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Abstract   

This study presents a novel interpretability pipeline for image forgery localization by 

integrating GAN-generated adversarial forgeries with Grad-CAM visual explanations. The 

objective is to assess the capability of a deep learning classifier to not only detect but also 

spatially localize manipulated regions in digital images. A Deep Convolutional GAN is trained 

to generate realistic forged patches, which are synthetically embedded into clean images to 

simulate new forgery instances. These synthetic images are then analyzed using a proficient 1-

based binary classifier. To elucidate the spatial focus of the model, Grad-CAM is employed to 

visualize class differences of interest. The analysis incorporates metrics such as attention 

scores, IoU, recall, F1 score, MSE, and SSIM, enabling comprehensive comparisons between 

heat maps and ground truth forged areas. Despite the high attention scores, the results indicate 

poor localization performance, with IoU and Pixel-Wise F1 scores at zero. These findings 

suggest that while the classifier can identify vulnerable areas, Grad-CAM lacks the accuracy 

necessary for precise manipulation indication. Layer-wise visualization analysis further reveals 

that the deep layers of the model capture high-level features but prioritize rapid localization 

over accuracy. This study provides evidence that GAN-generated examples can highlight 

significant interpretative boundaries. The findings emphasize a disconnect between visual 

saliency and actual spatial alignment, underscoring the necessity for more refined explanatory 

methods in image forensics. This framework offers a scalable testbed for future interpretability 
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benchmarking in adversarial scenarios and contributes to the development of more explainable 

and robust AI models in high-stakes visual domains. The experimental results reveal a stark 

contrast between high Grad-CAM attention scores and low spatial IoU, indicating a disparity 

between focus and true localization. Although the classifier reliably detects forged images, its 

spatial interpretation lacks precision. These insights underscore the need for more granular 

explanatory tools to enhance forensic trustworthiness. This work establishes a precedent for 

adversarial interpretability evaluation using synthetic forgeries, with future research potentially 

focusing on embedding-aware Grad-CAM variants or localized training objectives. 

Keywords: Image Forgery Detection, GAN, Grad-CAM, Interpretability, Deep Learning, 

Attention Score, Adversarial Forgeries, Efficient Net, Localization, Explainable AI. 

 Introduction 

In the field of image forgery detection, achieving high classification accuracy is no 

longer sufficient [9]. The focus has shifted towards developing explainable and resilient AI 

models, particularly in areas such as digital forensics and media verification. While Objective 

1 established a solid foundation utilizing EfficientNetB1 with transfer learning and 

hyperparameter tuning, it largely operated as a black box [10]. The lack of an interpretation 

mechanism hindered users from understanding or trusting the basis of decisions made by the 

model. This presents a significant challenge in high-stakes scenarios. Addressing this trust gap 

necessitated the integration of Grad-CAMs, a technique that highlights regions affected by the 

model's decisions. However, even visual attention mechanisms have limitations if not 

evaluated against novel or adverse inputs [11]. This raises an important question: Does the 

model provide interpretations consistent with known forgery patterns? If it does not, Grad-

CAM may merely reflect biases learned during training rather than genuinely understanding 

manipulation indicators. Consequently, a robust assessment mechanism is required to evaluate 

the depth and adaptability of interpretability techniques [12]. It is proposed that interpretability 

should be regarded as a core functionality rather than an ancillary feature. It should be 

rigorously tested and applicable across various contexts. This approach is viewed as a 

hypothesis to be critically examined rather than a definitive outcome, aligning closely with 

scientific rigor. This motivation has led us to investigate GAN-based adversarial 

interpretability as a scalable and insightful diagnostic tool. 
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1.1 Adversarial Interpretability with GAN-Generated Forgeries  

To test the robustness of Grad-CAM-based interpretability, we introduced an 

adversarial scenario using GAN-generated forgeries. The idea is deceptively simple yet 

powerful: train a basic GAN to synthesize artificial image patches that mimic potential forged 

regions and implant them into real images. This synthetic forgery represents a class of 

manipulations generated from an algorithm that differs from traditional splicing or copy-

movetechniques [13]. By doing this, an adverse interpretation test was introduced a classifier 

is challenged not only to detect these subtle forgeries but also to focus its attention accurately. 

The Grad-CAM then acts as an inquiry, examining whether the internal focus maps of the 

classifier align with these adversarially supported manipulations. This method shows whether 

the interpretation of the model is only a reflection of its training distribution or if it is the real 

localization capacity that normalizes the novel threats. Importantly, this approach also injects 

an adversarial learning philosophy in model evaluation—dusting beyond the stable 

benchmarking towards the mapping, stress-tested reliability. This is not just a technique for 

testing flexibility; it is a tool for discovering weaknesses [14]. If the model misrepresents the 

GAN-based tampering or ignores it completely, the training was biased. Furthermore, this 

method allows us to simulate future forgery styles, keeping the evaluation pipeline up-to-date 

with evolving threats. In doing so, we ensure that the classifier and its explanations do not 

stagnate in yesterday's assumptions. 

