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Abstract   

Dense video captioning aims to identify events within a video and generate natural 

language descriptions for each event. Most existing approaches adhere to a two-stage 

framework consisting of an event proposal module and a caption generation module. Previous 

methodologies have predominantly employed convolutional neural networks and sequential 

models to describe individual events in isolation. However, these methods limit the influence 

of neighboring events when generating captions for a specific segment, often resulting in 

descriptions that lack coherence with the broader storyline of the video. To address this 

limitation, we propose a captioning module that leverages both Transformer architecture and a 

Large Language Model (LLM). A convolutional and LSTM-based proposal module is used to 

detect and localize events within the video. An encoder-decoder-based Transformer model 

generates an initial caption for each proposed event. Additionally, we introduce a Large 

Language Model (LLM) that takes the set of individually generated event captions as input and 

produces a coherent, multi-sentence summary. This summary captures cross-event 

dependencies and provides a contextually unified and narratively rich description of the entire 

video. Extensive experiments on the ActivityNet dataset demonstrate that the proposed model, 

Transformer-LLM based Dense Video Captioning (TL-DVC), achieves a 9.22% improvement 

over state-of-the-art models, increasing the Meteor score from 11.28 to 12.32. 
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 Introduction 

In today's world of social media, videos have emerged as a valuable medium for sharing 

information. However, extracting valuable insights from raw video continues to be a labor-

intensive and time-consuming process. This challenge becomes even more significant in 

applications such as surveillance log generation and query-based video retrieval systems. 

Video summarization aims to address these issues. There are two primary categories of video 

summaries: visual summaries and textual summaries. Visual summaries select keyframes or 

clips, whereas textual summaries are designed to produce coherent natural-language 

descriptions of the visual content, a process referred to as video captioning. Traditional video 

captioning models generally generate one or more sentences to explain the content of a video. 

Nevertheless, overlapping events in real-world videos present a challenge for conventional 

models to identify and describe these events accurately.  

 Dense video captioning (DVC) addresses these limitations of conventional models. 

DVC is capable of precisely identifying and locating events. It distinguishes between 

simultaneous and consecutive events, making it useful in complex video scenarios. A 

captioning module receives the identified events and generates detailed descriptions of each 

one.  

Figure 1 illustrates the difference between traditional and dense video captioning. As 

illustrated, traditional captioning models provide general video descriptions, whereas DVC 

identifies and locates all events in a video and generates detailed captions for each event. By 

automating event localization and description, DVC becomes useful for various applications, 

including video summarization [1,2,3], video retrieval [4], video segment localization based 

on queries [5,6], visual assistance for the visually impaired [7], intelligent visual-based FAQ 

chatbots [8] and instructional video generation [9]. 
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Figure 1. This Image Illustrates the Differences Between Traditional and Dense 

Video Captioning 

(Source of Video: https://www.youtube.com/watch?v=uOA25BRgSic&amp;t=234s") 

Figure 2. The Block Diagram of Dense Video Captioning Model 

The entire DVC process is illustrated in Figure 2. The overall Dense Video Captioning 

(DVC) workflow begins with selecting frames from a video, either at regular intervals or 

through learning-based methods like PickNet [10] or reinforcement learning [11]. After frame 

selection, the frames are pre-processed, which involves resizing and augmentation. 

Additionally, the collection of videos is divided into training, validation, and test sets. Models 

such as C3D, Temporal CNN, or visual transformers are subsequently used to extract spatio-

temporal features. These features feed into a temporal event (activity) proposal module, which 

divides the video into distinct event proposals. In the feature fusion stage, additional modalities 

like Mel Frequency Cepstral Coefficients (MFCC) from audio, C3D features from the original 

video, keyword cues, etc, can be merged with event proposal features. The enriched features 

are then fed into the captioning module, typically based on sequential models such as long-

short-term memory (LSTM), gated recurrent units (GRU), or transformer models, to generate 

captions for the proposed event. Techniques such as reinforcement learning, semantic attention, 

generative adversarial networks (GANs), and large language models (LLMs) can be 

incorporated into the caption enhancement stage to improve the captions. Lastly, standard 

evaluation metrics, including BLEU, METEOR, ROUGE, SPICE, CIDEr, SODA, and WMD, 

are employed to compare the generated captions with human-written references, thereby 

guaranteeing that they are contextually accurate and meaningful during the evaluation measure 

stage. 

https://www.youtube.com/watch?v=uOA25BRgSic&amp;t=234s
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The proposal module and captioning module form the core components of the DVC. 

Thus, the performance of the DVC model depends on the performance of both modules. One 

widely used technique for generating activity proposals is the sliding window method, initially 

introduced by Victor Escorcia et al. in their temporal action detection model [12]. This method 

entails the movement of a fixed-size window across the video timeline, with each segment 

categorized as either foreground (activity) or background. However, its performance is 

constrained by the fixed window size and the need to process the video multiple times. Shyamal 

Buch et al. introduced the Single Stream Temporal Action Proposals (SST) method to address 

the limitations of the sliding-window approach [13] This method scans the video in a single 

pass and generates potential event proposals at each time step t with k unique offsets [13]. 

