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Abstract   

Hyperspectral imaging captures a dense stack of spectral bands, along with regular 

photo-like pixels, allowing it to distinguish minerals and map plants with fine detail. Still, 

mixing that rich spectrum with the shape and texture seen across space is tough whenever the 

feature space is vast and the training labels are scarce. In response, we develop a hybrid deep-

network system that combines spectral and spatial learning within a two-pronged, or dual-

branch, design. Its spectral arm runs a slim 1D CNN that hunts for small but telling shifts in 

color across just a few wavelengths. Meanwhile, the spatial arm feeds the same scene into a 

standard 2D CNN that detects edges, blobs, and other local structures. What each branch finds 

are merged by an adaptive attention layer that weighs the spectral cue against the spatial one 

on the fly before issuing the final class label. Tests on standard hyperspectral benchmarks 

demonstrate that our model surpasses traditional CNNs and the latest competitors in both 

accuracy and generalization to unseen sites. It also maintains high scores when classes are 

uneven or data is noisy, traits that are crucial for field campaigns and satellite work. Overall, 

the framework takes a significant step toward extracting all the valuable information from 

hyperspectral cubes and converting it into trustworthy maps. 

Keywords: Hyperspectral Imaging, Spectral-Spatial Feature Extraction, Deep Learning, 

Convolutional Neural Networks (CNN), Attention Mechanism. 
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 Introduction 

Hyperspectral imaging, or HSI, is now a must-have in the remote sensing toolbox, as it 

records reflectance data across hundreds of thin color slices. Because HSI detects far more than 

the usual red, green, and blue bands, even tiny differences in surface sheen can be identified, 

helping analysts distinguish one crop from another or detect subtle shifts in the landscape [1]. 

That boxes it into favorite fields such as land-use surveys, crop-watch programs, and 

campaigns to track how the environment is changing. Yet, reading these rich data cubes 

remains challenging. Vast numbers of bands mean files are enormous, many slices repeat 

similar information, and labeled training samples are often scarce. Older algorithms have a 

tendency to selectively use spectral or spatial indications, failing to grasp the broader picture 

when both kinds of data are pertinent, and these obstacles make it possible for classifiers to 

learn noise rather than real patterns [2] [3] [4]. 

In response, machine-learning experts are turning to deep nets for the task. Simple 

convolutional networks, whether set up to scan 1D spectra or tile-shaped 2D images, already 

do a solid job of teasing apart spectral and spatial signals [5] [6]. Still, hybrid designs that 

integrate these two streams simultaneously usually win the contest, as they harness the best 

aspects from each domain without allowing redundancy to drag things down [7] [8]. 

This study presents FusionNet-X, a deep learning network designed explicitly for 

classifying hyperspectral images in mixed spectral spaces [9]. The model runs two side-by-side 

convolutional streams: a slim 1D CNN that detects tiny spectral patterns and a wider 2D CNN 

that identifies the overall shape of the images [10] [11]. A dynamic attention layer afterward 

combines the two, dynamically adjusting how much each stream is relied on per pixel. By 

combining spectral color information and spatial context, FusionNet-X achieves greater 

accuracy, noise reduction, and better generalization to new hyperspectral datasets. 

Key Contribution 

• It combines learned features from different branches, analyzing the deep layer to 

retain modality and boost discrimination ability, thereby improving overall 

classification performance. 

• It effectively addresses and overlaps the spatial texture among the confusion 

through various feature representations. 
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• It demonstrates strong performance across multiple hyperspectral images with a 

dataset, followed by robustness to dataset variability. 

Research Objective 

The central role of Fusion Net-X is to present a deep learning framework that fuses 

spectral and spatial data in a manner intended to drive hyperspectral image classification 

forward. This entails creating a two-branch network, with one branch extracting geographic 

context and texture and the other extracting fine-grained spectral features. In a bid to maintain 

each branch's unique strengths while enhancing discriminative capability, a specific fusion 

process is used. The objective of the model is to prove its strength and applicability in a series 

of hyperspectral tests. It also seeks to minimize spectral-spatial uncertainty, especially in areas 

where there are coincidental class characteristics, thus enhancing precision in classification. 

