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Abstract   

In recent decades, Diabetic Macular Edema (DME) has emerged as a significant cause 

of vision loss among diabetic patients due to retinal fluid leakage. To address this challenge, 

reliable and efficient diagnostic methods are essential. The proposed methodology aims to 

facilitate early detection through a multi-stage process, including feature extraction, feature 

selection, and classification.For feature extraction, we introduce the H2A2Net model, which 

incorporates a Dense Spectral-Spatial Module (DSSM) that employs 3D convolutional 

DenseNet-inspired layers to extract spectral-spatial features. This is complemented by a Hybrid 

Resolution Module (HRM) designed to achieve fine spatial detail through a multi-scale 

process. Additionally, a Double Attention Module (DAM) is implemented to capture global 

and cross-channel interactions, utilizing both pixel-wise and channel-wise attenuation. Feature 

selection is conducted using Cuckoo Search Spider Monkey Optimization (CSSMO), which 

effectively processes both local and global searches to enable efficient selection of high-value 

features. In the classification phase, a hybrid AdaBoost-Backpropagation Neural Network 

(BPNN) model is employed, where BPNNs function as weak classifiers whose outputs are 

iteratively boosted to create a strong ensemble. Experimental results on the CUHK dataset 

demonstrate that the proposed method achieves an accuracy of 97.4%, a recall of 97.6%, a 
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specificity of 97%, and an F1-score of 98%. These outcomes surpass those of existing state-of-

the-art methods, indicating that the proposed approach offers enhanced robustness and 

efficiency for DME classification. 

Keywords: DME Classification, OCT Dataset, H2A2 Feature Extraction, Feature Selection, 

Accuracy.  

 Introduction 

Diabetic Macular Edema (DME) is a serious vision-related condition affecting 

individuals with diabetes, leading to severe visual impairment. In the retina, fluid accumulates 

in the macula due to leakage from damaged blood vessels and elevated blood sugar levels. 

Diabetic Retinopathy (DR) is associated with DME and can result in significant vision loss or 

even blindness if not adequately treated. Furthermore, DME poses major health concerns, 

adversely impacting cardiovascular, nerve, immune, and digestive health. Statistics indicate 

that DME affects between 4.2% and 7.9% of individuals with type 1 diabetes, while it affects 

1.4% to 12.8% of those with type 2 diabetes. 

DME is characterized by retinal thickening, hard exudates, microaneurysms, and 

hemorrhages in the macula. Two common imaging methods used for its detection are Fundus 

Photography and Optical Coherence Tomography (OCT). Fundus Photography provides 

detailed retinal images that facilitate the identification of abnormalities. In contrast, OCT 

delivers high-resolution cross-sectional images that allow for the visualization of retinal 

thickness, fluid accumulation, and other changes, aiding in the assessment of severity and 

informing clinical decisions. 

Although OCT is effective in identifying DME, it is not optimal for the early detection 

of affected regions. There is a critical need for reliable and accurate early diagnosis of DME. 

Consequently, machine learning (ML) and deep learning (DL) have emerged as promising tools 

in medical imaging, offering high accuracy. Notably, Convolutional Neural Networks (CNNs) 

are employed to analyze spatial structures in images due to their layered architecture. Inception 

Networks capture multi-scale features to recognize patterns at various scales simultaneously. 

Additionally, attention mechanisms enhance the ability to detect indirect signs. Transfer 

learning, utilizing pre-trained models, enhances accuracy while requiring fewer labeled data. 
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Each technique possesses unique strengths, collectively enabling faster and more accurate 

detection of DME. 

