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Abstract   

The primary limitation of CNN-based methods for mitosis detection in breast 

histopathological image classification is their inability to effectively extract features from 

potential regions of interest. This study presents a novel Quadratic Stain Luminance 

Normalized Vision Transformer Attention Network (QSLN-VTAN) designed to enhance 

feature extraction and classification, resulting in improved accuracy and precision. A feature 

aggregation sphere utilizing a quadratic discriminant classifier has been developed to integrate 

these features for the classification of images in mitosis detection. The stain normalization-

based preprocessing not only enhances contrast but also preserves background luminance while 

ensuring robustness, significantly reducing data loss. The performance of QSLN-VTAN is 

assessed and compared using standard metrics, including precision, recall, accuracy, F1-score, 

and training time. The QSLN-VTAN demonstrated superior performance compared to other 

methods when evaluated on the ICPR 2012 dataset, achieving an overall mitosis detection rate 

of 96%, an F1 score of 93%, and a precision rate of 92%. Additionally, on the MITOSIS-

ATYPIA-14 dataset, it exhibited a detection rate of 92%, an F1 score of 91%, and a precision 

of 96%. 

Keywords: Histopathology Images, Deep Learning, Stain Normalization, Vision Transformer, 

Attention Network, Regions of Interest Segmentation, Feature Extraction and Classification. 
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 Introduction  

Breast tissue analysis in histopathology is a critical diagnostic tool for assessing the 

severity of breast cancer stages. The identification of mitotic cells demonstrates a strong 

correlation with cell proliferation, which is an essential metric in cell classification. However, 

the similarity between abnormal cells and the distinct morphology of mitotic figures can lead 

to significant inter-classification instability. Despite numerous deep learning techniques 

proposed for mitosis detection, these methods are often highly susceptible to domain shifts 

commonly encountered in histological images. 

Efficient U-Net (EUNet)-based mitosis detection involves two key stages: candidate 

segmentation and candidate refinement. The EUNet method effectively segments candidates 

at lower resolutions, significantly accelerating the detection process of candidate cells. 

Subsequently, candidate cells are fine-tuned using a deeper classifier network to ensure optimal 

precision, recall, and F1-score while minimizing processing time. 

The Small Mitotic Detector (SMDetector) was introduced in [2], employing deep 

learning techniques to distinguish between mitotic and non-mitotic regions. To prevent small 

objects from being overlooked in deeper layers, region proposal networks were utilized to 

accurately identify small objects through the use of dilated layers in the backbone. 

A hybridized approach was proposed in [3], comprising two steps: mitosis detection 

and classification. Initially, deep learning techniques were employed for detection, followed 

by the application of fuzzy-based classifiers for precise classification. The mitotic activity 

index (MAI) is one of the most significant prognostic features considered in disease diagnosis. 

The advancement of digital pathology has greatly enhanced the efficiency of the diagnostic 

process. However, it requires a Whole Slide Imaging (WSI) scanner, which remains financially 

inaccessible for many hospitals due to its high installation costs. 

Deep learning techniques were applied in [4] to address challenges faced by current 

mitosis detection pipelines, achieving higher convergence speed. Additionally, another low-

cost histopathological mitosis detection method was presented in [5] with the aim of identifying 

cancerous mitotic cells. Nevertheless, the lack of publicly available ground-truth data poses a 

significant barrier to the implementation of contemporary advancements in deep learning. 

Convolutional neural networks have addressed these challenges, resulting in improved 

accuracy [6]. 
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An efficient deep learning architecture designed to mitigate overfitting and enhance the 

understanding of evaluation and validation of breast cancer staging was presented in [7]. A 

comprehensive review of multi-center evaluations focusing on image quality analysis was 

conducted in [8]. However, certain factors in the staining reagent process often lead to 

instability in pathological images. Distillation learning was employed in [9] to facilitate color 

mapping between source and target images, thereby significantly reducing artifacts. An 

extensive evaluation of the effectiveness of automated grading techniques was undertaken in 

[10], aimed at enhancing performance. Nevertheless, the presence of weak labels presents 

challenges in the mitosis detection process. To address this issue, a CNN-based algorithm was 

proposed in [11], which segments pixels to generate bounding boxes, enabling accurate and 

precise mitosis detection. 

