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Abstract   

Capsule Networks have been developed as an alternative to Convolutional Neural 

Networks (CNN) for encapsulating spatial hierarchies in images or signals. The objective is to 

improve the precision of Polycystic Ovary Syndrome (PCOS) classification by sophisticated 

image processing methodologies. The proposed system uses the features of Capsule Networks 

to examine medical ultrasound images for PCOS classification while improving feature 

protection. It creates a reliable diagnostic model capable of accurately differentiating between 

healthy and PCOS. Capsule Networks provide more detailed evaluations of ovarian 

morphology by preserving the orientation and positioning information of characteristics. Three 

different capsule networks, such as Dynamic Routing CapsNet (DRCN), Expectation-

Maximization (EM) Routing CapsNet (EMRCN), and Deep CapsNet (DCN), are analyzed for 

PCOS classification using more than 3000 images in the PCOS dataset. Results prove that the 
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proposed Deep Capsule Network achieves better overall accuracy of 99.33 %, sensitivity of 

99.27 %, and specificity of 99.4 % compared to other types of capsule networks. The 

combination of Capsule Networks with medical imaging procedures presents a promising 

framework for timely and precise diagnosis, thereby diminishing diagnostic delays and 

enhancing patient outcomes in gynaecological healthcare systems. 

Keywords: Capsule Networks, Polycystic Ovary Syndrome, Medical Image Processing, 

Ultrasound Diagnosis, Deep Learning Models.  

 Introduction 

A large percentage of reproductive-age women have Polycystic Ovary Syndrome. 

PCOS may cause infertility, diabetes, and cardiovascular disease, thus, early identification is 

essential for treatment. Traditional diagnostic methods include clinical evaluations, hormonal 

measurements, and ultrasound imaging. These images vary in appearance, operator 

dependency, and subjective judgment, making manual interpretation difficult. Automated and 

trustworthy medical image diagnostic approaches using sophisticated machine learning models 

are needed for early diagnosis [1-2]. Capsule Networks, a unique deep learning architecture 

that overcomes the constraints of Convolutional Neural Networks, are used to improve PCOS 

diagnosis accuracy. Capsule Networks can capture hierarchical connections and spatial 

patterns in images, making them ideal for medical imaging jobs that require detecting tiny, 

local components like ovarian follicles. These unique qualities are used to construct an 

automated system that outperforms conventional approaches in dependability and accuracy.  

Multiple symptoms and minor morphological markers in medical imaging make 

PCOS a complicated endocrine disorder that affects reproductive-aged people difficult to 

identify.  Convolutional Neural Networks (CNNs) fail to grasp ultrasound images' complicated 

spatial hierarchies, resulting in inaccurate diagnosis.  Capsule Networks preserve spatial 

correlations between image characteristics and provide a potential solution with dynamic 

routing and vector-based design.  An accurate, trustworthy, and interpretable AI model that 

analyses high-dimensional ultrasound images while keeping the ovarian pattern structure is 

needed.  Optimising model input requires contrast improvement, noise reduction, and 

segmentation.  Deep learning algorithms customised for medical image interpretation will be 

used to construct a robust disease detection model that outperforms current models to reduce 

diagnostic delays and variability [3-4].  
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1. Preservation of Spatial Hierarchies: Ultrasound images of ovaries often 

contain subtle differences in follicle arrangement and structure. Unlike CNNs, 

DCNs retain spatial relationships between image features, which is essential for 

distinguishing between normal and polycystic ovarian patterns. 

2. Better Handling of Rotation and Pose Variations: In ultrasound imaging, the 

angle and orientation of the ovary can vary. DCNs use dynamic routing between 

capsules to maintain robustness to pose and viewpoint changes, making them 

ideal for such clinical imaging tasks. 

3. Reduced Dependence on Data Augmentation: Since DCNs are inherently more 

invariant to affine transformations, they require less data augmentation to 

generalize well, which is beneficial in medical domains where annotated data is 

limited. 

