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Abstract   

Innovative agricultural technologies increasingly utilize artificial intelligence (AI) and 

machine learning to enhance productivity and precision. Among these advancements, 

Convolutional Neural Networks (CNNs) have demonstrated significant promise in image 

classification tasks across various domains, including agriculture. However, the classification 

of Tikog leaves a culturally significant raw material used in the banig weaving industry in the 

Philippines has not been explored using CNNs with feature engineering. This study developed 

and optimized a feature-engineered CNN model for Tikog leaf classification by integrating Lab 

color space representation, data augmentation, autoencoder-based feature extraction, mean-

max pooling, and dropout regularization. A total sample size of 500 standard-quality and 500 

substandard-quality Tikog leaf images was augmented to generate 3,000 training images and 

500 validation samples. Among the 27 CNN configurations tested, four models demonstrated 

superior performance, with Case 12 emerging as the best. This model achieved training and 

validation accuracies of 94.23% and 96.83%, F1-scores of 94.35% and 96.87%, ROC/AUC 

scores of 98.18% and 99.40%, and low sum of squared errors (SSE) values (173, 19). Case 12 

exhibited excellent generalizability, high classification performance, and computational 

efficiency, making it the most effective model for deployment in real-world Tikog quality 

assessment. The study advances both technological innovation and the preservation of 

indigenous knowledge through intelligent systems. 
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 Introduction 

Convolutional Neural Networks (CNNs) have shown promise in image classification 

tasks, outperforming traditional methods that rely on feature engineering (Yadav, Madur, 

Dongare, Rajopadhye, & Salatogi, 2022). However, CNNs can exhibit cognitive gaps, leading 

to irrational behavior in visual recognition applications (Vietz, Rauch, Löcklin, Jazdi, & 

Weyrich, 2021). To address this, researchers have proposed methodologies to identify and 

close these gaps. One approach involves creating worst-case images using augmentation 

techniques to reveal potential cognitive weaknesses (Vietz, Rauch, Löcklin, Jazdi, & Weyrich, 

2021). Another method utilizes synthetic training data generation through 3D rendering to 

target specific use-cases and improve CNN performance (Vietz, Rauch, Löcklin, Jazdi, & 

Weyrich, 2021). To enhance classification accuracy, novel CNN architectures have been 

developed, incorporating parallel convolutional layers with different filter sizes and global 

average pooling to reduce overfitting (Al-Sabaawi, Ibrahim, Arkah, Al-Amidie, & Alzubaidi, 

2020). These advancements contribute to more robust and reliable image classification 

systems, particularly in challenging domains such as autonomous driving and manufacturing 

quality control. 

In contrast, a study conducted by Milan (2021) proposed a deep learning-based image 

classification technique with 360 datasets consisting of 3334 images. The study applied feature 

detectors to the input image to generate the feature maps using the activation function. 

Although a promising outcome was produced, the researcher suggested that the model 

performance could be optimized by employing many training and testing images supported by 

a study that utilized a Convolutional Neural Network (CNN) for image classification and noted 

some challenges; therefore, a new encoding scheme for variable length was proposed such as 

a new representation of weight initialization strategy, and an adequate fitness evaluation 

method to speed up evolution (Bharadiya, 2023). The same study suggests an evolutionary 

algorithm that will address the classification feature extraction challenge and reduce the 

number of parameters required for this operation (Bharadiya, 2023). In addition, another study 

introduced CNN classification methods such as MobileNetV2, VGG16, InceptionV3, and TL-
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Mobilev2, showing a significant outcome regarding 40 types of fruits for classification; 

however, feature reduction was not applied, which could cause overfitting (Gulzar, 2023). 

Despite strong performance, these pretrained models often lack domain-specific feature tuning, 

and without feature reduction steps like autoencoders, they risk overfitting due to high model 

complexity. Lastly, there are long-overdue issues related to overfitting, computational 

efficiency, and complexity in Convolutional Neural Network (CNN) models, including pre-

trained models. 