Building on these proposals, the captioning module employs sequential models to generate 

coherent, context-aware descriptions for each event. 

The C3D, TCN (Temporal Convolution Network), and visual transformer models (such 

as ViT) extract spatiotemporal features from videos. Many studies have experimental proof 

that suggests C3D and transformer-based solutions provide better accuracy with state-of-the-

art datasets in the use-case of dense video captioning [14, 15, 16, 17, 18, 19, 20]. By utilizing 

information from past and future events, C3D with LSTM and transformer-based approaches 

improve event comprehension by offering a more precise interpretation of the current event. 

Transformer-based visual models are more accurate; however, their high computational 

requirements make them challenging to implement on handheld devices. As a result, C3D was 

chosen to extract the spatiotemporal features because of its ability to balance computational 

efficiency with temporal feature extraction capability. These visual features are forwarded into 

the captioning module to generate the description of each event. Researchers use RNNs or 

transformer-based sequence models for the captioning module to generate an event's 

description from visual features. Transformer-based architectures are well-suited for capturing 

long-range dependencies and have demonstrated superior performance over traditional RNN-

based models in producing accurate and coherent captions. In conventional DVC frameworks, 

event proposals are generated independently, and their features are used to generate captions 

in isolation. As a result, the captioning module often lacks awareness of the broader video 

context, leading to descriptions that fail to reflect the overall narrative. 

These challenges motivate us to design a practical solution capable of generating event 

descriptions that are accurate and contextually coherent while ensuring that the final video 
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captioning maintains the overall narrative of the video. The proposed solution contributes to 

the following key areas: (i) the captioning module utilizes an encoder-decoder Transformer to 

generate captions based on visual features, and (ii) a large language model (LLM) is employed 

to generate the final video-level caption that cohesively describes the entire video while 

preserving its narrative flow. This highlights that the primary objective of our research is to 

enhance the captioning module and the caption refinement component within the dense video 

captioning pipeline, as illustrated in Figure 2.  

The remainder of this paper is structured as follows. Section 2 presents a comprehensive 

review of existing dense video captioning methodologies. Section 3 details the architecture and 

components of the proposed model. Section 4 discusses the experimental results, offering a 

comparative evaluation of the proposed model against leading state-of-the-art approaches. 

Section 5 constitutes the concluding segment of the analysis and delineates pertinent domains 

for prospective research. 

 Review of Existing Approaches in Dense Video Captioning (DVC) 

The DVC is a procedure that identifies and locates temporal activity proposals within 

video clips, subsequently articulating each proposal in one or more sentences. This section will 

present a thorough review of the literature published on dense video captioning. 

2.1   CNN-LSTM based Approach for DVC 

In 2017, Ranjay Krishna et al. proposed the first dense video captioning model [21]. 

The temporal activity proposal module DAPs is fed C3D features extracted from video by the 

proposed model. The DAPs produce K proposal outputs at each time step, each containing 

activity. The captioning module receives each proposed event. Using an attention-based 

LSTM, the caption module extracts the event's concept by observing past and future event 

proposals to generate captions. The computational cost is increased by the use of DAPs, which 

employ the sliding window concept, which is the sole flaw in the proposed model. 

Jingwen Wang et al. utilized two SST models to extract temporal event proposals in 

both forward and backward directions, thereby overcoming the constraint of DAPs [14]. The 

captioning module implements a two-layer LSTM model with context gates. Yehao Li et al. 

proposed a new DVC model in which the proposal module employs regression and 
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classification models [18]. The captioning module utilizes reinforcement learning as an 

optimization technique to generate an appropriate caption by receiving all proposals. 

Consequently, numerous techniques were devised for DVC, which include the utilization of R-

C3D [22], the combination of SST and GRU [15], graph-based partitioning and summarization 

(GPaS) [23] and the event sequence generation network [24]. Maitreya Suin et al. proposed an 

effective framework for dense video captioning, as only a limited number of frames are 

necessary to depict an event accurately [11]. 

2.2   Transformer based Approach for DVC 

The researchers have employed transformer models to enhance caption generation in 

the era of transformers. Luowei Zhou et al. proposed the first encoder-decoder transformer 

model explicitly designed for DVC [25]. Rather than employing the C3D model, they selected 

the visual transformer to extract visual features. The model uses two distinct decoders: the 

proposal decoder and the captioning decoder. The temporal event proposals are generated by 

the proposal decoder, which decodes the visual feature of each frame. On the other hand, the 

captioning decoder employs a masking network to convert the suggested events into 

distinguishable masks, which are then used to generate captions. Iashin et al. introduced a 

multi-modal transformer-based DVC model that employs I3D features to represent visual 

information, VGGish to extract audio features [26], GloVe embeddings for linguistic 

representation [27, 28] and a speech model [29]. Later, researchers used parallel processing to 

detect and describe the event for faster output [30, 31]. 