This work presents a hybrid method wherein the H2A2 method is employed for feature 

extraction, the CSSMO method is utilized for relevant feature selection, and the Adaboost-

BPNN model is applied for classifying OCT images for DME diagnosis. The performance of 

the proposed method is validated against classification metrics, demonstrating superior results 

compared to traditional methods. The significance of this research lies in its capacity to enhance 

early diagnosis through advanced deep learning and feature extraction techniques. The 

integration of Principal Component Analysis (PCA) for dimensionality reduction, alongside 

the use of DenseNet with the Adaboost classifier, improves both accuracy and computational 

efficiency, which are essential for clinical decision support systems. This work is structured as 

follows: related works are discussed in Section 2, the proposed methodology in Section 3, 

results in Section 4, and conclusions in Section 5. 

 Related Works 

Garcia-Nonoal et al. [8] introduced the ConvUNeXt model to classify hard exudates 

(HaEx) for DME. RetinaNet is used to localize the optic disc (OD) with an accuracy of 99.38%. 

Thanikachalam et al. [9] developed an Artificial Neural Network (ANN) to classify DME and 

extract features using an Adaptive Gabor Filter (AGF).  The Random Forest (RF) is used to 

select features with 97.91% accuracy. 

Fujiwara et al. [10] classified DME based on the location and size of fluid areas in the 

retina. It also explored how these fluid characteristics correlated with visual acuity (VA) using 

en-face OCT images created by swept-source OCT. Im, J. H., et al. [11] conducted a meta-

analysis to determine the prevalence of DME using OCT. The pooled frequency was 5.47% 

worldwide with rates of 5.81% in low- to middle-income countries and 5.14% in high-income 

countries. Liu et al. [12] identified DME based on retinal thickening or fluid by using a DL 

system. This system was compared to expert evaluations and achieved 80% specificity and 

81% sensitivity. To address DME issues, Guo et al. [13] presented an automatic detection and 

grading method using CNN. It improved stability and reliability in the diagnosis of DME. 

Kumar et al. [14] used the DenseNet121 model for feature extraction and processed it 

with fully connected layers for classification. It attained an accuracy of 86.4%, demonstrating 
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its effectiveness in DME classification. da Costa et al. [15] developed a VGG-19 model for 

classification using OCT images. This model attained 82.60% accuracy and 92.03% AUROC, 

showcasing its robustness in DME classification. Hughes-Cano et al. [16] applied transfer 

learning on OCT, scalogram and fundus images to identify DME. This method performed well, 

attaining a 93% AUC and 89% F1-score, respectively. Wu et al. [17] developed a DL method 

to classify DME patterns in OCT images. It achieved an accuracy of 95.9% and attained a 

higher reliability. Kaymak et al. [18] used AlexNet for classification into healthy, dry AMD, 

wet AMD and DME. This method attained an accuracy of 99.6% and showed superior 

performance compared to. 

 Materials and Methods 

3.1 Dataset Description 

An OCT image dataset is gathered from two universities, namely the Singapore Eye 

Research Institute (SERI) and the Chinese University of Hong Kong (CUHK) respectively. 

SERI dataset has labeled 16 DME cases and 16 normal cases. The CUHK dataset includes 416  

DME cases and 7,916 normal cases, numbers. To address the data imbalance, the data 

augmentation technique is applied to the DME cases.  Every volume consists of 128 B-scan 

slices of 1024×512 pixels. All OCT datasets are used to train the model with grades and label 

them as normal or DME-affected.  

 Proposed Methodology 

The proposed methodology is presented to classify a DME by performing H2A2Net 

feature extraction, CSSMO-based feature selection, and the AdaBoost-BPNN classification, 

respectively. This proposed approach offers a reliable DME classification with accurate 

diagnostics and enhances patient outcomes. 

4.1   Feature Extraction  

Figure 1 shows the H2A2Net architecture, which is used for feature extraction. The 

H2A2 model consists of PCA, DSSM, HRM, and DAM, respectively [19]. Initially, PCA is 

used as a pre-processing step that minimizes data dimensionality and speeds up training without 

any data loss. Then, the PCA provides the output as a processed 3D cube, which is is fed as 
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input to the DSSM module. This PCA helps to focus the spectral characteristics most relevant 

to DME. Its primary function is to transform the original high-dimensional dataset into a lower-

dimensional subspace and preserve the most informative features. By capturing the directions 

of maximum variance, PCA eliminates redundancy and noise. This not only accelerates the 

training process but also enhances the classifier’s performance by focusing on the most 

discriminative features. 