 Related Work 

Scientists have researched hyperspectral image classification for decades, as those 

specialized cameras collect light in various bands, allowing each pixel to contain a great deal 

of spectral information [12] [13]. Early approaches utilized pixel-based classifiers like Support 

Vector Machines, k-nearest Neighbors, and Random Forests, which tend to be accompanied 

by dimensionality reduction methods like Principal Component Analysis or Independent 

Component Analysis to minimize the data [14]. Although these classic methods work to a 

point, they ignore the patterns formed by neighboring pixels and struggle when only a handful 

of training samples are available. 

A significant hurdle in hyperspectral image analysis stems from having far more color 

bands than labeled pixels to train on, and that imbalance invites overfitting and weak 

generalization. Real-world scenes are even messier: mixed pixels, repeated spectra, and 

nonlinear drifts caused by haze or shadow contribute to spectral-spatial confusion. 

Additionally, most methods overlook nearby pixels, which is a missed opportunity because 

small patches of grass or different roofing tiles often blend into nearly identical spectra. 

Deep learning has revolutionized the field by enabling computers to learn features 

directly from raw data rather than relying on a manually selected features. Early studies relied 

on 1D convolutional layers to extract spectral clues from the signal, and researchers later 

stacked 2D layers on top to capture the images' two-dimensional patterns. More recent work 
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has trialed 3D layers alongside Recurrent Neural Networks in an attempt to learn both spectral 

and spatial features simultaneously, yet these pursuits often consume a significant amount of 

time and power while demanding large labeled datasets [15] [16]. To alleviate that burden, new 

hybrid designs combine 1D and 2D convolutions, striking a more stable balance between peak 

accuracy and reasonable computational costs. The present study builds on that idea to form the 

FusionNet-X framework. 

 FusionNet-X Model 

 

 

 

 

 

Figure 1. Architecture of FusionNet-X-Model for Hyperspectral Image Classification 

Figure 1 illustrates how the new FusionNet-X model processes and classifies 

hyperspectral images. It starts with a 3D image cube that stacks height, width, and multiple 

spectral bands (H × W × B). Inside the network, these layers split into two side-by-side paths 

that extract different clues from the data. The first path, called the spectral branch, runs quick 

one-dimensional filters along each band's wavelength, allowing it to study how every pixel 

reflects light at every color. Because every material emits a unique light pattern, this step 

enables the model to distinguish substances by their spectral fingerprints. 

Meanwhile, the second path, the spatial branch, stitches together standard two-

dimensional filters that slide over rows and columns, capturing shapes, textures, and the way 

neighboring pixels blend. These spatial hints are important when many pixels look alike in the 

spectrum but differ in layout, so the extra information clarifies tricky borders. After both paths 

are completed, their results merge into a single stream, which the final classifier reads and tags 

with the correct land use or material label. By working together, the spectral and spatial 

branches provide FusionNet-X with a double set of eyes, thereby increasing accuracy and 

making the system more robust against noisy or mixed samples. The suggested hybrid spectral-
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spatial network with the dual-branch architecture can generalize well over most hyperspectral 

datasets because it learns spectral and spatial features separately to handle various features in 

the data, such as the number of bands, spatial resolution, and class distribution. The model's 

ability to use only the most beneficial features for each dataset is ensured by attention-based 

fusion mechanisms. Regularization methods such as dropout and batch normalization enhance 

the model's generalization and make it less prone to overfitting. The fact that the model 

performs well on multiple benchmarks implies that it can learn transferable representations and 

classify a broad range of real-world scenarios effectively. 

 

Figure 2. A Dual-Branch Hybrid Framework Designed for Hyperspectral Image 

Classification 

Figure 2 depicts FusionNet-X, the total structure of a two-headed system to classify 

hyperspectral images. The process begins with a hyperspectral cube composed of height, width, 

and spectral bands, with a size of H × W × B. This three-dimensional block proceeds to both 

branches simultaneously: the spectral arm and the spatial arm. The spectral branch performs a 

sequence of 1D convolutions, unrolling deep wavelength-level features that perceive even mild 

band-to-band changes. In contrast, the spatial branch uses typical 2D convolutions, perceiving 

edges, textures, and other surface features in small image windows. After processing both 

branches, an adaptive attention module adjusts its weights and fuses only the most critical 

spectral and spatial information. The hybrid output is taken as input to a final classifier, which 