The ViSE (Visual-Semantic Embedding) framework, which maps visual features 

extracted via 2D-CNNs and encoded captions using weighted n-grams into a common semantic 

space, was subsequently proposed by Nayyer Aafaq et al. This method integrates linguistic 

expertise into the caption generation process [17]. Deng et al. describe the events and 

subsequently identify them in the video, which is the opposite of the process previously 

discussed [33]. Wanhyu Choi et al. identified two subtasks, boundary detection, and event 

count estimation, in order to improve the proposal module [35]. Antoine Yang et al. enhanced 

the localization of events and the generation of captions by incorporating time tokens and 

captions into the training process [36]. Yiwei Wei et al. proposed a multi-perspective 

perception (MPP) model that uses a hierarchical temporal-spatial summary and a multi-

perspective attention layer to generate a dense video caption [37]. Moreover, Xingyi Zhou et 
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al. introduced Streaming DVC, a method designed to accommodate longer videos by 

incorporating a memory module based on a clustering technique. This method facilitates the 

efficient processing of extended video content [38]. Minkuk et al. employed cross-attention 

and the external knowledge memory block to produce meaningful captions [39]. In order to 

enhance the caption and optimize the boundaries of the proposed event, Hao Wu et al. 

employed a large language model [40]. 

Table 1. Literature Survey on Dense Video Captioning Deep Learning Models 
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2.3   Weakly Supervised Model for DVC 

All of the aforementioned DVC models have implemented the ActivityNet dataset, a 

benchmark that has been annotated for dense video captioning. However, early research in 

DVC also examined unsupervised and weakly supervised models. Captions, as well as the 

beginning and end times of events, are provided by ActivityNet and other supervised learning 

datasets for training. In contrast, weakly supervised learning methods do not require temporal 

segment annotations, which enables dense captioning on any video dataset without detailed 

labelling, These models are capable of identifying spatial regions of interest in videos and 
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detecting events, which leads to the generation of captions [41,20]. Audio, visual, and linguistic 

modalities were integrated into the initial attempt at multi-modal DVC using weakly supervised 

learning [32]. This method yielded more comprehensive and accurate caption generation from 

speech data by employing techniques such as Mel-Frequency Cepstral Coefficients (MFCC), 

Constant-Q Transform (CQT), and SoundNet [42] to extract audio features. Valter Estevam et 

al. presented an unsupervised model that acquires visual features without human annotations, 

thereby demonstrating that multi-modal data can significantly enhance model performance 

[43]. 

 Table 1 offers a comprehensive review of the diverse dense video captioning models 

that have been proposed over the years. It compares models based on vital attributes such as 

the visual feature extraction model, event localization model, captioning model, and loss 

functions. The transition from LSTM-based architectures to Transformer-based models is 

illustrated in the table, demonstrating the evolution of the techniques used for dense video 

captioning. A comprehensive comparison is provided by the table, enabling researchers to 

understand the trends and advancements in the dense video captioning field. 

As previously mentioned, the proposal and captioning modules are both equally 

important in the production of precise captions for dense video captioning. Various models 

generate temporal event proposals using methods such as the sliding window approach [21], 

Single Stream Temporal (SST) models [14, 15], regression techniques [18, 22], or transformer-

based architectures [25, 17, 14, 27]. To accurately contextualize the current event, it is essential 

to have contextual information from both past and future events. In order to resolve this issue, 

certain models integrate context from adjacent events through the use of attention mechanisms 

[21] or Bi-directional SST [14, 15]. Despite these advancements, numerous models are 

proposed that prioritize the production of linguistically, contextually, and semantically accurate 

captions over the management of longer temporal dependencies. For example, the model in 

[14] integrates past and future proposals to generate contextually enhanced visual features for 

the current event. A standard LSTM with a gating mechanism is then employed to combine 

these features in order to produce semantically accurate sentences. However, it overlooks the 

importance of integrating contextual and linguistic knowledge at the caption level.  In contrast, 

the model in [18] focuses on creating linguistically precise captions, but it neglects to account 

for previous and future event proposals, resulting in a lack of contextual information. This 
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serves as a strong motivation for us to propose a novel captioning module that generates 

accurate captions for individual events while preserving the overall narrative of the video. 

The proposed model leverages both past and future event proposals to determine the 

visual features of the current event more accurately. These extracted visual features are then 

fed into the encoder of a Transformer-based model, where the decoder generates a caption for 

each event. Furthermore, to ensure that the overall narrative of the video is preserved 

throughout the captioning process, a Large Language Model (LLM) is employed to generate a 

video-level summary based on the event-level captions produced by the transformer. 