 

Figure 1. H2A2Net Feature Extraction 

4.2   DSSM Module 

After PCA pre-processing, the DSSM is used, inspired by DenseNet, which has dense 

connectivity between layers. DenseNet is utilized in this work due to its densely connected 

architecture, which increases feature reuse and mitigates vanishing gradients. This is especially 

beneficial in clinical imaging, where subtle variations are critical for diagnosis. The 

architecture allows for efficient learning from limited clinical datasets by improving gradient 

flow and reducing parameters compared to traditional CNNs. In this module, 3D convolutional 

layers are used to capture spectral and spatial features within the data simultaneously. Each 

convolution layer employs a 3D filter that allows it to extract features across both spatial 

dimensions (height and width) and the spectral dimension. Figure 1 shows convolution kernels 

with a 3×3×5 size, where the first 2-Dimensions focus on spatial filtering while the 3-D 

dimensions capture spectral variations. This joint spectral-spatial processing is used for DME 
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as the condition involves subtle changes in both spatial structure (such as the appearance of 

fluid pockets) and spectral characteristics. The dense connections in DSSM mean that each 

layer’s output is concatenated with subsequent layers, allowing information to flow more freely 

through the network and promoting feature reuse. This DSSM helps retain lower-level spectral 

details and builds up multi-layered representation to capture both micro-level features (like 

small fluid pockets) and broader patterns in the retina. 

4.3   HRM Process 

The next module is HRM, which is designed to capture both fine-grained spatial details 

and broader semantic patterns by processing data at multiple resolutions. The HRM consists of 

three branches, each handling the input data at different scales: high, medium, and low 

resolution. It uses convolutional operations to extract features at various resolutions. The high-

resolution processing detects fine details and small edema pocket changes. The medium-

resolution processing captures moderate spatial patterns, while the low-resolution processing 

identifies high-level features across larger retinal regions. By processing data at various scales, 

it can address both small-scale and larger pattern detection. Then the outputs are combined 

using upsampling and downsampling operations to integrate both local and global data, 

ensuring precise spatial positioning and broader semantic data while effectively capturing 

diverse features related to DME. 

4.4   DAM Process 

The DAM is the final module in this H2A2 Architecture that improves it on relevant 

spatial and spectral features using pixel-wise attention and channel-wise attention, respectively. 

The pixel-wise attention is processed as a global spatial dependency based on relationships 

between individual pixels. By considering these relations, pixel-wise attention can detect 

indirectly spatially distributed features of DME. Meanwhile, channel-wise attention uses a 

spectral data channel to permit the channel’s particular data to detect retinal abnormalities. By 

choosing weighting channels, channel-wise attention focuses on the most diagnostically 

valuable data. Therefore, this attention process prioritizes spatial and spectral features that 

ultimately enhanceits ability to detect and localize DME accurately.  
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4.5  CSSMO Feature Selection 

Normally, the optimization algorithms are applied to obtain a solution for real world 

problems [20]. The CSSMO method is inspired by both Cuckoo Search and Spider Monkey 

Optimization. It is designed to explore and exploit search spaces to process a feature selection 

efficiently [21]. The CSSMO are validated with several steps that is given in the following.  

Step 1: Initialization 

1. Define the initial population P in the search space. 

2. Set the control parameters: 

• LocalLeaderLimit: Limit for local leaders before redirection. 

• GlobalLeaderLimit: Limit for global leaders before population restructuring. 

• Perturbation Rate (pr): Controls the diversification in solution updates. 