The issue of data loss in mitosis detection has largely been overlooked in most studies, 

resulting in a compromise in overall precision and recall rates. To address these concerns, we 

propose an automated detection method called the Quadratic Stain Luminance Normalized 

Vision Transformer Attention Network (QSLN-VTAN) for breast cancer histopathology 

images. Through the implementation of a contrast- and luminance-enhanced stain 

normalization preprocessing technique, the developed classifier demonstrates superior 

performance compared to several existing approaches while minimizing data loss. This method 

employs a contrast- and luminosity-enhanced function that ensures uniform image balancing 

across multiple samples, effectively reducing the impact of stain-related variations. In this 

work, we introduce a Quadratic Vision Transformer Attention Network-based classifier for 

mitosis detection, which accurately and precisely extracts both local and global features. 

The subsequent sections of the study are organized as follows. Section 2 outlines the 

methods relevant to mitosis detection, where machine learning (ML) and deep learning (DL) 

techniques have been extensively utilized. Section 3 discusses the proposed QSLN-VTAN-

based classifier, complete with block diagrams and algorithms. Section 4 details the 

experimental setup, followed by a performance evaluation and analysis of results obtained 

using the ICPR 2012 dataset and the MITOSIS-ATYPIA-14 dataset. Finally, Section 5 

concludes the paper. 
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 Literature Review 

A review of several ML and DL techniques employed in mitosis detection by exploring 

regions of interest and accordingly making overall classifications was presented in [12]. Yet 

another method focusing on generalization employing deep CNN-based multi-phase detection 

was proposed in [13]. Here, probing the most probable regions aided in ensuring generalization 

along with showing good discrimination ability. Nevertheless, the weak label involved in the 

analysis is not proficient in training mitosis segmentation. To deal with this issue, the single-

pixel representation [14] was extended to concentric circles, with the inner circle representing 

the mitotic region for mitosis analysis. However, the authors did not focus on the computational 

cost associated with this approach. To address this issue, an Atrous fully convolution-based 

segmentation method was presented in [15], which, by acquiring mask and bounding box 

annotations, outperforms prior detection methods. As far as mitosis is concerned, both cell 

division and duplication are considered. Although the mitotic count plays a pivotal role in 

cancer diagnosis in clinical practice, it exhibits high inter-rater variability due to the difficulty 

in distinguishing mitotic from non-mitotic samples. 

An ensemble of five CNNs was employed in [16] to improve overall performance, 

resulting in a higher F1-score and better generalization. In [17], pre-trained large-scale vision-

language models were demonstrated by exploiting visual features. A two-stage learning 

approach was applied in [18] to enhance the detection accuracy in a significant manner. 

However, pathologists still need to spend significant time examining the frequency of mitotic 

cells in hotspot regions to determine their predominant occurrence. To address this problem, a 

two-stage cascaded network was introduced in [19] for efficient mitosis detection. 

A novel partially supervised method based on dual parallel deep fully convolutional 

networks was proposed in [20] using centroid pixel labels. With this type of design, a high F1- 

score was achieved. An end-to-end multitask learning was applied in [21], by first detecting 

the mitosis reference region and then classifying the model, ensuring overall detection 

performance in an extensive manner. A review of deep learning methods was presented in [22] 

for detecting breast cancer in histopathology images. Yet another precision-recall analysis 

employing multi-phase deep CNN was presented in [23] for breast cancer histopathology 

images. 
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To address the aforementioned research gaps, in this work, a method called Quadratic 

Stain Luminance A normalized vision transformer attention network is proposed. The 

Quadratic Vision Transformer Attention Network-based classifier extracts essential features 

by segmenting both global and local features for accurate classification. 

 Proposed Method 

Despite the employment of the Vahadane stain normalization method to preserve the 

structural properties of stained tissue samples in [1], the edges were not clearly visible, leading 

to data loss and reduced overall accuracy. A contrastand luminanceenhanced stain 

normalization preprocessing model is presented in this work. It uses the overall contrast 

difference between the source sample image and the reference image for analysis, preserving 

the background luminance of the source sample image and minimizing overall data loss. The 

speed and time were compromised since improved features were not retrieved, even though the 

semantic segmentation task was applied using the centroid pixels of the targeted objects rather 

than all of the nuclei's pixels [2].  

To address this issue, a quadratic vision transformer attention network-based classifier 

is proposed, where both global and local features are extracted as essential for timely and 

speedy detection of mitosis. Thus, by combining the above two aspects, we propose a method 

called Quadratic Stain Luminance Normalized Vision Transformer Attention Network (QSLN-

VTAN) for mitosis detection.  

 

Figure 1. The Overall Architecture of the QSLN-VTAN Method 

Figure 1 above illustrates the architecture of the QSLN-VTAN method, with the source 

sample image provided as input, The former is a noise removal model, and the latter is a 
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classification model. The noise removal model is applied in our work using contrast- and 

luminance-enhanced stain normalization-based preprocessing, which not only improves 

contrast, thereby reducing the computational complexity of the classifier as much as possible, 

but also preserves background luminance while maintaining robustness, thus extensively 

reducing data loss,  The results of the preprocessed images are then sent to the Quadratic Vision 

Transformer Attention Network-based classifier to obtain very accurate classification results.  