1.2   The Role of Grad-CAM in Trustworthy AI 

Grad-CAM (Gradient-weighted Class Activation Mapping) offers a powerful lens into 

the spatial decision-making of convolutional neural networks [15-21]. Unlike raw probability 

outputs or confusion matrices, Grad-CAM overlays a heatmap on the input image to highlight 

which regions contributed most to the model's decision. When applied to detect forgery, it acts 

as a visual explanation tool that provides the machine with a transparent argument for humans. 

This becomes particularly important when dealing with synthetic manipulations generated by 

GANs, which can be subtle and less comfortable [16],]. By comparing Grad-CAM's heatmap 

in both traditional splicing fake and GAN-based forgeries,it can evaluate how stable and 

informative the attention mechanism is. If the heatmap successfully identifies forged areas in 

both categories, it suggests that the classifier has not only learned to detect forgery, but has 

also interpreted the spatial signals that manipulate the data. In contrast, failure to highlight the 
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GAN-forged areas will indicate brittleness in the interpretation, serving as a a red flag for real-

world applications. This assessment method converts Grad-CAM into an active part of 

adversarial testing rather than just a post-hoc explanation tool. Beyond visualization, it acts as 

an audit tool—one that verifies the lmodel's  behavior under stress. It is important in domains 

such as security, law and journalism, where transparency is not optional but necessary [17]. 

Grad-CAM thus evolves into more than a heatmap generator; it becomes a behavioral debugger 

for deep learning models. When paired with adversarial data, it allows interpretability to be 

validated, not just assumed. 

1.3   Scaling Forgery Detection to Novel Threats 

 Traditional forgery datasets like CASIA v1 are limited in scope. They mostly feature 

conventional manipulations, which, while useful for classification, do not mirror the rapidly 

evolving landscape of image tampering [18]. With the emergence of more sophisticated 

generative AI, forgery can now be designed to mimic texture, lighting, and noise distribution. 

Our approach directly addresses this challenge by training a GAN to produce a fake patch that 

simulates the model of the next generation of threats. These adverse examples help evaluate 

how well the classifier normalizes inputs, even though it was not clearly trained. In addition, 

inserting gun-jali patches into the actual images creates a realistic tampering scenario where 

only a local area is transformed [19]. This is important for assessing spatial sensitivity—

whether the model recognizes that tampering is not global but limited. The combination of 

GAN and Grad-CAM enhances forgery detection in a more dynamic and responsive manner, 

where the model is constantly evaluated against new and emerging threat vectors. This 

indicates how the sandbox uses antivirus software to test for zero-day vulnerabilities in the 

environment [20]. By adopting this mindset, we align AI model validation with best practices 

in cybersecurity. The resulting framework is modular, extensible, and proactive rather than 

reactive. 

1.4   Contribution and Impact of the Novel Approach 

This objective introduces a unique hybrid methodology that combines generative 

modeling and interpretability to probe a deeper understanding of AI models in image forensics. 

The novelty lies not only in using GANs to generate forgeries but also in using them as a 

clinical tool to test and visualize the focus of the classifier. This passive classification shifts the 
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goal from accuracy to active lecturer flexibility. Synthetic to the model yet forcing one to justify 

decisions on admirable forgeries, it measures how adaptive and reliable the lecturer pipeline 

actually is. The implications of this contribution extend beyond forensics; it provides a 

blueprint to test the lecturer under adverse conditions in any domain that includes visual AI. In 

addition, this technique promotes transparency and accountability, two essential pillars in the 

development of ethical AI. In summary, this work not only connects a new layer of capability 

but also offers a new lens of evaluation—one that is adverse, explanatory, and future-certified. 

It also opens the door for continuous improvement, where explanatory score models can inform 

model retraining. Such tools may evolve into standard protocols to certify AI models in 

sensitive applications. The future of AI trustworthiness depends on tools that don’t just explain 

but prove their ability to explain under duress. This method is one step toward that future.2.  

 Literature Survey 

Forgery detection in images has attracted more attention in light of the spread of 

tampered images on digital media, leading to extensive amounts of diverse methods merging 

deep learning, machine learning, and hybrid approaches. Classical methods like SVD and 

SURF-based object location [3] transformed into advanced deep learning architectures such as 

VGG16-UNet model, which is successful in segmenting forged areas in images [1]. 

Multimodal models such as Forgery GPT use large language models to identify and justify 

image forgery through visual and contextual features [2]. For boosting robustness, models like 

RIFD-Net [8] and DF-Net [10] use deep convolutional approaches and forensic layers, whereas 

light-weight architectures such as LightFFDNet [13] and hybrid UNet-based architectures [16] 

seek faster deployment without loss of accuracy. Transfer learning has also been promising in 

this area, as proved by Ul Haq Qazi et al. [9], and is also supported by data augmentation and 

feature fusion [15][18]. Graph convolutional networks have also been studied for the detection 

of copy-move forgery, providing spatial relationship analysis between image regions [6]. 