Lastly, ongoing research focuses on improving CNN architectures and exploring their 

applications across various fields, including agriculture and medical diagnosis (Sornam, 

Muthusubash, & Vanitha, 2017). In the agricultural domain, specifically for classifying Tikog 

leaves, a raw material used in the banig weaving industry, utilizing feature engineering and 

optimization of Convolutional Neural Network (CNN) remains unexplored. A banig is a 

traditional handwoven mat commonly used for sleeping and sitting in Asian countries, 

including the Philippines. In the Philippines, banig weaving is particularly renowned in Basey, 

Samar (Banig, 2013), utilizing tikog leaves. These leaves, sourced from a special reed grass 

that thrives in the swampy areas along rice fields, are dyed in intense, vivid colors before being 

woven into mats. While CNN-based classification has shown promise in agriculture, there 

remains a gap in integrating deep learning with indigenous material processing, particularly in 

the context of cultural industries. The lack of intelligent systems in indigenous industries like 

banig weaving is evident, and the gap lies in the absence of CNN-based classification models 

for Tikog leaves, Thus, this study addresses this gap by applying a feature engineered CNN 

model to classify Tikog leaves, the primary raw material used by the Basiao Native Weavers 

Association (BANWA) in the production of traditional banig. Moreover, the research addresses 

the unexplored application of a feature-engineered CNN model that combines Lab color space, 

autoencoder-based feature extraction, mean-max pooling, and dropout regularization for 

classifying Tikog leavesa culturally significant indigenous materialinto standard and 

substandard quality. To our knowledge, this integrated approach is novel and has not been 

previously applied to indigenous agricultural materials. 

1.1   Objective of the Study 

The primary objective of this study is to develop feature-engineered convolutional 

neural network (CNN) model for classifying Tikog leaves—an indigenous raw material used 
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in banig weaving—into standard and substandard quality categories. Specifically, this study 

seeks to: 

• Develop a CNN model for classifying Tikog leaves into standard and substandard 

quality. 

• Utilize Lab color space for enhanced color-based image representation. 

• Apply autoencoder-based feature extraction for dimensionality reduction. 

• Implement mean-max pooling to improve feature representation. 

• Integrate dropout regularization for reducing overfitting and improving generalization. 

• Evaluate the model’s performance using accuracy, F1-score, ROC/AUC, and SSE. 

 Related Work 

Studies explore CNN optimization and cognitive gaps in classification tasks. Studies 

have identified cognition gaps in visual recognition applications using worst-case image 

generation techniques CNN Optimization and cognitive Gaps in Classification (Vietz, Rauch, 

Löcklin, Jazdi, & Weyrich, 2021). However, these approaches focus primarily on identifying 

weaknesses without providing integrated solutions for practical deployment in niche 

applications such as cultural material classification. Various optimization strategies, including 

genetic algorithms and particle swarm optimization, have been employed to enhance CNN 

performance (Chatterjee, Akhtar, & Pradhan, 2021; Sharma & Kumar, 2023). Hybrid models 

combining CNNs with genetic algorithms have shown improved accuracy in brain tumor 

classification (Özdem, et al., 2022). Bio-inspired optimization techniques have demonstrated 

success in improving CNN performance for breast cancer detection in infrared images reported 

VGG-16 F1-Score value of 92% and ResNet-50 F1-Score value of 90% (Gonçalves, Souza, & 

Fernandes, 2022). While bio-inspired optimization improved classification metrics, the study 

did not provide insights into memory consumption or computational overhead (e.g., FLOPs), 

which limits scalability. Moreover, hyperparameter optimization improved CNN classification 

accuracy by 6% (Wojciuk, Swiderska-Chadaj, Siwek, & Gertych, 2022). Continuous CNN 

optimization has proven significant improvement specifically on hyperparameter tuning. 
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Feature engineering techniques play a crucial role in enhancing the performance of 

Convolutional Neural Networks (CNNs) across various applications. Traditional approaches 

involve hand-crafted feature extraction methods, which require human expertise but can yield 

good results in tasks like plant disease classification (Gunarathna & Gunarathna, 2020). 

However, deep learning methods, particularly CNNs, have emerged as powerful automatic 

feature extractors, achieving high classification rates without manual intervention 

(Arunachalam & Karthikayani, 2020). While these methods show improved accuracy, many 

do not address computational efficiency or fail to incorporate pooling and regularization 

techniques that reduce overfittingfactors that are essential for real-world applications in 

constrained environments. Moreover, studies have explored various techniques such as 

Discrete Wavelet Transform for DeepFake detection (Byrroughs, Gokaraju, Roy, & Khoa, 

2020) and efficient indexing methods for high-dimensional CNN features (Saini, Gupta, & 

Kaur, 2023). The integration of feature selection with CNN architectures has shown promise 

in breast cancer analysis (Gupta, 2024), while the importance of feature engineering in 

improving machine learning solutions is emphasized across domains (Duboue, 2020). Existing 

works primarily emphasize storage and retrieval improvements and often neglect the role of 

feature reduction in improving classification accuracy and computational efficiency during 

training. Therefore, feature-engineering concepts in image classification remain an interesting 

area in deep learning because of their wide array of probabilities to contribute to improving 

image classification algorithms.  

