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Abstract   

Craters are one of the most noticeable structures on planetary surfaces, which are 

utilized for spacecraft navigation, hazard identification, and age calculation. A number of 

factors make crater detection a difficult job, including complicated crater characteristics, 

variable sizes and forms of the craters, planetary data types, and data resolution. An 

innovative method for identifying and examining craters on the lunar surface using the 

remote sensing images from Chandrayaan-2 and employing deep learning techniques is 

proposed in this research. By making use of the extensive dataset from Chandrayaan-2, the 

proposed approach, YOLOv8-CCNet, uses convolutional neural networks (CNNs) and 

YOLOv8 to automatically detect crater features with great accuracy and efficiency. The 

proposed approach of using modified YOLOv8-CCNET showed an accuracy of 90% and IoU 

of 0.75. By combining remote sensing data processing with deep learning, the study aims to 

improve the precision of crater detection and characterization. This analysis helps classify 

different geological areas on the Moon. The techniques developed in this research not only 

increase the understanding of the Moon but could also be applied to studying other planets, 

contributing significantly to the field of planetary science. 

Keywords: YOLO, Convolutional Neural Networks, Image Processing, Crater Detection, 

Remote Sensing. 
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 Introduction 

Remote sensing has revolutionized crater detection on celestial bodies like the Moon, 

providing a non-invasive means to study their morphology and distribution. By analyzing 

statistics obtained from orbiting spacecraft such as Chandrayaan-2, remote sensing strategies 

discover and characterize craters based on awesome spectral signatures and surface 

topography. Utilizing advanced algorithms and multispectral imaging, this technique allows 

the automated detection of craters throughout extensive lunar terrains [1]. Finding lunar 

craters is essential for scientific research, navigation, and terrain assessment during lunar 

exploration missions. Conventional methods for locating craters depend on semi-automated 

techniques or labor and time-intensive hand inspection. Deep learning algorithms provide a 

precise and efficient means of automating this process [2].  

Understanding the distribution of craters in terms of their location and size is essential 

for studying the objects that collide with planets and how such collisions have shaped the 

solar system. By analyzing this data, scientists can estimate the frequency of impacts across 

the entire solar system [3]. Researchers also examine impact craters to learn more about 

various factors that affect their appearance, including the amount of energy involved in an 

impact, the angle at which the object strikes the surface, the properties of the material making 

up the planet's top layer, the size and type of the object causing the impact, other factors like 

the strength of materials and gravity [4]. This knowledge has many practical applications, 

such as helping spacecraft navigate through space or selecting suitable landing sites for future 

missions. Crater analysis plays an important role in choosing landing sites for exploration 

missions. It helps in finding safe and scientifically valuable spots for both robotic and human 

exploration efforts [5]. By studying craters, it is possible to gain insights into the geological 

processes of celestial bodies and use this knowledge to plan future exploration 

missions. Crater detection poses numerous challenges because of the complex nature of 

planetary surfaces and imaging conditions [6]. One massive problem is the presence of 

diverse terrain capabilities that make it difficult to understand or mimic crater signatures, 

including shadows, boulders, and geological formations [7]. Additionally, versions in lighting 

fixtures situations, surface texture, and image decision can introduce noise and artifacts, 

making it tough to differentiate craters from background clutter [8]. Moreover, the abnormal 

form and numerous morphologies of craters complicate their identity and classification, 

requiring sophisticated algorithms capable of spotting diverse crater kinds [9]. Overcoming 
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those challenges in crater detection is essential for advancing the information of planetary 

surfaces and supporting destiny exploration missions.  

As per the study by [10], You Only Look Once (YOLO) is one of the most widely 

used algorithms for object detection. It uses the context to its advantage and predicts objects 

based on the global information in an image. It also does detecting small, multi-scale items. 

In this study, a modified YOLOv8 is proposed with the aim of identifying lunar craters. As 

mentioned in [11], data collection, annotation, model training, and inference are the steps in 

the YOLOv8 process that lead to reliable, highly accurate, and scalable crater detection. The 

author’s [12] states that the most prominent geomorphic structural features on the surfaces of 

the planets are craters. In addition to being clear indicators of the physical features of the 

lunar surface, their traits, like morphological and spatial distribution, play a significant role in 

establishing surface chronologies and providing further context for understanding the lunar 

development. 