Contrastive learning methods and unsupervised clustering [11], and discrepancy-guided 

reconstruction [12], have provided new unsupervised paradigms for detection. Moreover, 

models such as M²RL-Net [4] bring into focus the need for multi-view and relation-based 

learning under weak supervision. Work by Patel et al. [7] and Ahirwar [16] accentuates 

comparative performances of machine learning algorithms and hybrid deep networks in 

classification accuracy. Cryptographic implementations, such as Oke and Babaagba's proposals 

[20], introduce a security layer to the image verification process. The combination of various 
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light-weight deep learning models, investigated by Doegar et al. [15] and Sudhakar et al. [18], 

remains an effective trade-off between detection and computation efficiency. Interdisciplinary 

collaboration evident in research marrying biometric security [17][19] and medical image 

analysis [21] with forgery detection highlights the subject's versatility and general applicability. 

 Proposed Methodology 

The proposed methodology integrates generative modeling and interpretability 

techniques into a unified pipeline for adversarially testing an image forgery classifier. This 

pipeline is designed to assess how well a pre-trained binary classifier generalizes to unseen 

manipulations introduced by a generative adversarial network (GAN). The workflow begins 

with training a GAN on a subset of authentic image patches 𝑋𝑟𝑒𝑎𝑙 ⊂ ℝ64×64×3, sampled from 

a dataset 𝒟. The generator 𝐺: ℝ100 → ℝ64×64×3 learns to map a latent vector 𝑧 ∼ 𝒩(0, 𝐼) to 

visually plausible image patches, while the discriminator 𝐷: ℝ64×64×3 → [0,1] tries to 

distinguish between real and fake inputs. Once the GAN converges, generate synthetic forged 

patches 𝑥̂ = 𝐺(𝑧), which are inserted into real images 𝑥𝑟𝑒𝑎𝑙 ∈ 𝒟 to create manipulated 

examples 𝑥𝑓𝑜𝑟𝑔𝑒𝑑. These forgeries are passed through the classifier 𝑓𝜃(𝑥) to obtain predictions 

𝑦̂ ∈ {0,1}, and Grad-CAM is then used to generate heatmaps 𝐻(𝑥) that visualize regions 

influencing the prediction. The effectiveness of Grad-CAM is assessed by checking the 

alignment between 𝐻(𝑥) and the location of the inserted patch. This structured adversarial 

interpretability approach evaluates both classification performance 𝔼𝑥[𝕀{𝑓𝜃(𝑥) = 𝑦}] and the 

spatial reasoning capacity of the model via visual explanation fidelity. 

 

Figure 1. Proposed System Block Diagram 
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3.1 Training the GAN for Forgery Patch Generation 

The GAN used in this methodology is a Deep Convolutional GAN (DCGAN) variant 

that comprises a generator G and discriminator D, trained in a min-max fashion. The generator 

G receives a latent noise vector z ∈ ℝ100 ∼ 𝒩(0, I) and transforms it into a synthetic RGB 

patch x̂ = G(z) ∈ ℝ64×64×3. The discriminator D attempts to distinguish between real image 

patches x ∈ Xreal and generated ones x̂. The loss functions for each network are defined as: 

ℒD = −𝔼x∼pdata
[log D(x)] − 𝔼z∼pz

[log (1 − D(G(z)))] 

ℒG = −𝔼z∼pz
[log D(G(z))] 

The generator is optimized to minimize ℒG, while the discriminator minimizes ℒD. 

Training occurs using the Adam optimizer with learning rate α = 10−4, β1  =  0.5, and a batch 

size of 32. The GAN is trained for 500 epochs, using a subset of 1000 real patches extracted 

from authentic images. The outputs are normalized to the range [−1, 1] to match the tanh   

activation at the final layer of G. Periodic sampling of G(z) confirms that patches evolve from 

noisy blobs to realistic textures that match the distribution of real content. Once training 

stabilizes, the forged patches are stored and used for downstream manipulation. 

 

Figure 2. Training the GAN for Forer Patch Generation Numerical Example 

In Fig. 2 the entire GAN workflow is shown. To calculate losses for training updates, a 

latent vector z undergoes a generator transformation and discriminator evaluation. While a 

Deep Convolutional GAN (DCGAN) was employed in this work due to its architectural 

simplicity and proven capacity for stable patch generation, it is essential to acknowledge the 

broader landscape of generative models that could further enhance the realism and diversity of 
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forged patches. Architectures such as StyleGANs and CycleGAN offer a lot of flexibility when 

it comes to texture, lighting, and controlling semantic stability in the images generated. There 

can be more subtle and challenging adverse examples than this. For example, manipulations 

can be allowed in the ability to launch StyleGAN within the latent space with high visual 

allegiance that are difficult for classifiers, especially those relying on spatial signals. Similarly, 

conditional GANs (cGANs), which generate images based on class labels, can produce forgery 

patches that mix more naturally into the original image, making it difficult to tamperwith and 

localize. These advanced models can perform simple people like DCGAN better, when it 

comes to imitating realistic and complex attacks-but they also come with a trade-off: they 

require more computational power and careful tuning. In this study, we stick to DCGAN as it 

is easy to reproduce and focuses on localized forgeries. However, to see how they can change 

Grad-CAMheatmaps, affect major metrics such as IU or SSIM, or even distract the model’s 

attention completely, it is valuable to test the more powerful GANs below line. For now, 

DCGAN provides a solid starting point, but future comparisons with newer GAN architectures 

could reveal deeper insights into the limits of forgery localization and interpretability. 