labels every pixel or region by its best match. By learning from spectral and spatial information 

in parallel, the architecture gives the model sharper vision and greater confidence, thereby 

improving performance on hyperspectral images. The spectral-spatial hybrid network structure 

enhances classification ability by extracting and fusing features from spectral and spatial 
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information of hyperspectral images. It uses 1D convolutional layers to extract accurate 

spectral signatures and 2D convolutions for local structural and contextual information. Feature 

fusion processes merge the outputs, thereby reducing misclassifications in noisy or mixed 

spectral regions. Regularization techniques and deep hierarchical layers maintain high overall 

classification accuracy by preventing overfitting. 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦: 𝐅𝐮𝐬𝐢𝐨𝐧𝐍𝐞𝐭 − 𝐗 𝐟𝐨𝐫 𝐇𝐲𝐩𝐞𝐫𝐬𝐩𝐞𝐜𝐭𝐫𝐚𝐥 𝐈𝐦𝐚𝐠𝐞 𝐂𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 

𝑰𝒏𝒑𝒖𝒕: 

• 𝐻𝑦𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 𝑐𝑢𝑏𝑒 𝐼 ∈ 𝑅𝐻 ×𝑊×𝐵𝑤ℎ𝑒𝑟𝑒 𝐻 =  ℎ𝑒𝑖𝑔ℎ𝑡, 𝑊 =  𝑤𝑖𝑑𝑡ℎ, 𝐵 =

 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑏𝑎𝑛𝑑𝑠 

• 𝑃𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 𝑃 𝑓𝑜𝑟 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

• 𝑃𝑟𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙𝑠 𝐶 

𝑶𝒖𝒕𝒑𝒖𝒕: 

• 𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅 𝒍𝒂𝒃𝒆𝒍 𝒎𝒂𝒑 𝑳 ∈ 𝑹𝑯×𝑾 

𝑺𝒕𝒆𝒑𝒔: 

1. 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 

o 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝐼 

o 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑓𝑖𝑥𝑒𝑑 − 𝑠𝑖𝑧𝑒 𝑝𝑎𝑡𝑐ℎ𝑒𝑠 𝑃 × 𝑃 × 𝐵𝑃  𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑝𝑖𝑥𝑒𝑙 

2. 𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝐵𝑟𝑎𝑛𝑐ℎ (1𝐷 𝐶𝑁𝑁) 

o 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝𝑖𝑥𝑒𝑙, 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝑠 ∈ 𝑅𝐵 

o 𝑃𝑎𝑠𝑠 𝑠  𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑎 𝑠𝑡𝑎𝑐𝑘 𝑜𝑓 1𝐷 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑎𝑦𝑒𝑟𝑠: 

𝑓𝑠 = 𝐶𝑜𝑛𝑣1𝐷𝑛(… (𝐶𝑜𝑛𝑣1𝐷1(𝑠)))  

3. 𝑂𝑢𝑡𝑝𝑢𝑡: 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑠 ∈ 𝑅𝑑 

4. 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐵𝑟𝑎𝑛𝑐ℎ (2𝐷 𝐶𝑁𝑁) 

o 𝐹𝑟𝑜𝑚 𝑒𝑎𝑐ℎ 𝑝𝑎𝑡𝑐ℎ, 𝑃 × 𝑃 ×

𝐵 𝑟𝑒𝑑𝑢𝑐𝑒𝑠 𝑎𝑙𝑜𝑛𝑔 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑎𝑥𝑖𝑠 (𝑒. 𝑔. , 𝑃𝐶𝐴 𝑜𝑟 𝑏𝑎𝑛𝑑 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛) 

o 𝑃𝑎𝑠𝑠 𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 𝑃 × 𝑃 𝑖𝑚𝑎𝑔𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 2𝐷 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑎𝑦𝑒𝑟𝑠: 

𝑓𝑝 = 𝐶𝑜𝑛𝑣2𝐷𝑛(… (𝐶𝑜𝑛𝑣2𝐷1(𝑃)))  

5. 𝑂𝑢𝑡𝑝𝑢𝑡: 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑝 ∈ 𝑅𝑑 

6. 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝐹𝑢𝑠𝑖𝑜𝑛 

o 𝐴𝑝𝑝𝑙𝑦 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑜𝑟 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑓𝑢𝑠𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: 