The main objective of this research is to develop an automated system to detect and 

analyze craters in Chandrayaan 2 lunar surface images. With the help of computer vision and 

machine learning, craters were accurately identified while minimizing false detections. By 

extracting meaningful crater features, the system provides insights into lunar terrain 

complexities, facilitating scientific investigation and advancing our understanding of the 

lunar landscape and its geological evolution.  

 Related Work 

Recent advancements in lunar crater detection encompass various approaches. 

YOLOv8, a deep learning model, performs better in terms of speed and accuracy, automating 

crater identification through image analysis. Its efficiency lies in processing vast datasets 

swiftly, aiding planetary exploration. Complementing this, the Hough Transform detects 

craters by recognizing circular shapes, optimizing edge detection for precise results. Anchor-

free deep learning, as explored in CenterNet, provides another method by focusing on crater 

center point detection and size regression, achieving high recall and precision. Additionally, 

models like YOLO-Crater customize YOLO architecture for lunar and Martian crater 

detection, showcasing strong performance and generalizability. These diverse methods 

highlight ongoing efforts to enhance automated lunar crater detection, important for planetary 

research and exploration. 
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For small-scale crater detection, [4] introduces an automatic method using anchor free 

deep learning. This method effectively detects various types of impact craters, including 

dispersal and connective ones. Another approach for small crater detection is YOLO-Crater 

model that is used to detect small craters on the Moon and Mars [6]. This model addresses the 

crater sample imbalance problem by replacing the VariFocal and EIoU loss functions and 

incorporating a CBAM attention mechanism to reduce interference. Their outputs showed 

that the data type and visualization augmenting techniques significantly influence detection 

accuracy, with the DOM-data type and CE-2 DOM-MMS method yielding the best results. 

The Lunar YOLO-Crater outperforms YOLOX in both regions, with F1 scores of 74.66% 

and 76.11%, respectively. 

Table 1. Summary of Literature Review 

Author(s) Study Focus Methods / Models 

Used 
Key Findings 

S. Zhang et al 

[4] 

Deep Learning 

based impact crater 

detection 

CenterNet model 

without anchors and 

transfer learning 

Recall of 73.66% and 

precision of 78.27% 

Nour Aburaed 

et al [5] 

  

Yolov5, Yolov6, 

mAP, mAR  

SGD /Adam / AdamW 

  

AdamW optimizer 

outperforms SGD and 

Adam  

L. Mu et al [10] Model for Small 

Crater Detection 

VariFocal and EIoU 

losses, the CBAM 

attention mechanism, 

and DOM-MMS  

It was discovered that 

the ideal stretching 

technique was CE-2 

DOM-MMS (Max- 

Min Stretching). 

Atal Tewari et 

al [13] 

Difficulties in crater 

recognition because 

of the craters' 

difficult 

characteristics  

Semantic 

segmentation, object 

detection, 

and classification. 

Analyse each 

architecture's crater-

detecting efficacy and 

possible uses. 

Yaqiong Wang, 

Xiaohua 

Tong[14] 

  

CDA using a 

random projection 

depth function and a 

conventional texture 

feature 

CDA, Candidate 

Craters Detection, 

random projection 

depth function 

  

Competent in locating 

craters on multiple 

scales, particularly 

small-scale craters. 

Chen Yang, 

Chunali Li, Bin 

Automated age 

determination and 

DL, ML, 

CNN(ResNet101) 

Two-phase crater 

detection method to 
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Lui [18] 

  

crater identification    

  

extract a significant 

amount of semantic 

data 

Vashi 

Chaudhary, 

Digvijaysinh 

Mane [19] 

Bounding box-based 

object detection. 