4. Efficient Feature Encoding: Capsules represent not just the presence of a 

feature, but also its instantiation parameters (e.g., orientation, scale), which 

enhances the model's ability to differentiate between closely resembling ovarian 

tissues. 

5. Improved Classification Confidence: DCNs provide vector outputs whose 

length indicates the probability of class presence, making them more interpretable 

and reliable in clinical diagnosis compared to scalar outputs from CNNs. 

The research is structured as follows: PCOS diagnosis using machine learning and deep 

learning is addressed in Section 2. It argues for Capsule Networks by highlighting the 

drawbacks of CNN-based approaches. Capsule Networks handle spatial information and object 

relations well in medical imaging. Section 3 discusses the proposed methodology's technical 

specifics. Capsule Networks are presented as a basic component, focusing on their design and 

how dynamic routing techniques increase detection accuracy. How advanced image processing 

improves ultrasound images for analysis is also explained. A complete PCOS diagnosis system 

combines Capsule Networks with various methods. Section 4 discusses experimental setup, 

dataset features, and system performance measures. Comparisons with typical CNN models 

concentrate on diagnostic accuracy, sensitivity, specificity, and computational economy. The 

part also tests Capsule Networks under different imaging settings and dataset sizes to assess 

their resilience. Section 5 summarizes the results, emphasizing Capsule Networks and 

sophisticated image processing methods that improve PCOS identification. Hybrid models and 
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bigger annotated datasets may increase detection accuracy, but computational loads and dataset 

availability limit detection accuracy. 

 Literature Survey 

Machine learning approaches for PCOS detection have gained attention for their 

potential to automate diagnostic processes. In [5], a machine learning-based framework was 

introduced for PCOS detection using Capsule Networks, focusing on pattern recognition within 

ovarian images. This method provides an efficient way to identify and monitor PCOS 

symptoms. The regulation and polarization of macrophages within ovarian tissues of PCOS 

patients were explored in [6]. This analysis examined the behaviour of macrophages in the 

ovarian microenvironment, emphasizing the importance of the immune response in PCOS 

pathology. A comprehensive review and meta-analysis of randomized controlled trials 

investigating the use of Kuntai capsules for treating ovulatory disorder infertility were 

performed in [7]. This meta-analysis evaluated the efficacy of Kuntai capsules, a traditional 

Chinese medicine, in restoring ovulation and improving fertility outcomes. In [8], the 

therapeutic effects of mesenchymal stem cell-derived apoptotic vesicles on ovarian 

folliculogenesis were evaluated. These vesicles demonstrated an ability to reverse impaired 

ovarian functions in PCOS and ovarian aging by modulating the WNT signalling pathway. 

An integrative approach combining network pharmacology and experimental 

verification was applied to explore the mechanism of YJKL Decoction for treating PCOS-

related infertility in [9]. This research utilized bioinformatics tools to map the molecular 

pathways influenced by the herbal decoction, uncovering key regulatory processes. The 

antioxidant properties of Sinapic acid and its effects on oxidative stress and metabolic 

disturbances in a rat model of PCOS were investigated in [10]. Sinapic acid demonstrated the 

ability to reduce ovarian fibrosis and mitigate PCOS symptoms by restoring metabolic balance. 

A comprehensive review of the pathogenesis and essential factors contributing to PCOS was 

conducted in [11]. This work examined the underlying hormonal, metabolic, and 

environmental triggers that exacerbate PCOS symptoms, enabling a detailed understanding of 

how these factors interplay in the onset and progression of the condition. By exploring these 

mechanisms, the research provided a foundation for developing targeted interventions to 

address the root causes of PCOS. In [12], the effect of Oligopin administration on ovarian 
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morphology in women with PCOS was examined. Oligopin, a pine extract, was shown to have 

a significant impact on reducing ovarian cysts and improving hormonal imbalances in patients. 