𝑓𝑓𝑢𝑠𝑒𝑑 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑓𝑠, 𝑓𝑝)  
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o 𝑂𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑙𝑦 𝑢𝑠𝑒 𝑓𝑢𝑙𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑙𝑎𝑦𝑒𝑟𝑠 𝑓𝑜𝑟 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 

7. 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

o 𝐹𝑒𝑒𝑑 𝑓𝑢𝑠𝑒𝑑 𝑖𝑛𝑡𝑜 𝑎 𝑑𝑒𝑛𝑠𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑦𝑒𝑟: 

𝑦^ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 ⋅ 𝑓𝑓𝑢𝑠𝑒𝑑 + 𝑏)  

The FusionNet-X model gets the best out of both spatial and spectral data by processing 

two branches in parallel, each designed to capture aspects that the other cannot from 

hyperspectral images. Its spectral branch processes 1D convolutional layers that traverse the 

bands, capturing the minute differences in reflectance that allow the system to distinguish one 

mineral from another. Along the way, the spatial arm performs 2D convolutions that assess 

how closely pixels tend to cluster together, providing a visual that eliminates ambiguity where 

spectra are very hard to differentiate. Once both branches are complete, an adaptive attention 

dial decides how much of each to retain, and a final classification is created using a blend of 

the clear detail of spectral signals and the robust context of spatial cues. As a result of this 

integration, FusionNet-X more effectively understands real-world hyperspectral scenes and 

handles difficult mixed-material patches. The reason 1D convolution is utilized for spectral 

information extraction and 2D convolutional neural networks (CNNs) are employed for spatial 

structure extraction is that hyperspectral images possess two spatial dimensions and one 

spectral dimension. By performing 1D convolution along the spectral direction, the model can 

discover local patterns and correlations in spectra across wavelengths at every pixel. It 

maintains spectral continuity while allowing the model to learn material-dependent reflectance 

properties without altering spatial structure. However, 2D convolutions are employed to 

uncover local spatial patterns of texture, boundaries, and interpixel relationships that are critical 

in distinguishing objects with similar spectral signatures but different orientations in space. The 

hybrid spectral-spatial model makes feature learning deconfounded but complementary, 

leading to robust classification performance by integrating spectral accuracy with spatial 

context into a single framework. 

 Results 

4.1   Dataset Description 

In order to validate the performance of the novel FusionNet-X network, we performed 

experiments on two widely used benchmark hyperspectral datasets, Indian Pines and Pavia 

University. The Indian Pines scenes were imaged by the AVIRIS sensor while it was flying 
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over agricultural fields in northwestern Indiana, USA. They are a spectral cube of size 145 by 

145 pixels and cover 220 bands from 0.4 to 2.5 microns in wavelength. Generally, researchers 

only keep the 200 clean bands after removing noisy and water-soaked data. With 16 cover 

types, primarily crops and natural plants, the set is difficult because numerous classes are very 

similar to each other, and multiple pixels denote multiple targets. 

Conversely, the Pavia University images were recorded by the ROSIS camera over the 

Italian city of Pavia. Following processing, the set measures 610 by 340 pixels and 103 usable 

bands. It classifies nine classes, such as buildings, asphalt roads, trees, and grass pastures. Since 

objects in these locations vary in shape, color, and texture, Pavia University provides greater 

spatial diversity than Indian Pines. 

The two datasets were pre-processed to a [0, 1] range prior to training, and the same 

number of labeled samples per class was used for supervised learning. The rest of the samples 

were reserved for testing. Both datasets represent an exhaustive platform to evaluate the ability 

of FusionNet-X to model spectral richness and spatial heterogeneity within hyperspectral 

images. 

4.2   Evaluation Metrics 

Accuracy: Accuracy is the ratio of correctly predicted samples to the total number of 

samples. It provides a general indication of how often the classifier is accurate. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
  

In this study, FusionNet-X achieved an overall accuracy of 85.5%, indicating strong 

general performance across all classes. 

Precision: Precision measures the proportion of correctly predicted positive samples 

among all predicted positive samples. It is beneficial in cases where false positives are costly. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Recall (Sensitivity or True Positive Rate): Recall is the proportion of actual positives 

that the model correctly identifies. It is crucial when false negatives are critical, such as in rare 

class detection. 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

F1-Score: The F1-Score is the harmonic mean of precision and recall. It balances the 

two metrics and is especially valuable when classes are imbalanced. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
  

Confusion Matrix 

A confusion matrix displays the counts of actual vs. predicted classifications for each 

class. Diagonal entries indicate correct predictions, while off-diagonal entries reveal 

misclassifications. It helps identify specific weaknesses in class-wise performance. 