CNN-Based Feature 

Extraction using Relu 

activation 

 

YOLO can be used 

for database creation 

and crater counting 

Riccardo La 

Grassa, Gabriele 

Cremonese [20] 

Super-resolution-

based impact crater 

detection 

YOLOLens(Generator 

and YOLOv5), ADAM 

optimizer 

SR enhances the 

object detection 

capability, in terms 

of in terms of 

Precision, Recall, and 

mAP   

 

The study discusses the difficulties of crater detection due to the intricate properties of 

craters and surveys deep learning crater detection algorithms by classifying them into three 

parts [13]. This research examines the evolution of these automatic crater detection 

algorithms and re-implements semantic segmentation-based crater detection algorithms on a 

standard dataset to evaluate their accuracy and speed. It also identifies several open issues 

and suggests promising future directions for improving crater detection approaches. To 

compare the efficiency of YOLOv5 and YOLOv6 in crater detection, the researchers 

conducted an experimental review using Martian/Lunar Crater Detection Dataset and various 

optimization functions-SGD, Adam, and AdamW [15]. Although YOLOv6 is generally 

considered an advanced version of YOLOv5 and AdamW is thought to outperform other 

optimizers, their experiments show inconsistent outcomes [16-17]. In some cases, YOLOv5 

outperforms YOLOv6 with each optimization function excelling under dissimilar conditions 

[18]. Similarly, there have been many previous researchs and studies for crater detection, 

including image processing [22], machine learning [23][24], and deep learning models [25-

28]. Table 1 presents a summary of the literature review. This research proposes the use of a 

modified YOLOv8, YOLOv8-CCNET, for carter detection and analysis.  

The main contributions of this research are: 

• Development of a high-resolution lunar surface image dataset specifically from the 

Chandrayaan-2, consisting of 1400 images of 512x512 pixels and focusing on the 

south pole region of the Moon.  
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• YOLOv8 was modified with a backbone optimized for spherical features to accurately 

detect craters in lunar image segments. The improved YOLOv8 model achieved an 

accuracy of 90%, as seen in the Experimental result.  

• The proposed model is an effective and scalable system for detecting craters on the 

southern pole region of the Moon in real time. 

3.    Proposed Work 

In this research, a modified Yolov8 algorithm called YOLOv8-CCNet (YOLOv8 with 

CNN for Chandrayaan-2) is proposed for better detection of craters on the lunar surface. 

YOLOv8 was modified with a backbone optimized for spherical features to accurately detect 

craters in lunar image segments. A custom CNN with circular filters was used in the early 

layers for this purpose. Most CNNs use square convolutional filters (e.g., 3×3, 5×5), which 

are good at detecting lines, edges, and corners, but not necessarily ideal for shapes like circles 

or ellipses, which are central to crater detection. The circular filters helped in detecting crater 

rims early in the network, reducing false positives from non-circular depressions, and 

increasing generalization across differently sized craters. Figure 1 shows details of the 

workflow of this study. 

 

Figure 1. Block Diagram of the Process. 

3.1 Data Acquisition 

High-resolution lunar surface images of the Moon's south pole region, acquired by the 

Chandrayaan-2 mission, were downloaded from ISRO’s website [29]. Ensuring a 

comprehensive coverage of this specific area is essential as the South Pole region holds 
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significant scientific interest. By obtaining images specifically from this region, the analysis 

can focus on exploring and understanding the characteristics of the lunar surface in the south 

pole area, contributing to the knowledge of lunar geology and aiding in the detection and 

analysis of craters in this particular region. As shown in Figure 2, different instrument 

footprints were used for detecting different craters with respective swath and spatial 

resolution. The 4 payloads used were IIRS (Imaging Infrared Spectrometer), OHRC (Orbiter 

High Resolution Camera), DFSAR (Dual Frequency Synthetic Aperture Radar), and TMC 

(Terrain Mapping Camera). 

 

Figure 2. Ch-2 Tool used to get the Images of the Moon. 

Different steps required to get craters in specific locations as shown in Figure 3. 

Initially, the instrument was selected, then the PDS Product and the area of interest, which 

includes the latitude and longitude of the required location. Optional steps include the 

observation date range or searching by the PDS Product ID. 

 

Figure 3. Options to Select the Instrument, Product Type, Area of Interest 

3.2 Crater Annotation and Labeling  

In order to properly train a machine learning model, it had to be provided with a 

precise definition of what constitutes a crater in the lunar landscape. For this, manual locating 
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and labelling every crater in the images was processed using LabelImg tool. This involved 

labelling each identified crater and drawing precise bounding boxes around them. All 

bounding boxes were assigned the label "Crater" to create a single-class dataset suitable for 

the YOLOv8-CCNet. 

The ground truth dataset was created by a careful annotation process using LabelImg. 