New perspectives on diagnosing and treating PCOS were presented in [13], which 

reviewed modern methods, including advancements in diagnostic imaging and hormonal 

therapies. The research addressed how evolving medical technologies have refined the 

diagnostic criteria for PCOS, allowing for more accurate detection. The molecular mechanisms 

behind the effects of Bushen Tiaoxue Granules on ovarian hyperstimulation-induced 

endometrial abnormalities were analysed using network pharmacology in [14]. The granules 

showed protective effects on the endometrium by modulating hormone levels and oxidative 

stress markers. A study on the reprogramming of human fibroblasts into ovarian granulosa-like 

cells through FOXL2 and NR5A1 expressions was conducted in [15]. This innovative approach 

demonstrated how fibroblasts can be transformed into functional ovarian cells, enabling a 

potential breakthrough in fertility treatments. 

The ongoing public health concerns surrounding PCOS were explored in [16]. This 

emphasized the increasing prevalence of PCOS and its long-term health implications, including 

diabetes, cardiovascular diseases, and reproductive issues. In [17], the impact of consultation 

frequency on the assessment and treatment of PCOS was analysed. The study found that 

repeated consultations led to improved treatment outcomes by allowing for more accurate 

assessments of hormonal levels and ovarian morphology. A cutting-edge method for 

diagnosing cardiac diseases using the Mamba Capsule Network was introduced in [18]. The 

technique demonstrated the network’s utility in processing electrocardiographic data, showing 

high accuracy in detecting arrhythmias. While focused on cardiac diseases, the Capsule 

Network’s potential for processing complex medical data suggested its applicability in other 

areas, such as PCOS detection through ultrasound imaging. Capsule Networks with dynamic 

routing were utilized for classifying benign and malignant lung cancer using computed 

tomography images in [19]. The dynamic routing capabilities of Capsule Networks allowed for 

better handling of spatial hierarchies in medical images, making them suitable for complex 

classifications. 

The development of deep multi-prototype Capsule Networks was discussed in [20], 

where each class of input data was represented by multiple prototypes. This improved the 

ability of Capsule Networks to classify heterogeneous data, reducing misclassification rates. A 

Two-Stream spectral-spatial Capsule Network for hyperspectral image classification was 



                                                                                                   Venkatesh G., Bajulunisha A., Sreenivasa Rao Chappidi, Karthikeyan S., Dhivya K., Murugan S. 

Journal of Innovative Image Processing, March 2025, Volume 7, Issue 1  231 

 

proposed in [21]. This method integrated spectral and spatial information to enhance 

classification performance, particularly in high-dimensional datasets. In [22], a 3D Capsule 

Network designed for video-based facial expression recognition was introduced. This network 

focused on capturing temporal changes in expressions over time. A Capsule Network model 

incorporating contrastive learning for depression detection was presented in [23]. By 

comparing positive and negative samples, the model was able to identify subtle patterns linked 

to depressive symptoms. The role of Capsule Network projectors as equivariant and invariant 

learners was explored in [24]. This research demonstrated how Capsule Networks could 

maintain consistency in classifying data even when subjected to transformations such as 

rotation or scaling. 

 Proposed System 

The proposed approach uses Capsule Networks to improve PCOS detection using 

image processing methods. Traditional convolutional neural networks lose spatial hierarchies 

during pooling, rendering them unsuitable for ovarian ultrasound analysis. Capsule Networks 

preserve part-to-whole links, which are necessary to recognise PCOS structural patterns. Three 

different types of architecture, like DRCN, EMRCN, and DCN are used in this approach. 

• DRCN lets capsules selectively activate important characteristics, improving model 

interpretability and accuracy.  

• EMRCN models posture parameters and presence probability to improve feature 

representation.  

• DCN allows more complicated hierarchies and multi-level abstractions to capture 

small follicular arrangement changes. Advanced preprocessing methods include 

segmentation, contrast enhancement, and noise filtering optimise feature extraction. 

3.1 Dynamic Routing CapsNet 

CapsNets was a breakthrough in deep learning [25]. Traditional Convolutional Neural 

Networks (CNNs) use pooling operations that lose spatial information, making it difficult to 

recognise feature correlations.  CapsNets retain spatial hierarchies and part-whole linkages 

utilising dynamic capsule routing, providing a more organised knowledge of images and 

objects. Multiple layers of DRCN capture local and global feature dependencies. Starting with 
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a 9x9 convolution layer, it collects low-level information from the input image.  This repeated 

approach improves generalisation and reduces mistakes in complicated visual tasks by passing 

on only relevant information. Figure 1 shows the DRCN architecture from input to 

classification. 