 Transformer and LLM based Captioning Module for DVC 

This section introduces the TL-DVC dense video captioning model, which comprises 

two primary components: the proposal module and the captioning module. Contextual 

information from both past and future events is necessary to understand the current event in a 

video. The proposal module enhances the model's understanding of the current event by 

extracting features from surrounding events. For this purpose, the temporal activity proposal 

module from [14] was employed, together with an innovative captioning module in the 

proposed model. The block diagram of the proposed model (TL-DVC) for dense video 

captioning is depicted in Figure 3. The proposal module utilizes the Convolutional 3D (C3D) 

model to extract spatiotemporal features from the video. These extracted features are 

subsequently processed by forward and backward directional LSTMs inspired by SST [13] in 

order to incorporate sequential dependencies. This aids in the accurate identification and 

detection of the start and end timestamps of the proposed event. These LSTM features are 

classified as either background activity or event proposals. The event proposals that include 

the original C3D features of the event are forwarded for caption generation. The captioning 

module implements an encoder-decoder-based Transformer architecture to produce captions 

for each detected event. In addition, a Large Language Model (LLM) is employed to synthesize 

a video-level caption that integrates the individual event captions into a coherent summary, 

thereby ensuring narrative consistency throughout the video. 
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Figure 3. The Diagram Illustrates a General Architecture of the Proposed Model TL-

DVC 

3.1  Event Proposal Module 

The event proposal module is designed to classify temporal segments within a video as 

either an event or a background activity. A video is a sequence of N frames, each of which is 

represented by the symbol V = {f1, f2, f3, … , fN}. Utilizing a temporal window of 16 frames ( 

δ = 16), the Convolution 3D (C3D) model [44] extracts spatio-temporal features from the 

video. Time steps, denoted by T =  N/ δ, are the distinct time segments that this method 

divides the video into. At each time step, the C3D visual feature are denoted as V =

{v1, v2, v3, … . , vN}, where v1 is the features vector of 16 frames from the video. The principal 

component analysis (PCA) algorithm is employed to reduce the C3D features to 500 

dimensions. 

To sequentially encode the extracted visual features (C3D features) in both directions, 

they are fed into a forward and backward-directional LSTM model. By utilizing contextual 

information from both preceding and subsequent events, this dual-directional encoding enables 

an in-depth understanding of the current event. The visual features are processed, and the 

forward and backward LSTM encoders accumulate information. The temporal dynamics of 

visual information across all time steps t are captured by the hidden state of the forward LSTM 

encoder, denoted as ht
⃗⃗  ⃗ ∈ hi

⃗⃗  ⃗
i=1

T
. 

At each time step t, the concealed representation is partitioned into K event proposals 

according to pre-established K proposal anchors. The anchors are identified by applying K-

means clustering to the ground-truth event durations included in the ActivityNet dataset's 
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training set. Each cluster center that was acquired serves as a temporal anchor and represents a 

prototypical event duration. To balance model precision and computational cost, we extract all 

annotated event durations from the training data and group them into K clusters using the K-

means algorithm. K = 128 is selected based on the elbow method. The value of K can influence 

the performance of the proposal module. 

 

                                    Figure 4. Algorithm of TL-DVC 
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Every event proposal is denoted as P⃗⃗ t = p⃗ i
t, where i = 1,2,...,K. Each proposal 

commences at t-l and concludes at t, with lii=1
K

 representing the lengths of K proposals. All 

proposals have a common conclusion time t in a forward trajectory. Independent binary 

classifiers subsequently examine the concealed states of each proposal to produce confidence 

scores. Each classifier ascertains whether the encoded features correspond to an event or 

background, with the confidence score reflecting the classifier's certainty regarding the 

classification. We possess K proposals, each evaluated by independent classifiers, yielding a 

K confidence score. The confidence scores are derived from a fully connected neural network. 

Cp
⃗⃗⃗⃗ 

t
= σ(Wc

⃗⃗⃗⃗  ⃗ ht
⃗⃗  ⃗ + bc)                    (1) 

Equation 1 illustrates the application of the sigmoid activation function to determine 

the confidence score of the proposal. σ denotes the sigmoid nonlinearity. The weight matrix 

Wc
⃗⃗⃗⃗  ⃗ is utilized to calculate the confidence score via the sigmoid function, whereas bc represents 

the associated bias term. Cp
⃗⃗⃗⃗ 

t
denotes the confidence score vector for all proposals at time step 

t. The weight matrix (Wc
⃗⃗⃗⃗  ⃗) and bias (bc) are uniformly applied across all time steps. The 

resultant confidence score Cp
⃗⃗⃗⃗ 

t
= ci⃗⃗ 

t
, where i =  1,2, … , K, denotes the probability of the K 

event proposals. In order to eliminate irrelevant event-caption pairs, we will later combine the 

confidence score of the proposal with the confidence score of the caption. 

As with the forward-directional LSTM, the backward-directional LSTM encodes visual 

information across all time steps, commencing from the final frame Tn and proceeding in 

reverse order. It generates K proposals at each time step by reversing the video sequence, which 

is represented as P⃗⃗⃖t = pi⃖⃗⃗⃗
t

i=1,2,….K
. Additionally, it generates K corresponding confidence 

scores, Cp
⃖⃗ ⃗⃗⃗

t
= ci⃖⃗⃗

t

i=1,2,….,K
. 

Several proposals, denoted as NP, are collectively generated by the forward and 

backward LSTMs. The remaining proposal scores from both directions are combined using a 

multiplication method, while proposals with low confidence scores (<50\%) are eliminated to 

improve these results. Finally, the equation that represents the cumulative confidence score Cp 

is as follows. 