The green coloured bounding boxes as shown in Figure 4 are used to label the craters. The 

craters in each segmented image were manually annotated using the LabelImg tool. Bounding 

boxes were drawn around each crater, ensuring accurate delineation. In the annotation 

process, bounding boxes were constructed around every crater, which gave the model a 

"teaching signal." This signal helped the model learn the patterns and characteristics that 

distinguish craters from the surrounding lunar terrain. Feature extraction was done to capture 

the features of each crater. After annotation, each dataset was reviewed to eliminate 

inconsistencies, ensuring precise and accurate ground-truth labels.  

To improve the model's capacity to generalize, a range of data augmentation 

techniques was applied. Rotation and flipping simulated different orientations of the craters 

to increase variability. Brightness and Contrast Adjustments simulated different lighting 

conditions on the lunar surface. Scaling and cropping addressed variations in crater sizes, 

including those partially visible at the edges of images.  

The original high-resolution lunar images were split into smaller tiles, each sized at 

512x512 pixels. This segmentation allowed for better identification of smaller craters and 

ensured that all details in the images were preserved. Additionally, this approach facilitated 

parallelized processing during model training, improving computational efficiency. A total of 

1400 images were generated, out of which 70% went into training, 20% into validation, and 

10% for testing. The training dataset served as the foundation for training the crater detection 

model, providing accurate examples for the model to learn from. 

 

Figure 4. Crater Marking using Label Img Tool 
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3.3 Crater Detection and Analysis using YOLOv8-CCNET 

For real-time object detection applications, such as recognizing craters in lunar 

images, modern object-detection algorithms like YOLOv8 are preferred due to their 

effectiveness. YOLOv8 is an advanced deep learning model explicitly designed for these 

tasks. The model was trained with a generated training dataset, allowing it to extract the 

distinct features of lunar craters as it goes. 

In order to differentiate craters from other lunar features, the CNN then selects 

relevant features from the image segment. Bounding boxes surrounding possible crater 

locations are predicted by the proposed model, which also provides confidence scores 

indicating the model's level of assurance for each prediction. Because of its simplified 

pipeline, the proposed model is a useful tool for analyzing the lunar surface since it can locate 

craters with accuracy in real time. Through the use of deep learning techniques, YOLOv8 has 

improved capacity to identify and characterize lunar features automatically, which advances  

the knowledge of the surface dynamics and geological history of the Moon. The architecture 

of YOLOv8 is shown in Figure 5.  

 

Figure 5. Architecture of YOLOv8 [30] 

An important feature of the proposed model is that it directly predicts the centre of an 

object instead of the offset from a known anchor box. There are 3 essential blocks in the 

algorithm which are: Backbone, responsible for extracting meaningful features from input 

images, Neck, that performs feature aggregation and is connecting link between the head and 

backbone, and finally the Head, that generates network’s output.  

CSPDarknet 

The proposed model uses an updated version of the CSPDarknet backbone, which has 

been optimized for better feature extraction while maintaining computational efficiency. This 
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backbone introduces more efficient convolutional layers and integrates Cross Stage Partial 

connections, which help to lessen the amount of computation while preserving accuracy. 

Depth-wise Convolutions  

The proposed model uses depth-wise separable convolutions, which decompose 

standard convolutions into depth-wise and point-wise operations, leading to a significant 

reduction in the number of parameters and FLOPs (Floating Point Operations). 

PANet with Path Aggregation 

 The proposed model features an improved Path Aggregation Network (PANet) for 

better multi-scale feature fusion. This architecture improves the flow of features from lower 

layers to higher layers, increasing the model’s ability to detect objects of different sizes. 

BiFPN 

 The introduction of Bidirectional Feature Pyramid Networks (BiFPN) allows the 

network to aggregate features more effectively from different scales, further improving 

detection performance on small and large objects. 

Decoupled Head 

 The proposed model adopts a decoupled head structure where the classification and 

localization tasks are separated into different branches. This separation helps the network to 

specialize more effectively in each task, leading to improved accuracy. 

Efficient I/O 

 The head is designed to be more efficient in its computation, reducing the latency and 

making the model faster without sacrificing accuracy. 