Techniques to address overfitting in neural networks, remain a critical challenge in 

machine learning. Dropout, a method that randomly removes units during training, has emerged 

as an effective regularization technique (Shirke, Walika, & Tambade, 2018; Lim, 2021). It 

prevents co-adaptation of units and improves generalization across various tasks (Noh, You, 

Mun, & Han, 2017; NarasingaRao, Venkatesh Prasad, Sai Teja, Zindavali, & Phanindra Reddy, 

2018). Moreover, it is reported that dropout can mitigate both underfitting and overfitting in 

neural networks by applying it at the start or end of training, respectively (Liu, Xu, Jin, Shen, 

& Darrell, 2023). However, Liu et al. (Liu, Xu, Jin, Shen, & Darrell, 2023) suggested that 

further research in developing neural network regularizers specifically on deeper understanding 

of early dropout's effect on training loss, optimization, and factors like training duration or 

optimizer choice. Most dropout studies focus on general-purpose datasets and do not explore 
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dropout’s interaction with handcrafted or hybrid features in indigenous material contexts, 

which this study uniquely addresses. 

 Proposed Work 

Deep learning concepts in image processing focus on image extraction, embedding, and 

creating layers for neural networks utilizing two significant frameworks: the sequential API 

and the functional API (Manaswi, 2018). The process was adopted to perform an image 

classification problem, as shown in Figure 1: 

 

Figure 1. Tikog Leaf Classification Through Knowledge Discovery in Databases 

 3.1   Data Collection and Selection 

The primary data utilized in the study was taken from the research locale, Basiao Native 

Weavers Association (BANWA), Basey, Samar, Philippines. The proponent requested the 

association's president to gather images of the tikog leaves. Tikog leaf is a wild grass used as a 

raw material in making a banig, also known as a mat, bag, wallet, and other similar handmade 

products by lara or weaving. The tikog leaves provided by the association were segregated. It 

was explained that the tikog categorized ashinog, also known as Standard Quality, shown in 

Figure 2, based on their assessment, while hilaw, also known as Substandard Quality, shown 

in Figure 3 refers to leaves that arefresh or have discoloration. Discoloration occurs when the 

pagbulad or leaf drying process is exposed to water or moisture. Thus, the quality of the tikog 

leaf, such as color and brittleness, is affected. Furthermore, the images were captured at 

different heights or distances, such as 1 foot, 2 feet, and 3 feet, and under different lighting 

conditions. The data collected from the research locale comprises 500 images for Standard 

Quality and 500 for Substandard Quality. The BANWA weavers of Basey, Samar, Philippines, 
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carefully identified and suggested these images. The collected images were stored in a Standard 

Quality and Substandard Quality folders. 

                 

 

  

3.2   Preprocessing 

This study utilized the CIELAB color space for image enhancement, ultimately 

impacting image segmentation performance. Regarding its performance, results show that the 

CIELAB space method has better accuracy than the HSV method (Setyawan, Riwinanto, 

Nursyahid, & Nugroho, 2018). The HSV method has an average accuracy of 75.33%, while 

the CIELAB space method has a greater average accuracy of 78.39% (Setyawan, Riwinanto, 

Nursyahid, & Nugroho, 2018). Furthermore, results revealed that the L*a*b* color space can 

identify good or bad patterns of images and compare its performance with the HSV space that 

the authors recently reported (Prasad, 2017). It is shown that the L*a*b* space outperforms the 

HSV space (Prasad, 2017). 

3.2.1   Color Lab Space 

Parameters: 

ℓ - image,  

H – height,  

W – width; 

Given an input image ℓ ∈  ℝ𝐻 𝑋 𝑊 𝑋 3 in RGB color space, and three refers to the RGB 

channels. To convert the ℓ from RGB to Lab color space: 

Figure 2. Standard Quality of Tikog 

Leaf 
Figure 3. Substandard Quality of Tikog 

Leaf 
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                               ℓ𝐿𝑎𝑏 = 𝐿𝑎𝑏(ℓ)                                                                          (1) 

Where ℓ𝐿𝑎𝑏𝜖ℝ𝐻 𝑋 𝑊 𝑋 3and consists of three channels 𝐿, 𝑎, and 𝑏.Thus, RGB to Lab 

Color Space transformation can be expressed as: 

                    ℓ𝐿𝑎𝑏 = 𝑅𝐺𝐵𝑡𝑜𝐿𝑎𝑏(ℓ)                                                              (2) 

Where ℓ𝐿𝑎𝑏is the image in the Lab color space. RGBtoLAB is a function that converts 

an image from RGB to Lab color space. The Lab color space separates the luminance (L) from 

the chrominance (a,b), which helps better feature extraction of color variations. 