3.2   Localized Forgery Synthetic Images Generation via Patch Insertion 

Once trained, the generator G is used to produce patches x̂ = G(z) that are resized and 

embedded into real images to create tampered inputs. Given a real image I ∈ ℝ224×224×3, select 

a fixed location (x0, y0) =  (80, 80) and overwrite the region I[x0: x0 + 64, y0: y0 + 64] with 

the forged patch x̂. This operation is formally defined as: 

Iij = {
x̂i−x0,j−y0

 if x0 ≤ i ≤ x0 + 64 and y0 ≤ j ≤ y0 + 64

Iij               otherwise                                                             
 

This creates a synthetic forged image I′, visually similar to I but containing localized 

tampering. To ensure consistency, all inputs are rescaled [0,1] before being passed to the 

classifier. This insertion strategy mimics real-world splicing attacks while preserving the 

original image's global context. The benefit of this method is that the ground truth tampered 

region is known a priori, enabling precise evaluation of Grad-CAM's focus. The process 

generates a new dataset 𝒟forged = {(Ik
′ , maskk)}k=1

N , where each sample has an implicit binary 

mask indicating the tampered area, enabling visual comparison with Grad-CAM outputs. 
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Forging Synthetic Images by Path Algorithm 

Algorithm: Patch Insertion-Based Forgery Generation 

Input: Real image I of size (H, W), forged patch P of size (h, w) 

Output: Forged image I' 

1. Preprocess I and P to ensure compatibility in dimensions 

   - Resize P to (h, w) 

   - Resize I to (H, W) if needed 

2. Choose insertion coordinates (x, y) such that: 

   - x + h ≤ H 

   - y + w ≤ W 

3. Copy original image I to I' 

4. For each pixel (i, j) in P: 

     I'[x + i, y + j] ← P[i, j]5. Return I' as the synthetically forged image 

 

Using a fixed patch insertion strategy—where forged regions are always placed in the 

center—makes the process of simulating tampering and evaluating results more 

straightforward. It ensures that ground truth masks are consistent and easy to compare. But this 

approach comes with a trade-off: it doesn’t reflect how tampering usually works in the real 

world. Forgeries in the wild rarely stick to neat, centered patternsthey appear in different 

shapes, sizes, and locations depending on the intent and context. By always inserting patches 

at the center, there's a risk that both the classifier and Grad-CAM may start to rely on that 

positional bias, focusing attention on the center even when there’s nothing suspicious there. 

This setup also limits how well we can test Grad-CAM’s ability to adapt to forgeries in other 

parts of the image. A stronger evaluation would involve placing forged patches in random or 

meaningful spotslike near faces, objects, or in the cornersto see how the model responds. 

Varying patch sizes and aspect ratios could help mimic different tampering techniques, such as 



                                                                                                                                                                                                            Samel M., Mallikarjuna Reddy A. 

Journal of Innovative Image Processing, June 2025, Volume 7, Issue 2  299 

 

inpainting, cloning, or copy-move attacks. Although the current setup helps with clear-cut 

comparisons by using binary masks for alignment checks, future versions should move toward 

more flexible and unpredictable patch placements. That way, we could better test whether the 

model truly understands spatial tampering or is just learning shortcuts. A system that can detect 

forged regions no matter where they appear would reflect a more robust and generalizable 

interpretability. While the current design is clean and efficient, it leaves room for a broader, 

more realistic form of adversarial testing in future work. 

3.3   Classifier Model Setup and Fine-tuning 

The classifier fθ is based on EfficientNetB1, a convolutional architecture known for 

balancing performance and efficiency. The base model is pre-trained on ImageNet and 

truncated at its final convolutional layer. The top layers include global average pooling 

GAP(x) =
1

H⋅W
∑ ∑ xij

W
j=1

H
i=1 , dropout Dropout(p), and a dense layer with tanh  activation: 

h = tanh (Wx + b) 

ŷ = σ(wTh + b′) 

where σ(⋅) is the sigmoid function, yielding probabilities in [0,1]. The model is trained 

with a Binary Focal Loss: 

ℒfocal = −α(1 − ŷ)γ log(ŷ) − (1 − α)ŷγ log(1 − ŷ) 

with γ = 2.0, to emphasize hard samples. Hyperparameters such as learning rate, 

dropout rate, and dense units are tuned using Keras Tuner's Random Search, and early stopping 

is applied based on validation loss. Training is conducted on the CASIA v1 dataset with 80/20 

splits. Once trained, the classifier achieves high binary classification accuracy on traditional 

samples. However, its behavior on GAN-forged inputs requires further examination using 

Grad-CAM. 