Anchor-Free Design 

The proposed model adopts an anchor-free design, which simplifies the network by 

removing the need to manually set anchor boxes. This leads to easier training, reduces 

hyperparameter tuning, and often improves performance, particularly on datasets with 

varying object sizes. 
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To optimize YOLOv8-CCNet for the specific task of detecting lunar craters, the 

architecture was customized as follows: 

• Feature Extraction Backbone: Additional convolutional layers were added with 

smaller kernel sizes to capture finer details such as crater edges and textures. Instead 

of using regular square-shaped filters (which look at square patches of pixels), this 

custom layer uses circular-shaped filters to focus on round features in the image. A 

square grid was built. For each point in the grid, the distance between the point and 

center of circle was calculated. If a point is within the radius (like inside a circle), it 

was marked as 1, otherwise 0. The result was a binary 2D mask that looks like a circle 

in the middle of a square. The pixels outside the circular region were ignored. Also, 

initial layers used the Leaky ReLU activation function to better handle variations in 

pixel intensities. 

• Feature Pyramid Network (FPN): The FPN was enhanced by introducing a fourth 

resolution scale. This adjustment improved the detection of both small micro-craters 

and large craters within the same model framework. 

• Adaptive Anchor-Free Mechanism: The model was adapted to use an anchor-free 

mechanism that focused on center-based predictions. This adjustment proved 

beneficial for detecting circular and elliptical craters on the lunar surface. 

• Loss Function: A custom Intersection over Union (IoU) loss function was 

implemented to emphasize accurate bounding box localization, particularly for 

smaller craters that tend to be harder to detect. 

• Fine-Tuning Pre-Trained Weights: The model was initialized with pre-trained 

weights. Fine-tuning these weights on the lunar crater dataset helped accelerate the 

training process and enhanced the model’s ability to adapt to new task. 

These improvements made the proposed model more efficient, flexible, and accurate, 

particularly in challenging object detection scenarios involving varying object sizes, complex 

backgrounds, and real-time requirements. When presented with a new lunar image segment, 

the YOLOv8-CCNET model follows a specific pipeline. First, image preprocessing confirms 

that the image is in the expected format for the model. Then, the CNN extracts relevant 

features from the image segment, which are essential for distinguishing craters from other 
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lunar features. The model predicts bounding boxes around potential crater locations and 

assigns confidence scores that reflect the model's certainty about each prediction. Optional 

post-processing techniques can be applied to further refine the results. Figure 6 shows graphs 

for training/validation box loss, training/validation class loss, precision, mAP, recall as 

obtained after training the model. 

 

Figure 6. Training Graphs of the Proposed Model 

During training, the model ingested the labelled data, learning to recognize the unique 

features of craters. After the training process, the model's performance was evaluated over a 

different set of lunar images not used in training phase. This evaluation determined the 

model's ability to apply its innovative knowledge of crater detection to unseen data. The 

model achieved significant success, with the trained model achieving a 90% accuracy rate in 

identifying craters within the test images.  

4.   Results and Discussion 

For better understanding how the proposed model worked as compared to other 

models, a comparison based on five performance metrics – Recall, Precision, Accuracy, F1-

score, and IoU was performed. The results are given in Table 2.  The performance of the 

model was compared with YOLOv5, Faster RNN, and DeTr ResNet. Confusion matrices, 

accuracy graphs were compared to get the general idea of selecting the best model for lunar 

crater detection. As can be seen in Table 2, YOLOv8-CCNET achieved an accuracy of 90%. 

YOLOv8-CCNET can effectively identify unique crater characteristics in lunar images, 

utilizing a Convolutional Neural Network architecture specifically customized to detect 

spherically shaped objects like crater. In the following section, a detailed comparison analysis 

is presented. 



Automated Lunar Crater Detection using YOLOv8 on Chandrayaan-2 Imagery 

ISSN: 2582-4252  260 

 

During experimentation, it was observed that YOLOv8-CCNET and YOLOv5 both 

excel at processing images quickly. Both the models exceled at processing images quickly, 

making them ideal for real-time object detection tasks. YOLOv5 gave an accuracy of 84% 

which is lower than the accuracy of the proposed model. YOLOv8-CCNET at 90% accuracy 

is more accurate than YOLOv5. Figure 7 shows the confusion matrix for the YOLOv8-

CCNET and YOLOv5. As depicted in Figure 7, the comparison between YOLOv8-CCNET 

and YOLOv5 reveals their respective performance metrics in lunar crater detection. The 

model exhibits a True Positive rate of 0.89, indicating its capability to correctly identify 

craters, while YOLOv5 shows a True Negative rate of 0.11, suggesting its effectiveness in 

accurately identifying non-crater areas. Main drawback observed in YOLOv5 is it’s 

incapability to detect smaller craters. Small craters were more accurately detected by the 

proposed model. 