  Cp = {ci⃗⃗ × ci⃖⃗⃗}i=1
NP        (2) 
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The total number of proposals generated by both the forward and backward LSTMs is 

denoted by NP in the above equation. Proposals that meet a cumulative confidence score 

threshold (0.8 tIoU) are forwarded to the captioning module for further processing. This 

guarantees that the captioning module is supplied with only the most relevant events for a 

comprehensive description.  

In the context vectors, the hidden states of the proposal model are represented by hm
⃗⃗ ⃗⃗  ⃗ 

the forward-directional LSTM and hn
⃖⃗ ⃗⃗⃗ the backward-directional LSTM. The start and end time 

steps for the detected event proposal pi are denoted by m and n. The context vectors are fused 

with the original C3D features of the event proposal pi, rather than being directly passed to the 

captioning module. The following equation defines the visual feature vector Ft in the forward 

direction for the pi, proposal: 

Ft(pi) = f(hn
⃗⃗⃗⃗ , hm

⃖⃗ ⃗⃗ ⃗⃗ , V̂ = {vi}i=m
n , Ht−1)                 (3) 

The C3D features of the detected event are denoted by V̂ in equation 3. The C3D feature 

of an event that commences at the m time stamp and concludes at the n time stamp is denoted 

by (vi)i=m
n . hn

⃗⃗⃗⃗  denotes the context vector in a forward direction, while hm
⃖⃗ ⃗⃗ ⃗⃗  denotes the context 

vector in a backward direction. The captioning module is fed all of these features, as well as 

the previous hidden state of the LSTM (Ht−1). Temporal dynamic attention is employed to 

identify critical visual features (C3D) through the use of context vectors, thereby facilitating 

the identification of significant frames. The model's capacity to comprehend the event's context 

is enhanced by integrating context vectors with C3D features. The following equation is used 

to determine the relevance score zi
t at each time step t: 

  zi
t = Wa

T ⋅ tanh(Wvvi+m−1 + Wh[hn
⃗⃗⃗⃗ , hm

⃖⃗ ⃗⃗ ⃗⃗ ] + WHHt−1 + b)  (4) 

A C3D feature of a specific time step is represented by vi+m−1 in equation~4. The value 

of i commences at zero. [hn
⃗⃗⃗⃗ , hm

⃖⃗ ⃗⃗ ⃗⃗ ] represents a vector concatenation, and Ht−1 is a hidden 

representation of the previous timestamp. Weight matrices are denoted as Wa, Wv,Wh and WH. 

The weight (αi
t) of visual features (vi+m−1) is determined using softmax normalization: 

αi
t = exp(zi

t) /∑ exp(zk
t )n−m+1

k=1                   (5) 
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where n-m+1 represents the length of the event proposal. The weighted sum is used to 

calculate the attended visual feature (ṽt) 

 

     vt̃ = ∑ αi
tn−m+1

i=1 ⋅ vi+m−1      (6) 

The most appropriate original visual features that are in alignment with the context 

vectors (hn
⃗⃗⃗⃗ , hm

⃖⃗ ⃗⃗ ⃗⃗ ) are determined by the relevance score (zi
t). The event is comprehensively 

understood by aggregating visual features and context vectors, which are represented as F(pi). 

Consequently, the captioning module's encoder of the transformer receives the following final 

input: 

                             F(pi) = [vt̃, hn
⃗⃗⃗⃗ , hm

⃖⃗ ⃗⃗ ⃗⃗ ]                  (7) 

The final feature vector in the forward direction is a combination of the context vectors 

(hn
⃗⃗⃗⃗ , hm

⃖⃗ ⃗⃗⃗⃗ ) and the attended visual feature of the original video frame (C3D feature) in the 

aforementioned equation.  

3.2   Caption Module with Encoder-Decoder based Transformer and LLM 

The encoder-decoder-based Transformer model in the captioning module is designed 

to capture both temporal and contextual relationships between the visual feature vector vt̃ and 

the hidden representations [hn
⃗⃗⃗⃗ ,  hm

⃖⃗ ⃗⃗ ⃗⃗ ] obtained from the forward and backward proposal 

modules. The encoder's self-attention mechanism receives the embeddings of vt̃ and 

[hn
⃗⃗⃗⃗ ,  hm

⃖⃗ ⃗⃗ ⃗⃗ ]and integrates positional encodings to generate a combined representation MV. This 

representation serves as the query (Q), key (K), and value (V) inputs to the self-attention 

module. The resulting output is passed through a feed-forward layer to produce the final 

encoded visual representation MV′. In the decoder, embedded caption tokens, along with their 

positional encodings (denoted as E), undergo self-attention to model dependencies among the 

generated words. These features are then passed through a cross-attention module, where the 

decoder attends to the encoder outputs (MV′), enabling interaction between visual and 

linguistic modalities. The output of this cross-attention mechanism is processed through feed-

forward layers, followed by a fully connected layer and a softmax activation to produce the 