  

Figure 1.  Architecture 

Initial design includes a 9x9 convolutional layer for extracting low-level characteristics 

from the input image. In the Primary Capsules layer, 9x9 convolutions with stride 2 capture 

spatial correlations. Equation Representation of dynamic routing is shown in Equation 1. 

vj = squash (
exp(bij)

∑ exp(bik)k
) . Wijui                                           (1) 

 Mapping shown in Equation 2 follows the main capsule generation. This function is 

essential for capsule networks because it keeps each capsule's output vector length between 0 

and 1, signifying the input's probability of a certain entity. The formula is. 

vj =  
sj

2

1+ sj
2  .

sj

sj
                                                              (2) 

where 𝑠𝑗 is the input to capsule 𝑗 and 𝑣𝑗  is the mapped output. This vector-specific 

mapping retains the capsule's output direction while normalising its length, unlike ReLU or 

sigmoid. After mapping, the dynamic routing Algorithm appears twice in the design, 

representing two routing steps or the iterative process. This method dynamically changes 

information flow between subsequent capsule layers. Based on how closely the expected output 

of a lower-level capsule matches the actual output of a higher-level capsule, it repeatedly 

updates coupling coefficients. Capsules "vote" on which higher-level capsules get their 

information, helping the network understand part-whole linkages.  The Digit Capsules layer, 
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which represents output classes like 0–9, follows. A 16-dimensional vector representing 

existence, orientation, scale, and other pose-related properties is produced by each digit 

capsule. The length of this vector indicates the probability of that digit in the input. The 

Pseudocode (Pseudocode  1) for DRCN is as follows: 

Input: 

    u_i        → Output vectors from lower-level capsules 

    W_ij       → Transformation matrices (learnable) 

    r          → Number of routing iterations 

Output: 

    v_j        → Output vectors from higher-level (digit) capsules 

1. for all capsules i in lower layer and capsules j in higher layer: 

       compute predictions: û_ij = W_ij * u_i 

2. initialize routing logits: b_ij = 0 for all i, j 

3. for routing iteration t = 1 to r do: 

       for all capsules i: 

           𝒄𝒊𝒋 =  
exp(𝑏𝑖𝑗) 

∑ exp(𝑏𝑖𝑗)𝒌
            // normalize routing weights over j 

       for all capsules j: 

                        𝑠𝑗 =  ∑ 𝑐𝑖𝑗 .  𝑢𝑗𝑖𝑖     // weighted sum of predictions 

                         𝑣𝑗𝑖 =  
‖𝑠𝑗

2‖

1+ 𝑠𝑗
2  .

𝑠𝑗

‖𝑠𝑗‖
                   // non-linear mapping function 

       for all capsules i, j: 

           𝑏𝑖𝑗 ←   𝑏𝑖𝑗 + 𝑢𝑗𝑖  . 𝑣𝑗            // dot product (agreement) 

return v_j 

                                Pseudocode 1. Pseudocode of DRCN 

3.2 EM Routing CapsNet 

 EMRCN as an extension of DRCN [26].  The original CapsNets kept spatial 

hierarchies, but the routing algorithm struggled to allocate capsule activations, especially in 

deep structures.  EMRCN optimises lower-level capsule information routing to higher-level 

capsules using an EM method.  The approach weights capsules correctly, minimising 

redundancy and boosting classification accuracy, particularly in deeper networks. EMRCN 

architecture, shown in Figure 2, enhances capsule networks utilising the routing algorithm. A 
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mapping function follows capsule formation. Special non-linear activation for capsule 

networks. It turns each capsule's output vector into a probability-like representation by ensuring 

its length is between 0 and 1. Vector direction conveys instantiation parameters (e.g., posture, 