 

Figure 7. Confusion Matrix a) YOLOv8-CCNET b) YOLOv5 

Two more state-of-the-art models used in literature - Faster RCNN and DeTr ResNet 

were also used for comparison. When compared with Faster RCNN, Faster RCNN produced 

an 80% accuracy rate on the Detectron model. Detectron is a software system developed by 

Facebook AI Research that applies cutting-edge object detection algorithms. DeTr ResNet 

model gave an accuracy of 75%. It is a type of CNN architecture known for its ability to learn 

from deeper layers. This characteristic can be beneficial for complex image recognition tasks 

like crater detection. Figure 8 shows the comparison chart for all four models. As observed 

from the graph, YOLOv8-CCNET gives the highest accuracy. Table 2 gives the detailed 

comparison statistics. 
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Table 2. Comparison of Performance Metrics 

MODEL Accuracy Recall Precision F1-Score IoU
 

YOLOv8-CCNet 90% 0.9 0.88 0.88 0.75 

YOLOv5 84% 0.85 0.83 0.83 0.71 

Faster R-CNN 80% 0.8 0.76 0.77 0.68 

DeTr ResNet 75% 0.75 0.72 0.73 0.65 

 

 

Figure 8. Comparison of Performance Metrics 

4.1 Detecting Craters in an Image 

         To test the effectiveness of the model, the test images were first converted into 

the proper format. In Figure 9, predictions on a single image are showcased, providing 

valuable insights into the model's performance and the craters detected within the image. The 

predictions include their corresponding confidence scores. Confidence scores indicate the 

model's level of certainty regarding each detected crater. Higher confidence scores typically 

suggest that the model is more confident in its detection, while lower scores may indicate 

greater uncertainty. As can be seen in the figure, the predictions given by YOLOv8-CCNET 

are fairly accurate. 

 

Figure 9. Predictions given by YOLOv8 on a Single Image 
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5.   Conclusion 

In conclusion, the methodology proposed in this research provides a thorough strategy 

for detecting craters on the lunar surface using high-resolution lunar images. the Chandrayaan 

2 tool segments the original images into smaller sections, allowing for detailed analysis of 

regions of interest that may contain craters. The annotation process, supported by LabelImg, 

is essential in establishing high quality ground truth dataset for training crater detection 

model. Through annotation, researchers can accurately pinpoint craters and provide precise 

bounding boxes around them, laying a strong foundation for model training. The integration 

of YOLOv8, a robust object detection algorithm, with customized CNN specifically designed 

to detect circular objects, further improves the crater detection process. Trained on the 

annotated dataset, YOLOv8-CCNET can effectively identify unique crater characteristics in 

lunar images, utilizing a Convolutional Neural Network architecture to achieve reliable 

detection capabilities. A rigorous evaluation of the model yields an impressive 90% accuracy 

rate on a different validation dataset, demonstrating the model's capability to locate and 

detect craters on the lunar surface. In general, the methodology's successful implementation 

shows promise for automated lunar crater exploration and analysis. In addition to accurately 

identifying craters, the automated system will further extend its capabilities to measure the 

diameters of detected craters. By implementing advanced image-processing procedures and 

using machine learning algorithms, the system will be able to estimate crater diameters with 

high precision. This enhancement will provide valuable quantitative data on the size 

distribution of lunar craters, aiding in geological studies and facilitating comparisons with 

terrestrial impact cratering processes. This study demonstrates the application of YOLOv8-

CCNET for automated lunar crater detection, demonstrating how deep learning models can 

aid planetary exploration. The customized adjustments to YOLOv8’s architecture, combined 

with rigorous data preparation and augmentation techniques, resulted in a model that 

achieved high accuracy. These findings provide a strong foundation for future work in 

automating planetary feature detection, providing significant insights into the role of deep 

learning in space research. 
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