probability distribution over the vocabulary, thereby generating the final caption for each event. 
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The Transformer-based encoder-decoder model generates event-level captions that are 

received by the captioning evaluation module. Nevertheless, as previously mentioned, the 

majority of dense video captioning (DVC) pipelines treat each event independently, which 

frequently leads to captions that are inconsistent with the overall video narrative. Although 

these captions may accurately convey the contextual significance of individual events, they are 

unable to depict the interrelationships between events, particularly when they occur 

concurrently or in parallel. In order to overcome this constraint, we employ a large language 

model (LLM) to produce a unified video-level caption. This is accomplished by incorporating 

all event-level captions into the LLM, in addition to a meticulously crafted prompt that directs 

the model to generate a narrative-driven and coherent description of the entire video. The 

prompt for the same is: “You are given a list of individual event-level captions, each 

accompanied by its corresponding start and end timestamp. These events describe different 

segments of a video and may occur sequentially, simultaneously, or with partial overlap. Your 

task is to merge these captions into a single coherent paragraph that reads as a natural narrative. 

Use at least 80% of the original words from the input captions. Do not invent additional details 

beyond what is necessary for fluency. Use the timestamps to infer and reflect the temporal 

relationships between events: If events are sequential, present them in order. If events overlap, 

describe them as occurring simultaneously or in parallel. Maintain logical flow, avoid 

presenting the captions as a disjointed list, and ensure the final paragraph reads like a cohesive 

summary of the video.” This approach leads to a contextually rich, narrative-driven, video-

level caption. Suppose the video generates three individual event-level captions: (1) “A person 

is cooking food in the kitchen” (Start: 00:00, End: 00:20) (2) “A child is playing with toys on 

the living room floor” (Start: 00:05, End: 00:25) and (3) “Someone is watching TV while seated 

on the couch” (Start: 00:15, End: 00:30). The video-level description generated by the large 

language model (LLM) is: “A person is cooking food in the kitchen while a child is playing 

with toys on the living room floor. At the same time, someone is watching TV while seated on 

the couch".  In another example, (1) “A person enters the room and turns on the lights" (Start: 

00:00, End: 00:10). (2) “The person sits down and opens the laptop” (Start: 00:11, End: 00:20) 

(3) “He is using laptop and looking at screen” (Start: 00:21, End: 00:30). The video-level 

description generated by the large language model (LLM) is: “A person enters the room and 

turns on the lights. Then, the person sits down and opens the laptop. He is using the laptop and 

looking at the screen.” This illustrates how the LLM effectively integrates parallel events into 

a coherent and semantically connected summary of the overall video content. 
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Previously, we discussed a confidence score to select events from video. A similar 

approach is implemented in the caption selection module, where confidence scores assist in the 

identification of the most appropriate caption for each event. The caption confidence score (Cc) 

has been calculated using an identical score. The final confidence score (C = Cp + Cc) was 

determined by combining the confidence scores of the proposal and captioning results. 

Subsequently, select the top n event and caption pairs during the inference phase. 

3.3   Loss Function 

The DVC process is divided into two primary modules: caption generation and proposal 

generation. The weighted multi-class categorical cross-entropy loss function, denoted as Lp, is 

employed in the proposal generation module. Utilizing temporal intersection over union (tIoU), 

this loss function is computed by comparing the generated proposal intervals to the ground 

truth values. The lengths of all ground truth proposals are collected and grouped into 128 

clusters for loss calculation, which corresponds to the value K that was previously discussed. 

A ground truth label is assigned to each training sample, which is represented as (yt)t=1
T . A K-

dimensional binary vector is used to represent each ground truth label yt. If the corresponding 

proposal interval has a tIoU with the ground truth that is less than 0.5, the value of yt is set to 

0. Otherwise, it is set to 1. The formula is employed to determine the loss Lp at time t for video 

V with ground truth (y): 

                Lp(c, t, V, y) = −∑ w0
iK

j=1 yt
j
log ct

j
+ w1

j
(1 − yt

j
) log(1 − ct

j
)    (8) 

The weights w0 and w1 in the aforementioned equation are assigned based on the 

frequencies of positive and negative samples, respectively. The prediction score associated 

with the j-th proposal at time step t is denoted by the variable ct
j
. The ground truth of the j-th 

proposal at timestamp t is denoted by yt
t. Gradients are back-propagated through both 

directions to support concurrent training, and losses are computed for both forward and 

backward directions. 