3.1 Contrast and Luminance-Enhanced Stain Normalization – Preprocessing  

Stain normalization is a crucial step in tissue analysis, with H&E stains being the most 

commonly used. While these stains facilitate tissue identification, normalization is necessary 

to address challenges such as variations in lighting conditions and noise introduced during the 

staining process. 

In this work, a preprocessing model employing contrast- and luminance-enhanced stain 

normalization is presented. The contrast- and luminance-enhanced stain normalization-based 

preprocessing model is employed to reduce the influence of differences occurring due to 

staining and to ensure equilibrium across numerous images. This stain normalization process 

in turn intends to normalize both color and intensity of staining, thereby constructing the 

images enable reliable analysis. The proposed model employed in our work initially preserves 

the background luminance of the given source sample image, minimizes data loss and performs 

contrast enhancement, thereby aiding in minimizing the computational complexity of the 

classifier. Figure 2 shows the structure of the contrast- and luminance-enhanced stain 

normalization-based preprocessing model. 

 

Figure 2. Contrast and Luminance-Enhanced Stain Normalization 
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As illustrated in the above figure, scanner A and scanner H images are initially read 

and then converted from RGB to Lab space. Then, it applies the Contrast and Luminance-

enhanced function to the conventional Reinhard Stain Normalization to obtain normalized 

image for further processing. Initially, the source sample image ‘SI’ and the reference image 

‘RI’ (i.e. the testing image) are transformed from RGB to lab space. This is followed by 

measuring ‘Q’ for each source sample image, as given below. 

Q =
σMean(RI)−σMean(SI)

σMean(RI)
     (1) 

In the proposed method, ‘Q’ is a criterion based on the overall 

contrast difference between the source sample image and the reference (i.e. testing image). 

Upon identification of the value of ‘Q’ being negative, it is inferred that the testing image 

contrast is lesser than the source sample image contrast. This, in turn, ensures that the 

normalized image contrast greater than that of the source sample image. Therefore, the 

background luminance of the source sample image is said to be preserved, which aids in 

reducing data loss significantly. With the resultant value obtained, transformation is performed 

in lab space as given below (if ‘Q > 0’).   

δNI = μMean(αSI) + [αSI − μMean(αSI)] ∗ (1 + Q)  (2) 

In addition with the above resultant value obtained transformation is performed in lab 

space as given below (if ‘Q ≤ 0’).  

αNI = μMean(αRI) + [αSI − μMean(αSI)]               (3) 

βNI = μMean(βRI) + [βSI − μMean(βSI)]    (4) 

γNI = μMean(γRI) + [γSI − μMean(γSI)]                   (5) 

From the above equations (3), (4) and (5), ‘αNI, βNI γNI’ represents the magnitude of 

the normalized image in lab space, ‘αRI, βRI, γRI’ denotes the magnitude of reference image in 

lab space and ‘αSI, βSI, γSI’ represents the magnitude of the source sample image, while the 

overall source sample image mean is denoted by ‘μMean’ . By taking the global variance in 

equation (2), and substituting the values for ‘Q > 0’ and ‘Q ≤ 0’, the background luminance 

in the normalized image is preserved by our proposed method, thereby improvingthe overall 
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contrast in an efficient manner. We outline the algorithmic steps of the Contrast and 

Luminance-enhanced Stain Normalization in algorithm 1.  

Algorithm 1: Contrast and Luminance-Enhanced Reinhard Stain Normalization 

1: Initialize Dataset ‘DS’, Sample Image ‘SI’, ‘N = 100’ 

2: Begin 

3: For all ‘N’ do 

4: Measure Q =
σMean(RI)−σMean(SI)

σMean(RI)
 

5: If ‘Q > 0’ 

6: Then ‘δNI = μMean(αSI) + [αSI − μMean(αSI)] ∗ (1 + Q)’ 

7: End if  

8: If ‘Q ≤ 0’ 

9: Evaluate αNI = μMean(αRI) + [αSI − μMean(αSI)]     

10: Evaluate  βNI = μMean(βRI) + [βSI − μMean(βSI)]     

11: Evaluate γNI = μMean(γRI) + [γSI − μMean(γSI)]      

12: End if  

13: Return contrast and luminance enhanced image  

14: End for     

15: End  

3.2 Quadratic Vision Transformer Attention Network-based Classifier for Automated 

Mitosis Detection  

Existing CNN-based methods segment global features from the entire processed image; 

however, they fail to identify features of potential Regions of Interest (RoI), which may lead 

to inaccurate mitosis detection. Additionally, a typical histology slide contains both important 

and irrelevant information, which increases processing time and computational complexity. 