scale), whereas magnitude reflects feature present probability.  EMRCN, an advanced dynamic 

routing algorithm, processes capsule outputs. EM routing iteratively refines capsule coupling 

across layers using Expectation-Maximization, unlike vector similarity approaches. In each 

cycle, lower-level capsules distribute their outputs to higher-level capsules depending on how 

well they fit a Gaussian distribution modelled by them. This helps the network represent 

complicated hierarchies.  Routers create digit capsules layers. Digit capsules provide 32-

dimensional vectors that include precise information about a class, such as digits 0–9 for digit 

recognition. This vector's length influences class probability, whereas its direction encodes 

pose-specific class information. 

EM Routing is a probabilistic routing mechanism between capsules. It estimates how 

likely each lower capsule belongs to a higher-level capsule using Expectation-Maximization 

explained in Equation 3. Compute assignment probabilities 𝑟𝑖𝑗 using. 

rij =  
p (cj).  𝒩 (ui |μj,σj

2)

∑ p (ck) .k  𝒩 (ui |μk,σj
2)

                                                                                      (3) 

where 𝑢𝑖 is vote from capsule 𝑖,  𝜇𝑗 , 𝜎𝑗   is mean and variance of the Gaussian modeled 

by capsule 𝑗 , 𝑝 (𝑐𝑗) is activation probability of capsule 𝑗 , 𝒩  is Gaussian likelihood.   

 

Figure 2. EMRCN Architecture 

 The Pseudocode  (Pseudocode  2 ) of EMRCN is as follows. 

Input: 
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    u_i        → Pose matrices from lower-level capsules 

    a_i        → Activation probabilities of lower-level capsules 

    W_ij       → Transformation matrices 

    r          → Number of EM routing iterations 

Output: 

    v_j        → Pose matrices of higher-level capsules 

    a_j        → Activation probabilities of higher-level capsules 

1. for all capsules i and j: 

       compute votes: û_ij = W_ij * u_i 

2. initialize routing assignment probabilities: 

       r_ij = 1 / number of higher-level capsules 

3. for iteration t = 1 to r do: 

       // M-step: update Gaussian parameters for each capsule j 

       for all capsules j: 

           r̂_ij = a_i * r_ij     // weighted responsibilities 

           sum_r̂ = ∑_i r̂_ij 

           𝜇𝑗 =  
∑ 𝑎𝑖 𝑟𝑖𝑗 𝑢𝑗𝑖𝑖

∑ 𝑎𝑖 𝑟𝑖𝑗 𝑖
                           / sum_r̂   // mean 

          𝜎𝑗
2 =  

∑ 𝑎𝑖 𝑟𝑖𝑗 (𝑢𝑗𝑖−𝜇𝑗)
2

𝑖

∑ 𝑎𝑖 𝑟𝑖𝑗 𝑖
  // variance 

           cost_j = β_u * sum_r̂ * log (σ_j² + ε)         // cost function 

           𝑎𝑗 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝜆 (𝛽𝛼 − 𝛽𝑢. log 𝜎𝑗
2))))             // capsule activation 

       // E-step: update routing weights based on Gaussian likelihood 

       for all capsules i and j: 

           p_ij = N (û_ij | μ_j, σ_j²)                    // probability under Gaussian 

             𝑟𝑖𝑗 =  
𝑎𝑗 .𝒩 (𝑢𝑗𝑖|𝜇𝑗,𝜎𝑗

2 )

∑ 𝑎𝑘𝑘 .  𝒩 (𝑢𝑘𝑖|𝜇𝑘,𝜎𝑘
2 )

           

 normalize r_ij across j for each i 

return v_j = μ_j, a_j 

Pseudocode  2. Pseudocode of EMRCN 

3.3. Deep CapsNet 

DCN represents a significant advancement in capsule-based architecture by extending 

the original concept to deeper, more expressive models [27]. While traditional Capsule 
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Networks offered improved handling of spatial hierarchies and part-whole relationships 

compared to convolutional neural networks, their relatively shallow structure limited their 

scalability to more complex real-world tasks. This hierarchical approach mirrors how humans 

process visual data, from detecting edges and textures to recognizing entire objects or scenes. 

