep learning constructs, adeptly 

navigating the intricate challenges inherent to low-light imaging. While foundational methods 
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established critical precedents, the advent of deep learning has broadened the horizons for 

adaptive, algorithmic image enhancement, indicating a new era of innovation within this field. 

 Proposed Work 

3.1 MS-DCE 

The MS-DCE model is built upon the Light-Enhancement Curves (LE-Curves) [7] 

foundation, enhancing feature extraction capabilities through the incorporation of Multi-Scale 

Convolutions. To mitigate the increased parameter complexity introduced by multi-scale 

convolutions, depth-wise separable convolutions are integrated, reducing computational cost 

while maintaining performance. Additionally, an efficient PixelShuffle up-sampling technique 

is adopted to improve sampling efficiency. The overall model architecture is shown in Figure. 

2. 

 

Figure 2. The Framework of MS-DCE 

3.2 Improvements to the Model 

Multi-Scale Convolutions: Multi-scale convolutions are introduced to improve the 

model's ability to capture contextual information at varying scales, enhancing feature 

extraction.  This modification enables the model to learn from a broader set of features, 

improving its performance in handling low-light images with uneven illumination. For an input 

image 𝐼, the multi-scale convolution operation is represented as: 
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𝑌𝑠 = ∑ 𝐶𝑜𝑛𝑣𝑘(𝐼)

𝑘𝜖𝐾

 
(1) 

where 𝐶𝑜𝑛𝑣𝑘(𝐼) denotes the convolution with kernels of different sizes 𝑘𝜖𝐾 = {3 × 3,

5 × 5, 7 × 7} on the input image, and 𝑌𝑠 is the output feature map after multi-scale 

convolutions. This modification improves the ability to capture complex features in unevenly 

lit scenes, as opposed to using a single convolution kernel as in the original Zero-DCE model 

 Depth Convolution: 

𝑌𝑑
𝑐 = 𝐶𝑜𝑛𝑣𝑑

𝑐(𝐼𝑐) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐ℎ𝑎𝑛𝑛𝑒𝑙   𝑐 = 1, … , 𝐶 (2) 

where 𝐶𝑜𝑛𝑣𝑑
𝑐 (𝐼𝑐) represents the depth-wise convolution applied to each individual 

input channel. 

Pointwise Convolution: 

𝑌𝑝 = 𝐶𝑜𝑛𝑣1𝑥1(𝑌𝑑) (3) 

The total computational cost in terms of floating-point operations (FLOPs) is: 

𝐹𝐿𝑂𝑃𝑠𝑑𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒
= 𝐶 ∙ 𝐻 ∙ 𝑊 ∙ 𝑘2 + 𝐶′ ∙ 𝐻 ∙ 𝑊 (4) 

Compared to the standard convolution in the original Zero-DCE, depth-wise separable 

convolutions greatly reduce the computational complexity while maintaining performance, 

making the model more efficient. 

PixelShuffle for Up-sampling: Instead of traditional up-sampling methods, MS-DCE 

uses PixelShuffle, a technique that efficiently increases image resolution by rearranging the 

feature map’s channel information into spatial dimensions, improving sampling efficiency and 

reducing blurring artifacts. 

3.3 Improvement of Loss Function 

To control the underexposed and overexposed regions, Guo et al. [7] introduced an 

exposure control loss function 𝐿𝑒𝑥𝑝 to regulate the exposure level. The loss 𝐿𝑒𝑥𝑝 is defined as: 
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𝐿𝑒𝑥𝑝 =
1

𝑀
∑ |𝑌𝑘 − 𝐸|

𝑀

𝑘=1
 (5) 

In this research, to enhance the capabilities of the ZERO-DCE framework in low-light 

image enhancement, introduces a novel loss function, BrightPenaltyLoss (BPLoss), designed 

to mitigate overexposure and underexposure issues [18, 19, 24].  The core innovation of 

BPLoss lies in its brightness penalty mechanism, which regulates the overall brightness of the 

image by penalizing pixels that exceed a predefined brightness threshold. First, BPLoss 

computes the average brightness of local regions through average pooling and compares it to a 

target brightness value, using the mean squared error (MSE) to minimize the difference.  