3.4   Grad-CAM for Interpretability Visualization 

Grad-CAM is used to extract heatmaps from the classifier’s convolutional backbone to 

identify which parts of the input influenced the decision. Given an input image xxx, a target 
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class ccc, and a convolutional feature map Ak from the last conv layer, the gradient of the score 

for class c, yc, with respect to Ak is computed: 

αk
c =

1

Z
∑ ∑ (

∂yc

∂Aij
k

)

ji

 

where Z is the number of pixels in Ak. The Grad-CAM heatmap LGrad−CAM
c  is then: 

LGrad−CAM
c = ReLU (∑ αk

c Ak

k

) 

This produces a coarse localization map that is resized to match the input image and 

overlaid as a heatmap. In practice, apply this on GAN-forged samples I′ and compare the 

highlighted regions with the known patch insertion location. The success of Grad-CAM is 

evaluated by visual overlap and intensity within the forged region. The key idea is that a reliable 

explanation mechanism should produce activation maps that align with manipulated content, 

not just areas that correlate with the class statistically. Hence, Grad-CAM becomes both a lens 

and a litmus test for spatial sensitivity in classification. 

3.5   Patch-wise GAN Training for Forgery Region Simulation 

In this phase, construct a Generative Adversarial Network (GAN) specifically tailored 

to learn the distribution of authentic image patches, which will later be used to simulate forged 

regions. The generator G(z; θG) maps a 100-dimensional latent vector z ∼ 𝒩(0, I) to a 

64×64×3 RGB patch, while the discriminator D(x; θD) attempts to distinguish between real 

patches x ∼ pdata and generated samples G(z). The objective function follows the classical 

min-max formulation: 

min
G

 max
D

𝔼x∼pdata
[log D(x)] + 𝔼z∼pz

[log (1 − D(G(z))) ] 

Inpractice, use binary cross-entropy as the loss. The models are optimized using Adam 

with a learning rate α = 10−4. Image patches were processed by resizing them to 64×64 and 

normalizing each pixel to the range [−1,1], which aligns with the output of the generator's 

tanh  activation. After sufficient epochs (e.g., 100), the generator is capable of producing 

realistic-looking patches that visually resemble genuine image regions. These synthetic regions 

serve as adversarial "tampering zones" for downstream interpretability testing. 
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3.6   Binary Mask Generation for Forged Region Localization 

To effectively evaluate localization, a binary mask M ∈ {0,1}H×W is created for each 

synthetic forgery. During the patch insertion phase, a GAN-generated patch x̂ ∈ ℝ64×64×3 is 

embedded at a fixed location, typically centered (x0, y0) = (80,80) on the host image I ∈

ℝ224×224×3. The corresponding region in the mask is updated as: 

Mij = {
1, if x0 ≤ i ≤ x0 + 64 and y0 ≤ j ≤ y0 + 64

0, otherwise                                                            
 

This creates a spatial ground truth for forgery. The mask M acts as a spatial oracle, 

allowing direct evaluation of Grad-CAM heatmaps. Since no external labels exist for synthetic 

forgery location, this mask enables supervised comparison with the classifier’s attention maps 

H ∈ [0,1]H×W. Accurate masks are essential for spatial metrics like IoU and SSIM, helping 

assess whether interpretability techniques like Grad-CAM successfully localize tampered 

regions, rather than merely identifying global class-related features. Moreover, these masks 

can be used to train future segmentation networks or fine-tune weakly supervised models. They 

introduce a bridge between classification and pixel-level analysis. This approach opens the 

door to creating datasets with synthetic ground truth at scale. Overall, mask generation ensures 

localized interpretability has a clear, testable reference. 

3.7   Heatmap-to-Mask Comparison using Quantitative Metrics 

Quantifying the spatial overlap between the Grad-CAM heatmap H and the forged mask 

M is key to validating interpretability. First, an Attention Score is defined as: 

A(H, M) =
∑ Hij ⋅ Mij

∑Hij ⋅ (1 − Mij) + ϵ
 

This measures the average intensity inside the forged region versus outside. The 

Intersection over Union (IoU) computes binary overlap using thresholded heatmaps Ĥ =

I(H ≥ t): 

IoU(H, M) =
∣ Ĥ ∩ M ∣

∣ Ĥ ∪ M ∣ +ϵ
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And also computed Precision, Recall, and F1 Score. These metrics ensure that Grad-

CAM’s output is not only visually compelling but also statistically aligned with forgery 

locations. Additionally, Mean Squared Error (MSE) quantifies pixel-wise deviation: 

MSE(H, M) =
1

HW
∑(Hij − Mij)

2

i,j

 

This combination of spatial overlap and pixel fidelity ensures both hard and soft 

comparisons are captured. It provides a comprehensive benchmark for interpretability 

robustness. 

3.8   Visualization of Interpretability Outputs 

To aid human understanding, each forged image is accompanied by a triplet 

visualization: the tampered image, the Grad-CAM heatmap overlay, and the raw heatmap. Let 

If be the forged image and HHH the heatmap. The overlay image is generated using: 

O = α ⋅ If + (1 − α) ⋅ ColorMap(H) 

where α ∈ [0,1] controls transparency blending (typically α = 0.6). The color map is 

obtained by scaling H ∈ [0,1] to 8-bit values and applying a colormap function: 

Hcolor = cv2. applyColorMap(⌊255 ⋅ H⌋, COLORMAP_JET) 

Titles of plots are automatically annotated with quantitative results (e.g., Attention 

Score, IoU, F1), such that: 

Title = f"Att: A: .2f, IoU: J: .2f, F1: F: .2f" 

This composite visualization not only verifies correctness but also enhances 

interpretability by visually and numerically aligning attention regions with forgeries. It allows 

forensic analysts to quickly gauge how reliably a model’s decision aligns with manipulation. 