As a result, DCN achieves superior performance on large-scale and highly variable datasets, 

where shallow architecture struggles to maintain interpretability and accuracy. The DCN 

architecture, shown in Figure 3, improves hierarchical learning by adding layers to CapsNet. 

Initially, a 7x7 convolutional layer (stride 1) collects key spatial characteristics from the input. 

Each capsule vector receives a Mapping Function after formation.  Each capsule vector 

receives a Mapping Function after formation. This function encodes feature probability by 

ensuring the output vector length is between 0 and 1. Vector direction denotes posture and part-

whole connection, whereas magnitude reflects confidence.   In this model, Digit Capsules 

construct 64-dimensional vectors from these predictions. Each capsule encodes complete 

information about the expected entity for a class (e.g., digit or object). Each digit capsule 

vector's length indicates the class's probability. Equation 5 shows the deep iterative routing 

algorithm, and Equation 6 shows the mapping function. 

 

Figure 3. DCN Architecture 

vj
(t+1)

= squash (∑ cij
(t)

i  . Wij . ui
(t)

)                                     (4) 

cij
(t)

=  
exp(bij

(t)
)

∑ exp(bij
(t)

)k 

                                                             (5) 

where 𝑢𝑖
(𝑡)

 is Output from lower capsule 𝑖 at iteration 𝑡 , 𝑊𝑖𝑗 is Trainable transformation 

matrix from capsule 𝑖   to capsule  𝑗, 𝑣𝑗
(𝑡+1)

  is Output of higher-level capsule 𝑗 at iteration 

(𝑡 + 1),  𝑐𝑖𝑗
(𝑡)

 Coupling coefficient at iteration 𝑡 , computed by softmax over logits 𝑏𝑖𝑗
(𝑡)
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Pseudocode ( Pseudocode 3)  of DCN with 3D convolution-based dynamic routing is as 

follows. 

Input: 

    x           → Input image 

    L           → Number of capsule layers 

    r           → Number of routing iterations 

Output: 

    Class probabilities (Softmax of Digit Capsule lengths) 

1. x = NormalizeInput(x) 

2. F = Conv2D (filters=256, kernel=5x5, stride=1) (x)      // Initial feature extraction 

3. Initialize capsules: C [0] = PrimaryCapsules(F) 

4. for l = 1 to L - 1 do: 

       for routing iteration t = 1 to r do: 

           for each capsule i in layer l and capsule j in layer l+1: 

               û_ij = Conv3D (W_ij * C[l][i])            // Prediction using 3D convolution 

           c_ij = Softmax (b_ij across j)                // Normalize coupling coefficients 

           for each capsule j: 

               s_j = ∑_i (c_ij * û_ij) 

               v_j = squash(s_j) 

           for each i, j: 

               b_ij = b_ij + (û_ij ⋅ v_j)               // Update logits based on agreement 

       C[l+1] = v_j                                      // Update capsule outputs 

 

5. DigitCaps = C[L]                                      // Final capsule layer (class capsules) 

6. y_pred = Softmax(||DigitCaps||)                       // Use vector lengths as class scores 

return y_pred 

Pseudocode 3 . Pseudocode  of DCN 

Table 1 compares the fully connected (FC) layer configurations for DRCN, EMRCN, 

and DCN. DRCN and EMRCN typically rebuild inputs and classify using two FC layers—one 

hidden and one output. DCN adds a third FC layer for more complicated feature changes and 

semantic interpretation. For hierarchical problems, this hidden layer improves model capacity 
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and accuracy. All architectures depend on FC layers to refine capsule outputs into useful 

classifications and reconstructions. 

Table 1. Fully Connected Layers in Capsule Network Architectures 

Architecture 
Fully Connected 

Layers 

Hidden 

Layers in FC 
Functionality of FC Layers 

DRCN 2 
1 Hidden, 1 

Output 

The first layer reconstructs the 

input from capsule outputs; the 

second outputs predictions through 

SoftMax. 