Segmentation in our work is used for detecting and extracting areas that include more definitive 

information for processing. Critical shapes, like malignant cells or tumor borders or edges, 

must to identified accurately and precisely and secluded or isolated by means of segmentation, 

thereby ensuring more accurate analysis and feature extraction.  
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An accurate segmentation process aids pathologists in detecting minute differences or 

deviations, resulting in higher sensitivity for early mitosis detection. Moreover, by secluding 

or isolating crucial elements, it reduces false positives and provides pathologists with enhanced 

diagnostic support. This research gap has prompted us to propose a Quadratic Vision 

Transformer Attention Network-based Classifier model to classify breast histopathological 

images.  

 

Figure 3. Flow Diagram of Quadratic Vision Transformer Attention Network-based 

Classifier for automated Mitosis Detection 

In the proposed Quadratic Vision Transformer Attention Network-based Classifier 

model, global and local features are segmented, which are essential for accurate classification, 

as shown in Figure 3. The Vision Transformer Attention Network interacts with each other (i.e. 

within pixel limits as well), so that the model automatically identifies salient regions (i.e., 

detecting edges of segment we want to extract by focusing on both local and global features) 

on which to focus. The Vision Transformers model employed in our work consists of two 

sections: a multi-head attention (MHA) mechanism that designs associations between inputs 

(i.e. preprocessed images) and a feed-forward network (FFN) that learns extensive 

characterizations. For an input ‘PI ∈ ℝN∗d’ consisting of ‘N d − dimensional’ sample 

instances (preprocessed images and pixels in our case), the Vision Transformers learn the 

representations as given below.  
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Res = Transformer (PI) = FFN (MHA(PIQ = PI, PIK = PI, PIV = PI))              (6) 

From the above equation (6), ‘PIQ’, ‘PIK’ and ‘PIV’ form the input to the query, key, 

and value spheres in the multi-head attention. Owing to the inclusion of large spatial 

dimensions of histopathological images, visual representation learning using Vision 

Transformer is both a laborious and tedious task. Also, with the high computational cost of 

MHA, applying Vision Transformer to breast histopathology images is computationally 

intractable. This work extends the vision transformers using the Bag of Visual Words (BoVW) 

model for learning both local and global representations (i.e., identifying salient regions by 

detecting edges of the segment we want to extract by focusing on both local and global features) 

in an end-to-end fashion. 

3.2.1 Pixel-to-Pixel Attention Model 

The Pixel-to-Pixel attention model consists of a vision transformer unit with Multi-

Head Attention (MHA) and Feed Forward Network (FFN), permitting us to design the 

interactions between pixels and identify important or salient pixels in the whole slide or 

preprocessing image. The preprocessed image ‘PI ∈ ℝw∗h’ with width ‘w’ and height ‘h’ is 

initially split into ‘n’ non-overlapping preprocessed images, ‘PI = (PI1, PI2, … , PIn) ∈ ℝ
w

n
∗

h

n’, 

where ‘PIi’ denotes the ‘i − th’ image. Each preprocessed image ‘PIi’, is then split into ‘m’ 

non overlapping pixels ‘PIi = (P1
i, P2

i, … , Pm
i ) ∈ ℝ

w

mn
∗

h

mn’, with ‘Pj
i’ denoting the ‘j − th’pixel 

in the ‘i − th’ preprocessed image.  Followed by which the pixels ‘P1
i’ inside each preprocessed 

image ‘PI1’ are fed to CNN with the intent of generating pixel level characterizations for each 

images as given below.  

PICNN
i = (P1

i, P2
i, … Pm

i )     (7) 

Inter-pixel closeness in each preprocessed image ‘PICNN
i ’ is encoded using the Vision 

Transformer to generate contextualized pixel embedding ‘PEP2P
i ’ results as given below.  

 PEP2P
i = FFN (MHA(PIQ = PICNN

i , PIK = PICNN
i , PIV = PICNN

i ))  (8) 

From the above equation, the MHA employed on one hand ensures encoding of inter-

pixel closeness, and on the other hand, the FFN permits learning learn extensive image 

characterization. 
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3.2.2 Pixel-to-Image Attention Model 

The Pixel-to-Pixel attention model generates contextualized pixel embedding results 

for each image. These pixel-level characterizations are combined to generate image-level 

characterizations by linearly aggregating the pixels inside each image, ‘PIP2I
i ’. In other words, 

each pixel in ‘PEP2P
i ’ the image is mapped using a projection function ‘ψ’. This is followed by 

a linear transformation ‘LTP2I’ and Exponential Tilting functions, which are then applied to 

generate results as given below.  