3.2.2   Augmentation 

Data augmentation has become crucial for improving machine learning model 

performance and generalization. Recent research has focused on automated data augmentation 

methods, which outperform classical approaches (Mumuni & Mumuni, 2024). The 

ImageDataGenerator is highly optimized and leverages GPU acceleration for efficient 

preprocessing. The ImageDataGenerator in Keras is built on a series of image preprocessing 

and augmentation operations, each of which can be represented mathematically.  

𝐼′ = 𝑇(𝐼) =  𝑇𝑛°𝑇𝑛−1° … ° 𝑇1(𝐼)                                             (3) 

  Where:  

𝐼 is the input image 

𝐼′ is the transformed output image 

𝑇 is the composite transformation function composed of 𝑇1, 𝑇2, . . . 𝑇𝑛, where 

each 𝑇𝑖 represent an individual transformation (rotation, scaling, translation, 

etc.). 

° denotes function composition, meaning transformations are applied 

sequentially. 

Thus, using this algorithm, the augmented data generated was 3000, 1500 for Standard 

images, 1500 for Substandard images, and 500 for testing/validation datasets. 
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3.3   Image Transformation 

3.3.1   Image Size 

In this study, the images were transformed into 224x224 pixels. In recent years, CNN 

have thrived and made significant breakthroughs in computer vision (Sangineto, Nabi, Culibrk, 

& Sebe, 2018; Tian, Li, Qu, & Yan, 2017; Qin, Pan, Xiang, Tan, & Hou, 2020). Current CNNs 

require a fixed input image size, such as 224 × 224 or 299 × 299 (Qin, Pan, Xiang, Tan, & Hou, 

2020). In support of this, a study using the DenseNet-121 model achieves the highest accuracy 

in classifying chest X-ray images for various lung diseases using 224x224 pixel resolution 

(Rochmawanti & Utaminingrum, 2021).Additionally, cropping dermoscopic images to 

224x224 and using a multi-scale, multi-network feature-engineered approach improves skin 

lesion classification performance (Mahbod, et al., 2020). Therefore, this study shall utilize the 

224x224 image size. 

Parameters: 

For each pixel in the resized image ∆𝑡𝑎𝑟𝑔𝑒𝑡, the corresponding pixel intensity in the 

original image ∆𝑜𝑟𝑖𝑔 is given as: 

∆𝑡𝑎𝑟𝑔𝑒𝑡(𝑎𝑡𝑎𝑟𝑔𝑒𝑡, 𝑏𝑡𝑎𝑟𝑔𝑒𝑡) =  ∆𝑜𝑟𝑖𝑔(
𝑎𝑡𝑎𝑟𝑔𝑒𝑡

𝑆𝑤𝑖𝑑𝑡ℎ
,

𝑏𝑡𝑎𝑟𝑔𝑒𝑡

𝑆ℎ𝑒𝑖𝑔ℎ𝑡
)                                  (4) 

The intensity of a pixel at position (𝑎𝑡𝑎𝑟𝑔𝑒𝑡, 𝑏𝑡𝑎𝑟𝑔𝑒𝑡) in the resized image ∆𝑡𝑎𝑟𝑔𝑒𝑡  is 

obtained by mapping back to the corresponding coordinates in the original image ∆𝑜𝑟𝑖𝑔, scaled 

by the width and height factors. 

3.3.2   Feature Extraction Using Autoencoders 

Let ℓ𝐿𝑎𝑏 the feature representation where each pixel has three components, such as L, 

a, b. The Autoencoders learn a compressed latent representation Z of the input data. For the 

Encoder, the algorithm is: 

              𝑍 =  𝑓𝜃(ℓ𝐿𝑎𝑏) = 𝜎(𝑊𝑒ℓ𝐿𝑎𝑏 + 𝑏𝑒)                                             (5)  

Where: 

ℓ𝐿𝑎𝑏 is the input Lab color image. 

𝑊𝑒, 𝑏𝑒 are the weights and biases of the Encoder. 
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𝜎 is the activation function (commonly Sigmoid or ReLU). 

𝑍 is the compressed latent representation (features). 