Second, it imposes a penalty on pixels whose brightness surpasses the specified threshold, 

thereby controlling overly bright regions.  The final loss function is a weighted sum of the MSE 

and the penalty term, ensuring that the image brightness aligns with the desired value while 

preventing excessive brightness. The mathematical formulation of BPLoss is given by: 

𝐿𝑏𝑝 =
1

𝑀
∑ |𝑌𝑘 − 𝐸|

𝑀

𝑘=1
+ 𝜔 ∗

1

𝑀
∑ max(0, 𝑌𝑘 − 𝑇)2

𝑀

𝑘=1
 (6) 

where 𝑌𝑘 denotes the pixel intensity of the enhanced image, 𝐸 represents the target 

exposure level, and 𝑇 signifies the predefined threshold to identify overexposed regions. 𝑀 is 

the total number of pixels in the image, and 𝜔 is a weighting factor that controls the relative 

importance of penalizing overexposure compared to achieving the target exposure level. The 

second term introduces a quadratic penalty for pixels exceeding the overexposure threshold 𝑇. 

This penalty is activated only for pixels where the intensity  𝑌𝑘 surpasses 𝑇, effectively 

suppressing overexposure artifacts without affecting correctly exposed regions. The inclusion 

of 𝜔 allows for fine-tuning the sensitivity of the loss function to overexposure, offering 

flexibility in balancing exposure correction and overexposure mitigation. 

Colour Constancy Loss: It is a correct potential color deviation in the enhanced image, 

building upon the Gray-World color constancy hypothesis. This loss also establishes 

relationships among the three adjusted channels. The color constancy loss 𝐿𝑐𝑜𝑙 is defined as: 

𝐿𝑐𝑜𝑙 = ∑ (𝐽𝑝 −  𝐽𝑞)
2

∀(𝑝,𝑞)∈𝜀

, 𝜀 = {(𝑅, 𝐺), (𝑅, 𝐵), (𝐺, 𝐵)} (7) 
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To further improve the image enhancement process in the framework of ZERO-DCE, 

this research proposes an innovative loss function, the ColorDynaLoss (CDLoss), aimed at 

ensuring colour consistency across the enhanced image. By considering the dynamic range of 

the image and weighting the loss of colour consistency, a more effective method is provided 

for colour balance and contrast adjustment in enhancing the low-light images. This loss 

function occurs during the improvement of low-light images to ensure that the colour 

consistency of the scene is preserved. The formal definition of CDLoss is as follows: 

𝐿𝑐𝑑 = ∑ 𝑊𝑑𝑟 ⋅  (𝐽𝑝 −  𝐽𝑞)
2

∀(𝑝,𝑞)∈𝜀

, 𝜀 = {(𝑅, 𝐺), (𝑅, 𝐵), (𝐺, 𝐵)} 

𝑊𝑑𝑟  =  
𝑚𝑎𝑥(𝐼)  −  𝑚𝑖𝑛(𝐼)

𝑚𝑎𝑥(𝑚𝑎𝑥(𝐼)  −  𝑚𝑖𝑛(𝐼))
 

(8) 

where 𝐽𝑝 and 𝐽𝑞 denote the colour intensity values of the two corresponding pixels in 

the enhanced image across the colour channels 𝑅, 𝐺 and 𝐵. The set 𝜀 includes all possible pairs 

of these colour channels. 𝑊𝑑𝑟 denotes a dynamic range weight. Here, 𝑚𝑎𝑥(𝐼) and 𝑚𝑖𝑛(𝐼) refer 

to the maximum and minimum intensity values across the entire image I, respectively. The 

normalization by the maximum dynamic range across the image ensures that 𝑊𝑑𝑟 scales the 

loss according to the relative dynamic range of the image, thereby adapting the influence of 

colour consistency loss based on the image's overall exposure level. 