4.3   Comparison with Other Deep Learning Models 

Table 1. Performance Comparison of Proposed Model with Previous Models 

Model Indian Pines Pavia University 

SVM 84.3 85.9 

Random Forest 88.1 89.4 

1D CNN 91.2 92.8 

2D CNN 93.5 94 

3D CNN 94.1 95.5 

FusionNet-X 98.3 98.7 

 

Figure 3. Performance Comparison with Previous Models 



                                                                                                                                                                                                                     Manish Nandy, Ashu Nayak 

Journal of Innovative Image Processing, June 2025, Volume 7, Issue 2  557 

 

Figure 3 and Table 1 present a simple bar chart illustrating the accuracy of each of the 

four deep-learning models1D CNN, 2D CNN, 3D CNN, and the new Fusion-Net-X—in 

classifying data from the Indian Pines and Pavia University hyperspectral test sets. The graph 

clearly shows that Fusion-Net-X consistently takes the lead, achieving 98.3% on Indian Pines 

and rising to 98.7% on Pavia University, demonstrating that its combination of spectral and 

spatial processing outperforms the older networks. The increased accuracy demonstrates that 

the new model is more than just a laboratory prototype; it is robust and ready for real-world 

hyperspectral scenes. 

 

Figure 4. Confusion Matric for Multiclass Classification 

Figure 4 shows a confusion matrix that tests how well the FusionNet-X model performs, 

with diagonal marks indicating correct predictions and off-diagonal numbers indicating errors. 

The confusion matrix shows robust classification performance across all five classes, with 

Class 3 having the best accuracy (42 correct predictions), followed by Class 2 (37) and Class 

0 (35), as evidenced by the large diagonal values. There are just a few misclassifications in 

Class 2 and Class 0. Classes 1 and 4, on the other hand, have more spread out data, which could 

mean that certain features are overlapping or that there is an imbalance between the classes. 

For example, Class 1 was incorrectly identified as Class 0, 2, 3, and 4. Class 4 was less likely 

to be confused with any of the other classes. The matrix provides   important information about 

true positives (TP), false positives (FP), and false negatives (FN), which makes it possible to 

calculate class-wise accuracy (TP / [TP + FP]), recall (TP / [TP + FN]), and F1-scores. To 

make things even clearer and more in-depth, the matrix can be normalized to show percentage-

wise accuracy. Other tools, like ROC-AUC curves, feature visualization (like t-SNE or PCA), 
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and confusion-aware model retraining, can also help with performance in overlapping or 

minority classes.Because of this, the table serves as an easy-to-read report card, allowing 

researchers to identify what the model excels at and where it still struggles. 

 

Figure 5. Performance Comparison of Precision, Recall, and F1-Score Per Class 

The bar chart in Figure 5 visually represents the precision, recall, and F1-score for each 

class in the model’s performance. This helps to quickly assess the class-wise strengths and 

weaknesses of the classifier, revealing whether the model is biased towards or struggling with 

certain classes. 

 Conclusion 

The collection of performance tests, including scores, confusion charts, and the full 

precision-recall-F1 breakdown, shows that the new FusionNet-X model really works for 

classifying hyperspectral images. It outperformed older tools like SVM and Random Forest, as 

well as deep models such as 1D, 2D, and 3D CNNs, scoring above 98 percent on standard 

datasets like Indian Pines and Pavia University. Clear line graphs also demonstrate that 

FusionNet-X maintains high precision and recall for every class, with both macro and weighted 

F1 averages surpassing 85 percent in simulated runs. Much of this strength stems from the 

dual-branch method, which studies both spectrum and space, as well as the smart, adaptive 

fusion stage that combines their findings. Taken together, the results portray FusionNet-X as a 

robust, flexible framework capable of handling the massive dimensions and fine details 

characteristic of hyperspectral data. Looking ahead, researchers plan to shrink the model for 

speedy real-time use and expand its reach across larger satellite surveys. 
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