The captioning module receives proposals that satisfy the tIoU threshold (> 0.8). The 

negative log-likelihood of the correct words in a sentence containing 𝑀 words is the sum of 

the captioning loss in the forward direction ( 𝐿𝑐𝑓
 ) and backward direction ( 𝐿𝑐𝑏

 ). This is 

denoted as the negative log-likelihood of the predicted words and is expressed as follows: 



Improving Narrative Coherence in Dense Video Captioning through Transformer and Large Language Models                                                                                                                                                                                

Journal of Innovative Image Processing, June 2025, Volume 7, Issue 2  351 

 

            

                                                            𝐿𝑐𝑓
= −∑  𝑀

𝑖=1 log (𝑝(𝑤𝑖))                                                                       (9) 

                                                         𝐿𝑐𝑓
= −∑  𝑀

𝑖=1 log (𝑝(𝑤𝑖))                                                             (10) 

where 𝑤𝑖 denotes the 𝑖-th word in the ground truth sentences from both directions. By 

combining the two losses, the total loss 𝐿 is determined: 

       L = λ(Lp + Lc)                                                                                (11) 

In this equation, 𝜆 is a default value of 0.5 that balances the contributions of the proposal 

and captioning modules. 𝐿𝑝 represents the proposal loss, while 𝐿𝑐 represents the captioning 

loss. 

 Result and Implementation 

A diverse array of concurrent events performed by various subjects is frequently 

depicted in real-world videos. To implement the DVC model, datasets must include captions 

and detailed event timeline annotations. Ranjay Krishna et al. introduced the ActivityNet 

caption dataset, a state-of-the-art dataset for dense video captioning, to address the challenge 

[21]. The dataset consists of 20,000 videos, including both trimmed and untrimmed formats. It 

is divided into three subsets: training, validation, and test. The distinct start and end times 

assigned to each annotation enable the precise localization of events within the video. A total 

of 100,000 annotations are generated from 180-second videos, with an average of 3.65 

temporally grounded sentences. The average length of a sentence is 13.46 words. This dataset 

has been extensively employed in DVC research due to its detailed annotations and 

comprehensive nature. Furthermore, it is observed that 10% of the temporal descriptions 

overlapped, indicating that the events occurred simultaneously. 

The proposed TL-DVC model integrates a C3D network with a two-layer LSTM-based 

proposal module and an encoder-decoder Transformer architecture for caption generation. The 

C3D model extracts spatiotemporal features, which are subsequently compressed to 500 

dimensions using Principal Component Analysis (PCA) to reduce redundancy and enhance 

computational efficiency. These reduced-dimensional features are fed into a two-layer LSTM 

network, where each layer comprises 512 hidden units and a dropout rate of 0.3 for generating 

event proposals. For the captioning module, we employ a T5-small Transformer model. The 
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encoder consists of six layers, each with eight self-attention heads, and each attention head 

utilizes a 64-dimensional projection for the query, key, and value matrices. The feed-forward 

network dimension is set to 2048. The decoder mirrors the architecture of the encoder, 

comprising six layers with eight attention heads per layer. To embed input tokens, we utilize 

the T5Tokenizer, which generates 512-dimensional token embeddings. For paragraph-level 

caption generation based on a large language model, we employed Azure OpenAI's GPT-4o 

model with the temperature parameter configured to 0. 

Prior to the end-to-end training of the complete model, the proposal module was 

initially trained for five epochs to improve the performance of weight initialization. Beginning 

with a learning rate of 0.001 and a momentum of 0.9, the Adam optimization algorithm was 

implemented and subsequently adjusted downward during the training process. During 

training, the weights and biases of the LSTM nodes were initialized using a normal distribution 

and the He normal initialization method. This initialization strategy was employed to ensure 

stable convergence and effective learning. The spatial-temporal features were derived using 

transfer learning, and the C3D feature extraction model was maintained in its original form.  

The F1 score was used to determine the optimal tIoU value for the dataset after evaluating the 

generation of event proposals with multiple tIoU thresholds (0.5, 0.7, 0.8, 0.9). This experiment 

helps to decide the tIoU value, as a lower threshold value forwards all the proposals to the 

captioning module, while a higher threshold value may eliminate a few important events. After 

experimentation, we concluded that a tIoU threshold of 0.7 provides the best trade-off, 

achieving an F1@1000 score of 0.65. For training the captioning module, we utilized a pre-

trained T5 model and fine-tuned it for the dense video captioning task. 

Table 2. Evaluation of DVC Models on ActivityNet Caption Dataset. Higher Scores 

Indicate Better Performance. *Vid2seq Does Not Provide the METEOR and CIDEr Scores, 

So they have been Taken from [38]. 

Model Evaluation Measures 

BLEU 

@ 1 

BLEU 

@ 2 

BLEU 

@ 3 

BLEU 

@ 4 

METE

OR 

ROUG

H 

CID

Er 

DenseCap[21

] 

17.95 7.69 3.89 2.2 4.05 - 17.29 

Bi-SST[14] 19.37 8.84 4.41 2.3 9.6 19.29 12.68 

JEDDi-

Net[22] 

19.97 9.1 4.06 1.63 8.58 19.63 19.88 
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Masked- 

Transformer[

25] 

- - 4.76 2.23 9.56 - - 

DVC[18] 12.22 5.72 2.27 0.74 6.93 - 13.21 

WS-DEC[45] 12.41 5.5 2.62 1.27 6.3 12.55 18.77 

Multimodel- 

WSDEC [46] 

10 4.2 1.92 0.94 5.03 10.39 14.27 

SDVC[15] 17.92 7.99 2.94 0.93 8.82 - 30.68 

RUC AI M3 

[47] 