Color gradients in the overlay directly show attention strength and spread. By including all 

visualizations side-by-side, qualitative assessment becomes intuitive. This layered display 

complements the metric tables and closes the loop between model logic and human perception. 
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3.9   Summary Evaluation of Interpretability Metrics 

After running the evaluation loop across multiple forged samples {(If
k, Mk)}

k=1

N
, the 

metrics are aggregated to assess overall model behavior. For each metric m ∈

{Attention, IoU, Precision, Recall, F1, MSE, SSIM}, compute: 

m̅ =
1

N
∑ mk

N

k=1

 

This yields a mean performance score, helping identify how well Grad-CAM 

generalizes to various forged instances. For example, a high Attention̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  with low IoU̅̅ ̅̅̅ might 

indicate that attention is roughly in the right region but not sharply localized. Similarly, SSIM̅̅ ̅̅ ̅̅ ̅ ≈

1 signals close structural alignment between heatmap and ground truth mask: 

SSIM(H, M) =
(2μHμM + C1)(2σHM + C2)

(μH
2 + μM

2 + C1)(σH
2 + σM

2 + C2)
 

This metric-based aggregation forms the backbone of the model's interpretability 

report. It enables comparisons between models, versions, or layers. A threshold-based ranking 

can identify models exceeding a certain interpretability fidelity. Furthermore, plotting score 

distributions can reveal variance and robustness beyond just averages. 

3.10   Layer-wise Grad-CAM Evaluation for Deeper Insight 

To gain deeper insight into how interpretability evolves throughout the neural network, 

Grad-CAM is applied at multiple convolutional layers, including early, middle, and late stages 

(e.g., block1a to block7a). Unlike single-layer explanations, this approach provides a 

hierarchical view of attention development across the network. Lower layers often focus on 

textures and edges, while deeper layers align with semantic features and object-level 

anomalies. By computing Grad-CAM heatmaps 𝐻ℓ at each layer ℓ, and evaluating them with 

the same set of spatial metrics (IoU, F1, etc.), capture layer-specific performance profiles. 

These profiles reveal how well the network learns to attend as depth increases. For example, if 

early-layer heatmaps have low IoU but high MSE, they may attend broadly, lacking focus. If 

late layers suddenly peak in F1-score and SSIM, this indicates learned discrimination. Visual 

comparisons of overlays from each layer further support this layered interpretability. Moreover, 
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these results can guide architectural tuningby choosing the best feature maps for interpretability 

extraction. This layer-wise study upgrades Grad-CAM from a static tool to a multi-resolution 

probe for neural reasoning. 

3.11   Heatmap and Metric Analysis 

Using metrics like Intersection over Union (IoU), Attention Score, SSIM, MSE, and F1 

score to evaluate Grad-CAM gives a well-rounded sense of how the model behaves under 

adversarial conditions. However, the results tell a mixed story. In some cases, the attention 

score was often high (0.85), indicating the model was focusing on the correct normal area. 

However, the IoU values were close to zero, which means that the model does not actually 

localize the forged area with great accuracy. This difference between "viewing" and 

"indicating" suggests that Grad-CAMs, which work by averaging gradients in large spatial 

areas, may lack the spatial sharpness required for fine-grained tasks such as forgery detection. 

The F1 score highlighted this problem, showing a low overlap with real forged pixels. The 

SSIM scores were also low, indicating poor structural alignment between Grad-CAM heatmaps 

and ground truth masks. Overall, these metrics indicate that solely relying on high attention 

scores can be misleading; it can give the perception that the model is interpretable when, in 

fact, it is just aware of where to look. To address this, future work can explore ways to tighten 

the link between Grad-CAM output and actual tampering areas. This may involve introducing 

custom loss functions during correlation analysis or training that penalizes heatmap 

misalignment. Interestingly, when analyzed layer by layer, deeper layers such as block 5B 

produced more focus, although this does not always translate into better IoU. Integrating Grad-

CAMs with pixel-level partition maps or adding attention-covered obstacles can help bridge 

this gap. Ultimately, Grad-CAM shouldn’t just be a visual tool; it should be a meaningful, 

measurable part of the model's interpretability pipeline, offering testable signals about where 

and why a network focuses its attention. 

3.12   Per-Layer Aggregation of Evaluation Metrics 

Once all metrics for each layer ℓ ∈ ℒ are collected across images {Ik}k=1
N , the results 

are aggregated layer-wise to form a layer-performance matrix: 
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[

IoUℓ1

1  …   IoUℓ1

N

⋮     ⋱     ⋮
IoUℓn

1  …   IoUℓn

N
] 

Average per-layer performance is then computed for each metric m. This summary 

identifies the most interpretable layers—those that yield the highest average IoU, F1, or SSIM 

across samples. The goal is to find  

ℓ ∗= arg max
ℓ

F̅1ℓ 

the layer that best localizes forgery spatially. Visual heatmap differences between ℓ1 

and ℓn help validate these scores. Layer rankings can be plotted for comparative analysis. 