The core objective of CDLoss is twofold. Firstly, it aims to minimize the squared 

difference in colour intensity between each pair of colour channels, ensuring that the colour 

balance is maintained post-enhancement. Secondly, by incorporating the dynamic range weight 

𝑊𝑑𝑟, CDLoss adapts the penalty for colour inconsistency based on the dynamic range of the 

image, thereby ensuring that the colour fidelity is preserved especially in images with a wide 

dynamic range.  

 Empirical Analysis  

4.1 Implementation Details and Datasets 

To minimize the influence of external factors, the same SICE training set [26] and 

hyperparameters as those in the original Zero-DCE paper are adopted. The MS-DCE model is 
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trained using 360 multi-exposure sequences from the first part of the SICE dataset. This Part1 

subset includes 3022 images with varying exposure levels, which are randomly divided into 

2422 images for training and the rest for validation. All training images are resized to 512×512. 

The system is implemented in PyTorch and runs on NVIDIA 4080 GPUs with a batch size of 

8. Filter weights in each layer are initialized using a Gaussian distribution (mean = 0, standard 

deviation = 0.02), and biases are set to a constant value. The ADAM optimizer with default 

parameters is employed for network optimization, maintaining a fixed learning rate of 1e-4. 

The weights 𝑊𝑐𝑜𝑙 and 𝑊𝑡𝑣 are assigned values of 0.5 and 20, respectively, to ensure proper 

balance among the loss components. 

4.2 Benchmark Evaluations 

 The MS-DCE model was evaluated against the original Zero-DCE model by 

reproducing its results using publicly available open-source code and the recommended 

parameters. Quantitative evaluations were performed on the Part2 subset of the SICE dataset 

[26], which consists of 229 multi-exposure sequences with corresponding reference images. 

For this evaluation, the first three low-light images from each sequence were selected, and all 

images were resized to 1200×900×3. This process resulted in a total of 687 pairs of low-light 

and normal-light images. The comparison results are summarized in Table 1 

 

 

Methods PSNR↑ SSIM↑ MAE↓ 

RetinexNet[11] 15.98527 0.547565 34.67509 

LIME[27] 16.17153 0.575655 33.59297 

EnlightenGan[17] 16.68133 0.593574 32.08510 

Zero-DCE[7] 16.88485 0.593650 31.75830 

Proposed 17.21068 0.596319 30.55651 

 

 

Table 1. Quantitative Comparisons of Low-Light Images are Conducted using Full-

Reference Image Quality Assessment Metrics. The Best Results are Highlighted in Red, 

while the Second-Best Results are shown in Blue. 
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4.3 Visual and Perceptual Comparisons 

Considering the scarcity of datasets for complex lighting scenes, images with complex 

lighting conditions were selected from the LIME [7] and DICM [12] datasets for evaluation. 

The performance of the proposed method was compared with EnlightenGAN, the original 

Zero-DCE model, and the latest low-light enhancement models. A typical visual comparison 

scene is shown in Fig. 3 and 4. Compared with other methods, MS-DCE can better maintain 

the texture of the towel under the front irradiation of the room lamp. In an outdoor scene with 

sufficient light, the proposed model did not exhibit noticeable overexposure. MS-DCE 

effectively enhanced dark areas while preserving the colour of the input image and also 

produced favourable results in regions with adequate brightness. 

Similar to the Zero-DCE experiment, a user study was conducted to quantitatively 

evaluate the individual visual quality of the traditional and proposed methods. Both approaches 

were tested on low-light images from the DICM, LIME and other datasets. For each enhanced 

image, the corresponding input image was provided as a reference. A total of 10 participants 

independently assessed the visual quality of the enhanced images. Furthermore, a new criterion 

was introduced to identify cases of excessive brightness enhancement. The training was 

performed by observing: 

(1) whether the result contains overexposed/underexposed artifacts or overexposed/ 

under enhanced areas. 