3. Evaluate the fitness for each individual f(xi) 

Step 2: Leader Selection 

1. Identify the global leader G based on the highest fitness f(G) in the population. 

2. Assign local leaders L in smaller groups to explore nearby solutions  

Step 3: Iterative Optimization (Loop until Termination Criterion is Met) 

In this phase, the process includes both the Local Leader Phase (LLP) and the Global 

Leader Phase (GLP). 

In LLP, individuals update their positions using Equation 1. 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑟1(𝐿 − 𝑥𝑖(𝑡)) + 𝑟2(𝑥𝑗(𝑡) − 𝑥𝑖(𝑡))                          (1) 

Where 𝑥𝑖(𝑡) denotes Self-experience, L represents the local leader’s influence, r1 and 

r2 are random values between [0,1], xj represents randomly selected member within the same 

group. 

 



                                                                                                                                                                                                           Minarva Devi K., Murugeswari S. 

ISSN: 2582-4252  322 

 

• Fitness-based Greedy Selection 

Each new position xi(t+1) is evaluated based on fitness f(xi(t+1)). If the new position 

has a better fitness than the previous one, it is retained. 

• Probability Calculation 

A probability probi is calculated to select individuals in GLP that is calculated based 

on fitness as shown in (Eq.2): 

𝑃𝑟𝑜𝑏𝑖 =
𝑓(𝑥𝑖(𝑡+1)

∑ (𝑥𝑗(𝑡+1)𝑁
𝑗=1

                             (2) 

In GLP, individuals update positions based on Equation 3. 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑟3(𝐺 − 𝑥𝑖(𝑡)) + 𝑟4(𝑥𝑘(𝑡) − 𝑥𝑖(𝑡))             (3) 

Where G denotes global leader experience, r3 and r4 are random values in [0,1],xk 

denotes an another random member of the population. 

After each GLP iteration, local and global leaders are updated based on greedy 

selection. 

• Adaptive Foraging and Group Splitting 

1. Local Leader Constraint (LocalLeaderLimit): When a local leader’s performance 

reaches its limit, all members in that group adopt the cuckoo search local search method 

to diversify search directions. 

2. Global Leader Constraint (GlobalLeaderLimit): If the global leader reaches its limit, 

the population divides into smaller groups. Each group continues independently in LLP 

and GLP to maintain a balance of exploration and exploitation. 

Step 4: Termination and Final Solution 

The algorithm repeats the LLP and GLP cycles until the termination criterion (e.g., 

maximum number of iterations, target fitness level) is satisfied. The solution with the best 

fitness f(G) at termination is output as the optimal feature selection for the given dataset. 
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4.6   AdaBoost-BPNN based Classification 

The AdaBoost-BPNN classifier is designed to improve the accuracy and robustness of 

classification in DME OCT images. In this proposed work, AdaBoost is used as the primary 

ensemble technique, while BPNN acts as individual weak classifiers within the ensemble [22]. 

Each BPNN is processed as a separate model and generates predictions based on selected 

features from the dataset.  This approach achieves a powerful ensemble model where weak 

classifiers are improved to build a strong classifier iteratively, resulting in robust and accurate 

DME classification. 

 

Figure 2. AdaBoost-BPNN Classifier 

The figure shows an Adaboost-BPNN classification that starts with selected features as 

input. These features are processed in parallel by multiple BPNN (labeled as BP neural network 

1, 2, ..., n). Each network is used to classify the features independently and produces an output. 

The outputs from all BPNNs are then aggregated in a decision strategy module. This module 

consolidates the results from every network to make a final classification decision. The final 

output is classified as severity of DME or normal. Therefore, this proposed method processes 

more informative features and corrects errors iteratively through its boosting process, achieving 

higher accuracy in DME detection. 