These insights can also support the pruning or freezing of layers during training. This entire 

analysis transforms Grad-CAM from a black-box explainer into a data-driven interpretability 

map. 

3.13   Layer-wise and Dataset-Level Consistency 

The extended evaluation across different convolutional layers revealed a critical insight 

into the stability and consistency of interpretability across both synthetic and real forgery 

datasets. Grad-CAM heatmaps computed from shallower layers (e.g., block2a or block3b) 

showed diffuse attention, capturing texture gradients and low-level noise, but offered poor 

alignment with the forged regions. In contrast, deeper layers like block5d or block6a 

demonstrated sharper, more focused heatmaps, though even these often misaligned with the 

precise tampered boundaries. When comparing performance across datasets, it was observed 

that Grad-CAM’s attention became increasingly unstable on synthetic GAN-forged samples 

compared to traditional splicing images. This inconsistency points toward a brittle attention 

mechanism that may not fully capture semantic context when manipulation patterns differ from 

the training data. Aggregated metric scores across layers show that no single layer achieves 

both high IoU and high F1 score consistently. Furthermore, even when attention score trends 

remain high across datasets, their structural quality (via SSIM) declines, suggesting visual 

illusions of performance that fail under pixel-wise scrutiny. This discrepancy underscores the 

need to reassess classifier interpretability not only layer-wise but also across domain shifts. 

Embedding adversarial testing within the interpretability pipeline thus becomes vital to expose 

latent model weaknesses. Such findings offer strong motivation to explore ensemble heatmap 
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strategies, cross-layer fusion, or dataset-adaptive Grad-CAM calibrations for robust 

interpretability in real-world image forensics. 

 Results & Discussion 

 

Figure 3. Epoch wise Generator and Discriminator Training Convergence 

The GAN component demonstrated gradual convergence throughout training, 

indicating the generator's increasing ability to produce realistic forged patches. Initially, both 

generator and discriminator losses hovered around 0.69, characteristic of random guessing. By 

epoch 90, the generator loss rose to approximately 1.93 while the discriminator loss dropped 

to 0.17. This trend suggests that the discriminator became increasingly confident in detecting 

generated patches, while the generator struggled to fully deceive it. The rising generator loss 

is expected in scenarios where the discriminator's learning outpaces the generator. Despite this, 

the forged patches retained a level of realism suitable for insertion into host images. These 

patches served their role in adversarial testing by introducing novel, untrained manipulations 

to the classifier. This confirms that the GAN, while basic, fulfilled its function of creating non-

trivial inputs for interpretability evaluation. 

 

Figure 4. Attention Score for a Sample Image 
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A sample image with the attention map produced by Grad-CAM is displayed in Fig. 4. 

Across the forged samples tested, the Grad-CAM attention scores indicated a promising level 

of spatial focus. The average attention score achieved was 0.8595, reflecting that most of the 

heatmap intensity was concentrated inside the forged region. This metric is computed as the 

ratio of average heatmap values within the patch mask to those outside it. A score closer to 1 

implies that the classifier placed significantly more focus on the forged area. This suggests that 

the model, when paired with Grad-CAM, is not arbitrarily activating across the image but is 

instead attending to the manipulated region. This outcome supports the idea that interpretability 

can extend beyond accuracy, offering spatial insight into classifier decision-making. While this 

metric does not account for false positives outside the forged region, it does validate the model's 

capacity to "see" forgery-like artifacts introduced by GAN-generated content. 

 

Figure 5. IoU Score for an Image 

The spatial disparity between attention and real forgery regions is revealed by the IoU 

score, as shown in Fig. 5. Despite the high attention score, the IoU (Intersection over Union) 

values were consistently near zero across the test set. This highlights a critical gap between 

focused attention and precise localization. The IOU grounds compare the binned heatmap with 

the Truth mask, assessing how well the active area overlaps with the actual tampering area. 

The result suggests that although the classifier often participates in the lattice area, it does so 

differently or inconsistent, fails to produce rapidly bound activations. Grade-cams, being a 

coarse localization tool, may naturally lead to a lack of granulation required to detect pixel-

collapse. This range becomes more pronounced in synthetic forgery scenarios, where limit 

clarity is necessary. These findings reinforce the need for pairing Grad-CAM with higher-

resolution methods or enhancing it with localization-aware loss functions during training. 
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Figure 6. Precision Recall and F1 Score Analysis 

The precision, recall, and F1 scores for the various Grad-CAM layers are shown in Fig. 

6. 

 

Figure 7. SSIM and MSE for a Sample Image 

The structural mismatch in attention outputs is further supported by the comparison of 

SSIM and MSE values in Fig. 7.  