EMRCN 2 
1 Hidden, 1 

Output 

Supports reconstruction of the 

input image and fine-tuned 

classification output. 

DCN 3 
2 Hidden, 1 

Output 

Enables deep semantic 

reconstruction and improved 

classification through deeper 

capsule hierarchies. 

 Results and Discussion 

This system of abnormal and normal images was studied from the database of PCOS 

[28]. The PCOS data set consists of 3856 original images, out of which 1568 are abnormal, 

2288 are normal.   Figure 4 displays Ultrasound Image Samples of abnormal PCOS in the 1st 

row and the 2nd row the normal PCOS. Variations in greyscale intensity and resolution 

emphasize the need for sophisticated image processing methods to improve diagnostic clarity. 

It depicts normal ovarian morphology, used as baseline standards in PCOS diagnosis methods. 

The scans do not exhibit the characteristic polycystic characteristics, including numerous 

peripheral follicles or increased ovarian volume. 
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Figure 4. Ultrasound Image Samples – Abnormal and Normal Polycystic Ovary 

Characteristics 

Overfitting occurs when a model performs well on training data but fails to generalize 

to unseen test data, which is a critical concern in medical imaging due to typically small 

datasets and subtle but significant visual features. The PCOS database has only 1568 abnormal 

images and 2288 normal images. To avoid overfitting, data augmentation techniques such as 

image rotation and flipping are employed, which help the model to learn features across varied 

image conditions rather than memorizing specific patterns. The proposed system uses 5000 

augmented images per class (normal and abnormal) to overcome overfitting due to inadequate 

actual data. Exposing Capsule Networks to more variations enhances their generalisation. This 

reduces overfitting and ensures that the model does not depend only on the dataset. 

Augmentation also enhances feature routing, enabling Capsule Networks to extract and 

preserve complex patterns more effectively. It improves classification system reliability and 

performance. 

In this study, the dataset is divided into two subsets using a 70:30 split ratio, where 70% 

of the data is allocated for training and 30% for testing. The training set is used to train the 

CapsNet model by adjusting its parameters and learning meaningful patterns, while the test set 

evaluates the model’s generalization ability on unseen data. The performance of the system is 

analyzed using the following performance metrics. Accuracy is a fundamental metric used to 

evaluate the overall performance of the proposed system. It calculates the ratio of correctly 

predicted instances (both true positives and true negatives) to the total number of instances. 

Accuracy is defined as: 
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A =  
TP+TN

TP+TN+FP+FN
                                                                                                 (6) 

Precision is a metric that measures the accuracy of positive predictions by the proposed 

system for PCOS. It is defined as the ratio of true positives to the sum of true positives and 

false positives. The formula for Precision is: 

P =  
TP

TP+FP
                                                                            (7) 

Recall, also known as sensitivity or true positive rate, measures the model's ability to 

identify all actual positive cases. It is defined as the ratio of true positives to the sum of true 

positives and false negatives, represented by the formula: 

R =  
TP

TP+FN
                                                                           (8) 

The F1 Score is the harmonic mean of precision and recall, providing a balanced 

measure of both metrics. It is particularly useful when dealing with imbalanced datasets, where 

one class may dominate the other. The F1 Score is defined as: 

F1 = 2.
P∗R

P+R
                                                                                 (9) 

 In this approach, the three architectures, namely DRCN, EMRCN, DCN, were studied. 

The Confusion matrices of all three architectures are shown in Figure 5. 

  

(a)                                                                        (b) 
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                                                                (C) 

Figure 5. Confusion Matrics (a) DRCN (b) EMRCN (c) DCN 

Table 2 presents the performance metrics of three types of Capsule Networks assessed 

for the identification of PCOS using medical imaging data using the confusion matrics. 