(2) Whether there is colour deviation in the results. 

(3) Whether the resulting texture is unnatural and the noise is obvious. 

(4) The result is whether there is an unnatural brightness caused by overexposure. 

The visual quality ratings ranged from 1 to 5, with 1 indicating the worst quality and 5 

representing the best quality. The average subjective scores for each image set are presented in 

Table 2, demonstrating that the results of this research were more favoured by the participants. 
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4.4 Quantitative Comparisons 

For full-reference image quality assessment, Mean Absolute Error (MAE), Structural 

Similarity Index (SSIM) [26], and Peak Signal-to-Noise Ratio (PSNR dB) were utilized to 

quantitatively evaluate the performance of various methods on the Part2 subset of the SICE 

dataset [26]. The proposed MS-DCE model outperforms LIME, EnlightenGAN, the original 

Zero-DCE, and other competing methods, demonstrating superior capability in enhancing low-

light image quality. As illustrated in Figure. 3 and 4, the proposed approach more effectively 

restores image details in high-exposure regions of images with uneven illumination. 

Additionally, the computational efficiency did not increase significantly, as shown in Table 3, 

with the added 0.001s of operation time on the GPU being negligible and substantially lower 

than that of other models.  

Methods LIME DICM Average 

RetinexNet[11] 4.135/3.203 4.201/3.146 4.168/3.175 

LIME[27] 3.891/3.562 4.002/3.471 3.946/3.516 

EnlightenGan[17] 4.256/2.995 4.309/2.890 4.283/2.942 

Zero-DCE[7] 4.287/2.532 4.330/2.346 4.309/2.439 

CIDNet[23] 4.452/2.815 4.498/2.476 4.475/2.646 

Proposed 4.602/2.941 4.635/2.305 4.618/2.623 

Table 2. User Study (US)↑ and Perceptual Index (PI)↓ Scores on the Image Sets (LIME, 

DICM) are REPORTED.  
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Figure 3.  Visual Contrast of Non-Uniform Light Images of Typical Models. The Red 

Boxes Indicate Significant Differences. 

 

Figure 4. Visual Comparisons on Representative Low-Light Images are Presented, 

with Red Boxes Highlighting the Noticeable Differences. 
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Methods Times Platform 

RetinexNet[11] 2.2658 PyTorch (GPU) 

LIME[27] 2.3954 PyTorch (GPU) 

EnlightenGan[17] 0.5750 PyTorch (GPU) 

Zero-DCE[7] 0.0113 PyTorch (GPU) 

CIDNet[23] 0.0679 PyTorch (GPU) 

Proposed 0.0086 PyTorch (GPU) 

 Conclusion 

This research introduces the MS-DCE model, an enhanced version of the Zero-DCE 

framework for low-light image enhancement. The MS-DCE model incorporates key 

innovations, including multi-scale convolutions for improved feature extraction, depth-wise 

separable convolutions to reduce computational complexity, and PixelShuffle up-sampling for 

more efficient resolution enhancement. Additionally, two novel loss functions-

BrightPenaltyLoss (BPLoss) and ColorDynaLoss (CDLoss)-are proposed to address 

overexposure, underexposure, and colour fidelity, ensuring more balanced enhancement across 

varying lighting conditions. Experimental results on the SICE Part2 dataset demonstrate the 

superiority of MS-DCE over the original Zero-DCE and other models, with notable 

improvements in handling both overexposed and underexposed regions, as well as in 

preserving colour consistency. These advancements highlight the MS-DCE model’s potential 

for high-quality low-light image enhancement and provide a more effective solution for 

complex illumination conditions. Future work will focus on refining adaptive brightness and 

dynamic colour adjustment techniques to further optimize low-light enhancement in 

challenging scenarios. 

 

 

Table 3. Runtime (RT) Comparisons, Measured in Seconds, are Provided. The Best 

Results are Highlighted in Red, while the Second-best Results are Marked in Blue. 
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