Despite the high attention score, the IoU (Intersection over Union) values were 

consistently near zero across the test set. This highlights a critical gap between focused 

attention and precise localization. The IoU grounds compare the binned heatmap with the truth 

mask, assessing how well the active area overlaps with the actual tampering area. The result 

suggests that although the classifier often participates in the lattice area, it does so 

inconsistently and fails to produce rapidly bound activations. Grad-CAM, being a coarse 

localization tool, may naturally lead to a lack of granularity required to detect pixel collapse. 
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This issue becomes more pronounced in synthetic forgery scenarios, where clarity is essential. 

These findings reinforce the need for pairing Grad-CAM with higher-resolution methods or 

enhancing it with localization-aware loss functions during training. 

 

Figure 8(a). Forged Image with Patch, Grad-CAM Heatmap and Ground Truth Mask 

 

Figure 8(b). Layer block1a_activation 

 

Figure 8(c). Block2a_Expand_Activation Layer Grad-CAM analysis 
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Figure 8(d). Block7a_Expand_Activation Layer Grad-CAM Analysis 

The ground truth mask, Grad-CAM heatmap, and overlaid forged patch are displayed 

in Fig. 8(a). Deeper layers produce more localized and distinct activations, as Fig. 8(b) 

illustrates. The early layer Grad-CAM output is spatially unfocused, covering both forged and 

non-forged regions without any discernible difference, as seen in Fig. 8(c). The Grad-CAM 

map precisely focuses on the manipulated region in Fig. 8(d), highlighting the sharp activation 

at deeper layers. Layer-wise analysis revealed significant variation in Grad-CAM effectiveness 

across different convolutional blocks of EfficientNetB1. Evaluations were conducted on layers 

ranging from block1a_activation to block7a_expand_activation, with each layer generating its 

own heatmap. Attention scores remained relatively high across deeper layers, while IoU and 

F1 scores consistently stayed low throughout. For instance, even at deeper layers like 

block6a_expand_activation, the interpretability maps did not yield improved precision or 

structural similarity. This pattern suggests that while deeper layers encode more semantically 

rich information, they may also produce broader, less precise activation maps. No single layer 

was found to simultaneously maximize attention and localization metrics. These findings 

suggest that Grad-CAM interpretability may not benefit significantly from deeper layer 

selection alone. It opens the discussion for using ensemble attention across layers or developing 

new visualization mechanisms tailored for forgery detection tasks. 
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Table 1. Summary of Quantitative Interpretability Metrics (Averaged Over 100 

Forged Samples) 

Metric Mean 

Score 

Std. Dev Interpretation 

Attention Score 0.8595 0.0432 High attention focus within forged 

region 

IoU (Intersection) 0.0178 0.0087 Weak spatial overlap despite focus 

F1 Score 

(Heatmap) 

0.0321 0.0143 Poor localization effectiveness 

SSIM 0.1130 0.0589 Low structural alignment between 

heatmap and mask 

MSE 0.1395 0.0362 Moderate pixel-wise deviation 

This table summarizes the key interpretability metrics across 100 forged image 

samples. While the attention score is relatively high, indicating focused model attention within 

forged regions, the IoU and F1 scores are extremely low, suggesting poor actual overlap with 

ground truth forgeries. The low SSIM and moderate MSE values further confirm that Grad-

CAM heatmaps fail to accurately replicate the spatial structure of tampered regions. 

Table 2. Layer-wise Grad-CAM Evaluation (Averaged Across 50 Test Images) 

Layer IoU F1 Score Attention 

Score 

SSIM Best Interpretability? 

Block2a 0.0092 0.0185 0.7864 0.0842 No, Not the best interpretability 

Block3c 0.0124 0.0223 0.8112 0.0975 No, Not the best interpretability 

Block4d 0.0181 0.0332 0.8375 0.1061 Moderate interpretability 

Block5b 0.0215 0.0376 0.8530 0.1173 Yes, Best Interpretability 

Block6a 0.0197 0.0348 0.8595 0.1130 Yes, Best Interpretability 
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This table evaluates Grad-CAM performance layer-by-layer using five representative 

convolutional blocks. Deeper layers (e.g., block5b, block6a) show better interpretability scores, 

particularly in IoU and F1, compared to earlier layers like block2a. However, even the best-

performing layers still fall short of ideal localization, reinforcing the coarse nature of Grad-

CAM and its limitations in precise forgery detection. 

 Conclusion 

The proposed methodology integrates generative modeling and interpretability 

techniques into a unified pipeline for adversarially testing an image forgery classifier. This 

pipeline is designed to assess how well a pre-trained binary classifier generalizes to unseen 

manipulations introduced by a generative adversarial network (GAN). The workflow begins 

with training a GAN on a subset of authentic image patches, sampled from a dataset. The 

generator learns to map a latent vector to visually plausible image patches, while the 

discriminator tries to distinguish between real and fake inputs. Once the GAN converges, it 

generates synthetic forged patches, which are inserted into real images to create manipulated 

examples. These forgeries are passed through the classifier to obtain predictions, and Grad-

CAM is then used to generate heatmaps that visualize regions influencing the prediction. The 

effectiveness of Grad-CAM is assessed by checking the alignment between the predicted 

output and the location of the inserted patch. This structured adversarial interpretability 

approach evaluates both classification performance and the spatial reasoning capacity of the 

model via visual explanation fidelity. 
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