AdaBoost was integrated as a classifier following DenseNet-based feature extraction to 

increase classification accuracy. AdaBoost’s ability to focus on misclassified samples helps 

address class imbalance and improve robustness. This hybrid approach uses DenseNet for deep 

feature representation and AdaBoost for refined classification decision-making. 
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 Result And Discussion 

The proposed model for DME classification was evaluated using a 70-30 split of the 

datase,t with 70% of the data allocated for training and 30% for testing. This split ensures that 

the model has sufficient data to learn patterns while maintaining a separate test set for unbiased 

performance evaluation. The outlier data points are identified using statistical methods such as 

the interquartile range (IQR) and z-score analysis and are adjusted based on clinical relevance. 

Classification error refers to the proportion of incorrectly predicted instances compared to the 

total instances and is calculated as: 

𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 × 100%       (4) 

In this work, the error was calculated by comparing the predicted class labels with the 

actual labels on the test dataset. The fitness curve of CSSMO-based feature selection is shown 

in Figure 3. The y-axis represents the classification error (fitness value), and the x-axis denotes 

the number of iterations. 

 

Figure 3.  Fitness Curve of CSSMO 

The fitness curve shows a clear downward trend in classification error over the course 

of 225 iterations. This convergence behavior confirms that CSSMO exhibits a strong global 

search capability and stability in minimizing the objective function. The low final fitness value 

proves that the selected features significantly increase classification performance. The model 

loss and accuracy validation are given in Figure 4. The minimal gap between training and 

validation metrics indicates that the model is not only accurate but also generalizes well to new 

data.  
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Figure 4.  Model Validation and Loss Curve 

 To evaluate the model’s effectiveness, the classification metrics are analysed namely 

Precision, Recall, Specificity, Accuracy and F1 Score. Each of these metrics offers unique 

insights into the model’s strengths and potential areas for enhancement in DME classification. 

Table 1. Performance Table of Classification Metrics 

Metrics Proposed  Transfer 

Learning 

GAN CNN-GRU BiLSTM BPNN CNN 

Precision (%) 98.2 95 94.5 93 92.4 90 89.8 

Recall (%) 97.6 94 96 95.2 90.2 88.2 87.4 

Specificity (%) 97 93.2 94.2 93.5 90.3 89.6 88.2 

Accuracy (%) 97.4 95.2 94.9 93.6 92.4 88 89 

F1 score (%) 98 94.6 95.2 94.7 91.3 89.6 88.6 

 

 

Figure 3. Overall Classification Performances 
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Table 1 and Figure 3 present the performance of several DL methods for DME 

classification. The proposed model outperforms all other metrics such as precision, recall, 

specificity, accuracy, and F1 score. It achieves the highest precision (98.2%) which is accurate 

in identifying true positive DME cases while minimizing false positives. The proposed recall 

(97.6%) shows its effectiveness by reducing the number of missed positive instances. It also 

achieves the best specificity (97%) that helps avoid false positive diagnoses. With an accuracy 

of 97.4%, the proposed model is highly reliable for clinical use. The F1 score stands at 98%, 

demonstrating its ability to handle data with precision and sensitivity. Other models like 

Transfer Learning, GAN and CNN-GRU also perform well in precision and recall that is next 

to the proposed model. Models like BiLSTM, BPNN and CNN indicate very lower accuracy 

in detecting DME than the proposed model.  

 

   (a)    (b)  

 

 (c) (d) 



 Enhanced Hybrid Feature Extraction and Selection based on OCT Images for Diabetic Macular Edema Classification 
                                                                                                                                                                                                         

 

 

Journal of Innovative Image Processing, June 2025, Volume 7, Issue 2  327 

 

 

(e) 

Figure 4. Graphical Representation of Classification Metrics (a) Precision, (b) Recall, 

(c) Specificity, (d) F1 Score and (e) Accuracy 

Figure 4(a) shows the Precision metrics performances, indicating how many of the 

DME-positive predictions are correct. The Proposed Model has the highest precision at 98.2%, 

while other models like Transfer Learning (95%) and GAN (94.5%) perform well but are 

slightly lower. The lowest precision is observed in BPNN (90%) and CNN (89.8%), which 

incorrectly label non-DME cases as DME more often. 