 ILP2I
i = ET(ψ(PEP2P

i )LTP2I)PEP2P
i               (9) 

From the above equation (10), by employing the linear transformation ‘LTP2I’ the pixels 

embedded results ‘PEP2P
i ’ are linearly combined to generate image-level ‘ILP2I

i ’ 

characterization, therefore extracting global features. In a similar manner, the pixel-level 

characterization acquired from the CNN for each image is also aggregated using projection 

function ‘ψ’ as given below.  

 PLP2I
i = ET(ψ(PECNN

i )LTP2I)PECNN
i                          (10) 

From the above equation (), results pixel-level characterization results ‘PLP2I
i ’ are 

obtained by employing the projection function ‘ψ’, linear transformation, ‘PECNN
i ’ 

respectively; therefore, local features are extracted.  

3.2.3 Image-to-Image Attention Model 

Finally, to encode inter-image closeness, the Image-to-Image attention model is 

employed in this section.  By using model both local and global information are segmented 

efficiently. Initially, multi-head attention is applied to segment inter image characterization as 

given below.  

 IResI2I = MHA (PIQ = PLP2I
i , PIK = PLP2I

i , PIV = PLP2I
i )             (11) 

Finally with the above multi head attention intermediate results ‘IResI2I’ the image-to-

image characterization is mathematically stated as given below to obtain overall segmented 

results, therefore segmenting both global and local features extracted essential for accurate 

classification. 
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ResI2I = FFN (MHA (PIQ = IResI2I, PIK = ILP2I
i , PIV = ILP2I

i ))             (12) 

3.2.4 Quadratic Discriminant Classifier 

In the classification process, feature vectors extracted are employed as input to the 

classification algorithm performed via three phases: training, testing, and validation. The 

Quadratic Discriminant Classifier is employed in the proposed method to classify ‘ResI2I’ into 

‘C’ diagnosis classes as given below.  

 PO = LR(ResI2I, δC)                                      (13) 

 LR =
√2π(Σ1)

−1
exp(−

1

2
(PO−μ1)T ∑ (PO−μ1)−1

1 )

√2π(Σ0)
−1

exp(−
1

2
(PO−μ0)T ∑ (PO−μ0)−1

1 )
< Th             (14) 

 From the above equations (13) and (14) during evaluation, the pointer that has the 

highest confidence outcomes in ‘PO’ is selected as the predicted class label. We outline the 

algorithmic steps of the Quadratic Vision Transformer Attention Network-based Classifier in 

algorithm 2.  

Algorithm 2: Quadratic Vision Transformer Attention Network-based Classifier 

1: Initialize Dataset ‘DS’, Sample Image ‘SI’, ‘N = 100’, preprocessed image ‘PI’ 

2: Begin 

3: For all ‘N’ do 

4: Measure global pixel information ILP2I
i = ET(ψ(PEP2P

i )LTP2I)PEP2P
i   

5: Measure local pixel information characterizationPLP2I
i = ET(ψ(PECNN

i )LTP2I)PECNN
i  

6: Segment inter image characterization IResI2I = MHA (PIQ = PLP2I
i , PIK = PLP2I

i , PIV =

PLP2I
i ) 

7: Measure overall segmented results ResI2I = FFN (MHA (PIQ = IResI2I, PIK = ILP2I
i , PIV =

ILP2I
i )) 

8: Return segmented results ResI2I 

9: Evaluate predicted output PO = LR(ResI2I, δC) 

10: Return predicted output results PO 

11: End  
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 Results And Discussion 

In this section, we evaluate the performance of our Quadratic Stain Luminance 

Normalized Vision Transformer Attention Network (QSLN-VTAN) using two different 

datasets, namely, the ICPR 2012 dataset and the MITOSIS-ATYPIA-14 dataset. 

4.1 Implementation  

The whole QSLN-VTAN method is implemented using PyCharm (Python 3.9) on the 

MS Windows platform on a computer with an i5-2350 processor and 64 GB RAM. We 

performed contrastand luminance-enhanced Reinhard stain normalization-based preprocessing 

and the quadratic vision transformer attention network-based classifier using the Python high-

level general-purpose programming language. 