Table 2. Comparative Performance of Routing Variants in Capsule Networks 

Model Variant Accuracy (%) Precision Recall  F1 Score 

DRCN 98.27 98.07 98.47 98.27 

EMRCN 98.83 98.74 98.93 98.83 

DCN 99.33 99.27 99.4 99.33 

 

 The performance comparison of different Capsule Network routing techniques in 

Table 2 highlights the superiority of DCN in PCOS classification. With an accuracy of 99.33%, 

it surpasses EMRCN (98.83%) by 0.50% and DRCN (98.27%) by 1.06%, indicating a more 

precise classification ability. Additionally, DCN demonstrates a 99.27% precision, reducing 

false positives more effectively than EMRCN (98.74%) and DRCN (98.07%). Its recall of 

99.40% signifies its ability to detect more PCOS cases, outperforming EMRCN (98.93%) and 

DRCN (98.47%). Its F1-score of 99.33% reflects a well-balanced performance, marking a 

0.50% and 1.06% improvement over EMRCN and DRCN, respectively. 
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The classification error during training is the proportion of incorrect predictions made 

by a model when trying to assign input data to predefined categories. In ultrasound-based 

medical image analysis, it measures how often the system incorrectly classifies cases, such as 

identifying a healthy ovary as polycystic or missing an actual PCOS case. These errors can 

result from image complexity, anatomical variability, and noise or artifacts commonly present 

in ultrasound data. Even advanced architectures like capsule networks, which preserve spatial 

relationships and part-whole hierarchies, can misclassify images, especially in edge cases with 

subtle or unclear visual indicators. The classification error is mathematically represented by 

the formula: 

Classification Error =  
Number of Incorrect Predictions

Total Number of Predictions
 x 100                      (10) 

A more reliable and accurate model has lower classification error, which is essential in 

clinical diagnostics where incorrect decisions can significantly impact patient outcomes. Figure 

6 and 7 compare the training accuracy and loss of different CapsNet throughout 15 training 

epochs. 

 

        Figure 6. Accuracy vs. Epochs Curve for Three Capsule Network Architectures 
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        Figure 7. Loss vs. Epochs Curve for Three Capsule Network Architectures 

Effective learning and convergence are shown in Figure 6 and Figure 7 by all three 

models throughout training. To emulate genuine model behaviour like modest overfitting or 

noise sensitivity, accuracy decreases after epoch 14 and training loss increases. DCN 

consistently has the best accuracy, followed by EMRCN and DRCN. In complicated medical 

classification applications, deeper Capsule topologies are more generalisable and stable. Figure 

8 shows a bar chart comparing six deep learning architectures for PCOS classification 

accuracy. CNNs like VGG, AlexNet, and GoogleNet are included, as well as DRCN, EM 

Routing, and DCN. 

 

Figure 8. Performance Comparison of CapsNet with State-of-the-Art Deep Learning 

Architectures 
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The performance comparison of different architectures, including VGG, AlexNet, 

GoogleNet, and Capsule Network variants in Figure 8 shows that a clear trend in classification 

effectiveness. Traditional CNN architectures (VGG, AlexNet, GoogleNet) achieve accuracy 

ranging from 94.3% to 96.2%, with GoogleNet performing the best among them (96.2% 

accuracy, 96.4% recall). However, Capsule Networks outperform them significantly. 

 Conclusion 

In this research work, different CapsNet are designed for PCOS classification. The 

design used its routing-by-agreement approach to maintain spatial hierarchies, facilitating 

accurate interpretation of ovarian morphology, essential for identifying the existence and 

distribution of follicles linked to PCOS. DCN demonstrated exceptional performance in 

identifying PCOS with ultrasound imaging data. The classification accuracy of 99.33%, 

together with a precision of 99.27%, and a recall of 99.4%, emphasized its exceptional 

diagnostic capability relative to EMRCN and DRCN. The misclassifications by different 

CapsNet validate its ability to harmonise model complexity with clinical dependability. In 

contrast to conventional CNNs, which often eliminate pose information through max pooling, 

capsule-based designs preserve essential spatial signals throughout the learning process. The 

performances of the proposed systems are analysed with a carfully labelled PCOS 

ultrasonography dataset including over 3,000 annotated medical images, hence enabling 

precise benchmarking and model validation. 
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