Figure 4(b) represents the Recall metrics graph, which addresses missed diagnoses. The 

Proposed Model has the highest recall at 97.6%, detecting nearly all DME cases. GAN and 

CNN-GRU also show good recall but lower scores in other metrics. In contrast, BPNN (88.2%) 

and CNN (87.4%) are less effective at identifying all DME cases. 

Figure 4(c) shows the graphical representation of Specificity performances, illustrating 

how well the model avoids false positives. The Proposed Model achieves 97% specificity, and 

other models like GAN (94.2%) and CNN-GRU (93.5%) are also strong in specificity. 

Additionally, the lower specificity in BPNN (89.6%) and CNN (88.2%) suggests these models 

may frequently misclassify non-DME cases as DME. 

Figure 4(d) presents the graphical representation of F1 Score performances, which are 

useful when there is data imbalance. The Proposed Model has the highest F1 score at 98%, 

while GAN (95.2%) and CNN-GRU (94.7%) perform well, though not as comprehensively 
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balanced. The lower F1 scores in BPNN (89.6%) and CNN (88.6%) indicate that these models 

are less reliable in balancing true positives and avoiding false positives. 

Figure 4(e) shows the graphical representation of Accuracy performances, indicating 

the overall correctness of the model’s predictions across both positive and negative cases. The 

Proposed Model leads with 97.4% accuracy, making it the most balanced and reliable. Transfer 

Learning (95.2%) and GAN (94.9%) also show good accuracy, but the lower scores of BPNN 

(88%) and CNN (89%) suggest these models are less dependable for accurate DME diagnosis. 

Figure 5 shows the confusion matrices for the proposed model with and without the 

CSSMO technique. The left matrix corresponds to the model integrated with CSSMO, while 

the right matrix shows performance without optimization. With CSSMO, the model correctly 

classified 2,317 Normal and 2,035 DME samples, misclassifying only 57 Normal and 65 DME 

samples. This denotes a strong balance between sensitivity and specificity. In contrast, the 

model without CSSMO correctly predicted 2,292 Normal and 2,011 DME cases, with higher 

misclassification counts of 82 and 89, respectively. 

(a)     (b)  

Figure 5. a) With CSSMO b) Without CSSMO 

The computational analysis of the proposed model is given in Table 2. The integration 

of CSSMO slightly increases training time, but the inference speed remains within acceptable 

clinical limits and proves suitable for real-time implementation. 
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Table 2. Computational Analysis of the Proposed Model 

Model Training 

Time (hrs) 

Inference Time 

(ms/image) 

GPU Used 

Proposed model 

without CSSMO 

1.9 9 NVIDIA RTX 

3090 

Proposed model 

with CSSMO 

2.3 13 NVIDIA RTX 

3090 

 

 Conclusion 

The proposed methodology demonstrates high accuracy and robustness in detecting 

diabetic macular edema (DME), utilizing the H2A2Net architecture for feature extraction, the 

CSSMO algorithm for precise feature selection, and the AdaBoost-BPNN ensemble for 

classification. When tested on the SERI and CUHK OCT datasets, the model exhibited 

significant improvements in identifying DME compared to traditional methods. The proposed 

model achieved a precision of 98.2%, a recall of 97.6%, a specificity of 97%, an accuracy of 

97.4%, and an F1 score of 98% on these datasets. These results highlight a substantial 

advancement over conventional approaches, underscoring the model's effectiveness in 

accurately identifying DME cases while minimizing false positives. Future work will focus on 

expanding the model to incorporate additional imaging modalities such as fundus photography 

and fluorescein angiography to enhance diagnostic capabilities. Additionally, efforts will be 

made to optimize the model for real-time clinical deployment. 
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