4.2 Description of the Datasets 

The samples obtained from the ICPR 2012 [24] dataset consist of five breast cancer 

biopsy slides. These slides were scanned using two different devices: the Aperio XT scanner 

(Scanner A) and the Hamamatsu NanoZoomer scanner (Scanner H). Scanner A has a resolution 

of 0.2456 μm per pixel (2084 × 2084 pixels), while Scanner H has a resolution of 0.22753 μm 

per pixel (2252 × 2250 pixels). The dataset includes a total of 226 mitotic cell samples for 

training and 101 mitotic cell samples for testing. 

The second MITOSIS-ATYPIA dataset employed in our work is found to be 

comparatively larger in size than the ICPR 2012 dataset. The samples acquired from the 

MITOSIS-ATYPIA dataset are scanned using both the A-type scanner and the H-type scanner. 

The individual pixel size is found to be ‘0.2456 μm’ for the A-type scanner, with the size of 

HPFs being ‘1539 ×  1376 pixels’ and ‘0.2273 μm’ for the H-type scanners with size of 

HPFs being ‘1663 × 1485 pixels’ respectively. The MITOSIS-ATYPIA-14 dataset overall 

includes 1696 HPFs for a single type of scanner, with 1,200 having 749 samples labeled as 

mitotic cells and 496 samples being unlabeled, respectively.    

4.3 Pre-processing Results  

With the aid of Algorithm 1, enhanced images are obtained using two different datasets: 

the ICPR 2012 dataset and the MITOSIS-ATYPIA-14 dataset. The enhanced images from 

Scanner A are shown in images (a) and (b), while those from Scanner H are shown in images 
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(c) and (d), respectively. Their corresponding preprocessed results are shown in figure 4(e)–

(h). 

 

Figure 4. Source Sample Images (A–D) (from Dataset 1 and Dataset 2) and their 

Stained Normalized Results (E–H) (from Dataset 1 and Dataset 2) after Applying our 

Contrast and Luminance-Enhanced Reinhard Stain Normalization 

As illustrated in the above figure, we show how our contrast and luminance-enhanced 

Reinhard stain normalization minimizes stain volatility across images from different datasets. 

As source sample images, we have two datasets of scanner A images and two datasets of 

scanner H images; similarly, the source sample images are used for the rest of the paper. To 

generate these stain-normalized images as output, we have used the contrast and luminance-

enhanced Reinhard stain normalization algorithm.  

4.4 Detection and Classification Results 

With the aid of the algorithm 2, the segmented and classified results are obtained using 

the ICPR 2012 dataset and the MITOSIS-ATYPIA-14 dataset via scanner A. An image is 

illustrated in figure 5.  

Figure 5 shows the segmentation and classification process employing two datasets, 

ICPR 2012 and MITOSIS-ATYPIA-14, respectively. In 5(a) and 5(b), the blue square 

represents the local portions, whereas the green square represents the global portion. 

Employing these two portions, the classification process is performed and shown as results in 

5(b) and 5(d). 
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Figure 5. Segmentation and Classification Results(a) Segmentation Process using 

ICPR 2012 Dataset (b) Classified Output using ICPR 2012 Dataset (c) Segmentation Process 

using MITOSIS-ATYPIA-14 Dataset (d) Classified Output using MITOSIS-ATYPIA-14 

Dataset 

4.5 Performance Evaluation  

The performance of the proposed QSLN-VTAN is assessed based on its ability to 

correctly identify mitotic cells.  The training and validation sets are created by using the two 

datasets that we employed in our work. Two types of training datasets, the ICPR 2012 dataset 

and the MITOSIS-ATYPIA-14 dataset, comprising 100 samples and 304 samples, 

respectively, are employed. First, the samples in our work are randomly divided into 80% for 

training, 10% for validation, and 10% for testing. The pathologists might lose mitotic images 

if the precision is not high for the mitosis detection model. The Precision rate is mathematically 

represented as given below. 

 Pre =
TP

TP+FP
                                       (15) 

From the above equation (15) the precision rate ‘Pre’ is analyzed using the true positive 

rate ‘TP’ and false positive rate ‘FP’ respectively. Recall on the other hand calculates how 

many of the actual positives our model obtained by labeling them as positive (i.e. true positive).  

For example, if a mitotic region is incorrectly predicted as non-mitotic, the results may lead to 

a wrong diagnosis. 

 Rec =
TP

TP+FN
                                       (16) 
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From the above equation (16) the recall rate ‘Rec’ is measured employing the true 

positive rate ‘TP’ and false negative rate ‘FN’. Next, F1-socre is employed with the intent of 

seeking a balance between precision and recall. This is represented as given below.  