16.59 9.65 5.32 2.91 11.28 - 14.03 

GPaS [23] 19.78 9.96 5.06 2.34 10.75 - 14.84 

EfficientNet 

[11] 

- - 2.54 1.1 5.7 - - 

AMT [28] 11.75 5.61 2.42 1.2 5.82 - 10.87 

MDVC [43] - - 4.57 2.5 8.65 13.62 13.09 

PDVC [30] - - - 1.96 8.08 - 28.59 

TL-NMS [48] - - - 1.29 9.63 - 14.71 

PPVC [31] 14.93 7.4 3.58 1.68 7.91 - 23.02 

ViSE +  

Transformer 

[17] 

22.18 10.92 5.58 2.72 10.78 21.98 23.89 

SBS [35] - - - 1.08 9.05 - 27.92 

MPP-net [37] - - - 2.04 7.61 - 29.76 

Vid2seq* 

[36] 

- - - - 10 - 37.8 

Streaming 

DVC [38] 

- - - - 9 - 41.2 

CM-DVC 

[39] 

- - - 2.88 9.43 - 40.24 

DIBS [40] - - - - 8.93 - 31.89 

Our model 

TL-DVC 23.01 11.27 5.78 2.84 12.32 22.64 25.81 

 

The dense video captioning model is being assessed using conventional evaluation 

metrics, including BLEU [49], METEOR [50], CIDEr [51], and ROUGE [52]. The SODA 

metric [53] has been introduced recently for the evaluation of dense video captioning. 

Nevertheless, comparisons with historical models are not feasible due to the limited adoption 

of the metric by the research community. ROUGE is a recall-based evaluation measure, 

whereas BLEU is precision-based. METEOR's capacity to evaluate synonymous matching 

results in a higher level of consistency than BLEU, particularly in datasets with single reference 

sentences. The consensus between reference sentences and generated sentences is assessed by 

CIDEr, which employs a weighted tf-idf approach. This evaluation is indicative of the 
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alignment of textual summaries with visual content. This assessment is conducted before the 

final video-level caption is generated using the LLM. Video-level captioning is crucial for 

converting individual event captions into a cohesive narrative that maintains the overall flow 

of the video. 

A comparative analysis of the proposed TL-DVC model against several state-of-the-art 

dense video captioning methods on the ActivityNet Captions dataset is presented in Table 2. 

The ViSE+Transformer model [17] previously reported the highest METEOR score at 10.78. 

Our model outperforms the ViSE model by 14.29%, as proven by its METEOR score of 12.32. 

This suggests that the proposed model, which integrates both past and future event proposals 

to enhance the features of the current timestamp, offers a more comprehensive understanding 

of event semantics. TL-DVC reported a 9.22% improvement in compared to the competitive 

RUC-AI M3 model, which reported a METEOR score of 11.28. It is important to note that our 

TL-DVC model and ViSE both achieve superior METEOR scores without relying on vision 

transformer features. Conversely, end-to-end transformer-based models, including Vid2Seq 

[36], DIBS [40], and StreamingDVC [38], exhibit higher CIDEr scores. This trend suggests 

that transformer-based architectures benefit significantly from richer visual features in 

generating accurate and contextually coherent captions. In addition, we have employed the 

BERTScore to assess the coherence of the final LLM-generated video description in relation 

to the original proposal-level captions. The generated paragraph is only accepted if the 

BERTScore exceeds 85%, which indicates strong semantic alignment and coherence. 

Furthermore, we calculate the BLEU score to evaluate n-gram-level word overlap, which aids 

in the identification and reduction of hallucinated content in the LLM. 

The results indicate that the TL-DVC model outperforms current methods; however, 

there are still obstacles to enhancing CIDEr scores. This suggests that future research should 

focus on improving the alignment between visual and textual features to generate more 

descriptive and effective captions. Furthermore, integrating video-level visual features into the 

final video-level summary generation process could contribute to preserving narrative 

consistency across all event captions. 

 Conclusion 

This paper introduces a novel methodology for dense video captioning, termed 

Transformer and LLM-based Dense Video Captioning (TL-DVC). The proposed model 



Improving Narrative Coherence in Dense Video Captioning through Transformer and Large Language Models                                                                                                                                                                                

Journal of Innovative Image Processing, June 2025, Volume 7, Issue 2  355 

 

employs C3D and SST-based event proposal techniques to extract visual features at the current 

timestamp, integrating information from both past and future events to enhance contextual 

understanding. These extracted features, in conjunction with the original C3D features, are 

input into an encoder-decoder-based Transformer to generate captions for each event. The 

Transformer encoder processes the visual features, while the decoder generates captions based 

on the encoded visual representations. To ensure narrative coherence throughout the video, a 

Large Language Model (LLM) is utilized to synthesize and produce a final video-level caption 

from the individually generated event captions. The TL-DVC model demonstrates superior 

performance compared to current state-of-the-art approaches on the ActivityNet Captions 

dataset, achieving a 9.22% increase in METEOR score, improving from 11.28 to 12.32. 
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