 F1 score = 2 ∗
Pre∗Rec

Pre+Rec
               (17) 

4.6 Confusion Matrix Evaluation  

The confusion matrix is considered a table that is frequently utilized in estimating the 

classification performance on a set of test data (i.e., two datasets) for which the true values are 

known [25]. The matrix portrays the number of sample instances generated by the method on 

the test data. First, a true positive is when the method correctly predicted a positive outcome 

and the actual outcome was positive. The second factor is the true negative, where the method 

correctly predicted a negative outcome and the actual outcome was negative. The third factor 

is the false positive, where the method incorrectly predicted a positive outcome and the actual 

outcome was negative, and the fourth factor is the false negative, where the method incorrectly 

predicted a negative outcome and the actual outcome was positive. Table 1 given below 

analyzes the confusion matrix for the MITOSIS-ATYPIA-14 dataset.  

As illustrated in Figure 6, the confusion matrix is essential for analyzing and validating 

the performance of classification methods in mitosis detection, particularly in terms of 

accuracy, precision, recall, and F1 score. 

Table 1. Confusion Matrix using QSLN-VTAN 

 

 

Actual 

Predicted [MITOSIS-ATYPIA-14] using QSLN-VTAN 

 Mitosis Non-mitosis Total 

Mitosis TP = 24 FN = 3 27 

Non-mitosis FP = 4 TN = 9 13 

Total 28 12 40 
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Figure 6. Confusion Matrix for QSLN-VTAN 

4.6.1 Performance Measure of Precision, Recall and F1-Score on ICPR 2012 and 

MITOSIS-ATYPIA-14 Dataset 

In this section, the performance metrics such as precision, recall, and F1 score are 

calculated and compared with existing approaches. Table 2 below presents a comparative 

analysis of the proposed QSLN VTAN method against two existing methods: EUNet [1] and 

SMDetector [2]. 

Table 2. Performance Comparison of Proposed QSLN-VTAN with EUNet and 

SMDetector 

Methods ICPR 2012 Dataset MITOSIS-ATYPIA-14 Dataset  

Precision Recall F1-score Precision Recall F1-score 

EUNet 0.75 0.83 0.78 0.85 0.89 0.86 

SMDetector 0.60 0.75 0.66 0.78 0.83 0.80 

QSLN-VTAN 0.92 0.96 0.93 0.96 0.92 0.91 

 

Table 2 lists the calculated performance measures using the QSLN-VTAN method, 

along with two state-of-the-art methods: EUNet [1] and SMDetector [2]. With a single mitosis 

image obtained as input from the ICPR 2012 validation dataset and 30 regions identified as 
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mitosis, the true positive rate, true negative rate, false positive rate, and false negative rate 

using the QSLN-VTAN method were observed to be 17, 3, 8, and 2, respectively. By 

substituting these measured value into equations (15), (16), and (17), the precision rate was 

found to be 0.85, recall 0.89, and the F1-score 0.86. In the case of [1], the true positive rate, 

true negative rate, false positive rate, and false negative rate were observed to be 15, 5, 7, and 

3, and the precision, recall, and F1-score were found to be 0.92, 0.96, and 0.93. Finally, by 

employing [2], with 12, 8, 6, and 4 being the true positive, true negative, false positive, and 

false negative values, the overall precision, recall, and F1-score were observed to be 0.60, 0.75, 

and 0.66, respectively. Thus, the three performance metrics when applied with the QSLN-

VTAN method were found to be comparatively better than those of [1] and [2].  

In a similar manner, with a single mitosis image obtained as input from the MITOSIS-

ATYPIA-14 validation dataset and 50 regions identified as mitosis, the true positive, false 

positive, true negative, and false negative of the QSLN-VTAN method were 24, 4, 9, and 3; 

the true positive, false positive, true negative, and false negative for [1] were 22, 6, 8, and 4; 

and finally, the true positive, false positive, true negative, and false negative of [2] were 20, 8, 

6, and 6. The overall precision, recall, and F1-score using the QSLN-VTAN method were 

found to be 0.91; using [1], they were found to be 0.85, 0.89, and 0.86; and applying [2], they 

were identified to be 0.78, 0.83, and 0.80, respectively. With these simulation results, the 

precision, recall, and F1-score of the QSLN-VTAN method were found to be comparatively 

better than those of [1] and [2].  

The reason was that by applying the contrast- and luminance-enhanced stain 

normalization-based preprocessing algorithm, the background luminance of a given source 

sample image was preserved, which in turn aided in reducing the false positives and false 

negatives significantly. Moreover, by applying the contrast- and luminance-enhanced function 

to the conventional Reinhard Stain Normalization, overall contrast differences between the 

source sample image and the reference image were initially obtained. Following this, by taking 

global variance to obtain transformation in lab space, the true negatives and true positives were 

improved considerably. This, in turn, improved the precision, recall, and F1-score of the 

QSLN-VTAN method by 10% and 25% compared to [1] and [2], 6% and 14% compared to [1] 

and [2], and 8% and 20% compared to [1] and [2], respectively, for the ICPR 2012 dataset, and 

7% and 14% compared to [1] and [2], 8% and 12% compared to [1] and [2], and 10% and 11% 

compared to [1] and [2], respectively, for the MITOSIS-ATYPIA 2014 dataset. The figure 
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below shows the graphical representation of the F1 score of three different methods using two 

datasets.  

 

Figure 7. Graphical Representations of F1-Score Values 

From Figure 7, we have also analyzed the influence of fusing the probability scores of 

the local regions and global regions during segmentation tasks. The figure shows the change in 

the performance of the QSLN-VTAN method on the validation set. We can see that the QSLN-

VTAN method achieves excellent performance compared to [1] and [2]. 

4.6.2 Performance Comparison of Different Mitosis Detection Methods in Preprocessing 

and Classification Stages  

In this section, we explore the influence of different methods on mitosis detection with 

respect to preprocessing and classification on two different datasets, ICPR 2012 and MITOSIS-

ATYPIA-14. Because the backbone mitosis detection network also contributes to the detection 

performance, several experiments were conducted using different backbone network models, 

QSLN-VTAN, EUNet [1], and SMDetector [2] in preprocessing and classification stages. 

Table 3 shows the effect of the performance of different backbone mitosis detection methods 

on accuracy. 
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Table 3. Performance Comparison of Different Backbone Mitosis Detection Methods 

(Preprocessing and Classification Stage) 

Metho

ds 

Preprocessing Stage  Classification Stage  

 ICPR 2012 

Dataset 

MITOSIS-

ATYPIA-14 

Dataset 

 ICPR 2012 

Dataset 

MITOSIS-

ATYPIA-14 

Dataset 

Precis

ion 

Rec

all 

F1-

sco

re 

Precis

ion 

Rec

all 

F1-

sco

re 

Precis

ion 

Rec

all 

F1-

sco

re 

Precis

ion 

Rec

all 

F1-

sco

re 

EUNet 0.79 0.8

7 

0.8

2 

0.88 0.9

2 

0.8

9 

0.82 0.9 0.8

5 

0.89 0.8

4 

0.8

1 

SMDet

ector 

0.64 0.7

9 

0.7 0.81 0.8

6 

0.8

3 

0.67 0.8

2 

0.7

3 

0.82 0.8 0.8 

QSLN-

TAN 

0.89 0.9

3 

0.9 0.95 0.9

5 

0.9

5 

0.92 0.9

6 

0.9

3 

0.96 0.9

2 

0.9

1 

 

 

 

Figure 8. Performance Comparisons of Different Backbone Mitosis Detection 

Methods (Classifier Stage) 

Figure 8 above shows that our proposed method detected the largest number of true 

positives compared with other methods and, hence, reached the highest recall value. Compared 

with some state-of-the-art mitosis detection methods that are extensively utilized, our improved 

proposed QSLN-VTAN method can identify the most positive samples, or, to be more specific, 

the true positive value. 
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 Conclusion  

A novel Quadratic Vision Transformer Attention Network (QSLN-VTAN) is proposed 

to enhance the accuracy of mitosis detection and improve the assessment of breast cancer 

severity. Initially, raw sample source images obtained from the ICPR 2012 dataset and the 

MITOSIS-ATYPIA 14 dataset underwent preprocessing through contrast- and luminance-

enhanced stain normalization. This process ensured that the luminance contrast was improved 

in the normalized images for effective classification. Subsequently, the preprocessed images 

were analyzed using a Quadratic Vision Transformer Attention Network-based classifier. By 

segmenting both global and local features, which are critical for accuracy, we established a 

foundation for minimizing false positive and false negative rates. Additionally, comparative 

experiments conducted on the ICPR 2012 and MITOSIS-ATYPIA-14 datasets demonstrated a 

significant enhancement in mitosis detection performance, as indicated by improved precision 

and recall metrics. The results underscore the potential of the QSLN-VTAN method to 

substantially increase the detection accuracy of mitotic sample images, achieving 92% 

precision, 96% recall, and a 93% F1 score. Compared to the EUNet model, the QSLN-VTAN 

method improved precision, recall, and F1 score by 10%, 6%, and 8%, respectively. 
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