Once trained, we only use the Encoder 𝑓𝜃 to obtain the latent feature vector 𝑍, which is 

a compressed version of the input (Patel & Upla, 2019; Berahmand, Daneshfar, Salehi, Li, & 

Xu, 2024; Chen & Guo, 2023) 

3.3.3   Autoencoders Pooling Technique Using Mean-Max 

Autoencoders have been explored with various modifications to enhance feature 

extraction and representation learning. Pooling layers reduce spatial dimensions, 

computational costs, and overfitting (Gholamalinezhad & Khosravi, 2020; Zafar, et al., 2022). 

One of the pooling techniques is the Max pooling. Max pooling is a mechanism that optimizes 

the spatial size of a feature map while also providing the network with translation invariance 

(Zafar, et al., 2022). The problem is that max pooling only considers the largest element and 

ignores the others, as we can see in the example (Zafar, et al., 2022). In some cases, after max 

pooling, salient features disappear when most elements have high magnitudes, which can lead 

to unacceptable results (Zafar, et al., 2022; Li, Yang, feng, Chakradhar, & Zhou, 2016). 

Another technique is average pooling, where the input is segmented into rectangular pooling 

areas, and an average pooling layer downsamples by calculating the average values of each 

region (Lecun, Bottou, Bengio, Haffner, & Patrick, 1998). The problem is that it declines in 

information in terms of contrast where all activation values in the rectangular box are 

considered when estimating the mean. The estimated mean will indeed be low if the strength 

of all the activation functions is low, resulting in diminished contrast. The problem worsens 

once most of the activations in the pooling zone have a zero value (Zhang, Li, Peng, Chen, & 

Zhang, 2018). Mean-max attention autoencoders utilize both mean and max pooling operations 

to capture diverse information (Zhang, Wu, Li, & Li, 2018). Convolutional autoencoders with 

max-pooling layers perform better in digit and object recognition tasks (Masci, Meier, Dan, & 

Schmidhuber, 2011) compared to other pooling techniques. Thus, this study shall utilize each 

patch's mean-max pooling of autoencoders with 𝑍𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖,𝑗(𝑍𝑝
(𝑖,𝑗)

) and 𝑍𝑚𝑒𝑎𝑛 =

1

𝑝2
∑ 𝑍𝑝

(𝑖,𝑗)
𝑖,𝑗 . Where 𝑍𝑚𝑎𝑥 is the maximum value over the patch; while the 𝑍𝑚𝑒𝑎𝑛 is the average 

of all the values in the patch. Then combine with the weighted sum as 𝑍𝑚𝑒𝑎𝑛−𝑚𝑎𝑥 =  𝛼𝑍𝑚𝑎𝑥 +

(1 − 𝛼)𝑍𝑚𝑒𝑎𝑛. The final pooled output is the latent space representation:  
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𝑍𝑙𝑎𝑡𝑒𝑛𝑡 = 𝑍𝑝𝑜𝑜𝑙𝑒𝑑
(𝐿)

                                                                        (6) 

3.3.4   Dropout 

Dropout fine-tuning in image classification has shown promising results, such as 

autotuning hyperparameters, including dropout rates, which can improve performance of self-

supervised models (Kishore & Mukherjee, 2024). Furthermore, high dropout rates during fine-

tuning can enhance distribution performance (Zhang & Bottou, 2024). Dropout is applied to 

prevent overfitting by randomly deactivating a fraction of neurons during training (Gulzar, 

2024; Peng, et al., 2024). The F1-score, reflecting a balance between precision and recall, 

exhibits remarkable performance across all classes, with values ranging from 0.9851 to 1.0000. 

(Gulzar, 2023). Thus, this study shall utilize the Dropout Regularization after extracting the 

feature map 𝑍𝑐𝑜𝑛𝑣1. Thus, let 𝑝 be the dropout rate and the dropout operation shall be  

𝑍𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 𝑍𝑐𝑜𝑛𝑣1 𝑥 𝑀          (7) 

Where 𝑀~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝑝) is a binary mask with probability of 𝑝 of setting units to 

zero. 

3.4   Data Mining 

To illustrate the foundation of the neural network in this study, Figure 4 shows the input 

layer, hidden layer, bias, activation, and output following the equation where the input is 

multiplied by the respective weights and added, and bias is added to the result. Then, an 

activation function, g, is applied so that the output of the neuron is g(w·x+b) (Chen, Duan, 

Kang, & Qiu, 2021; Tian, Li, Qu, & Yan, 2017): 

 

Figure 4. Neural Network Diagram 

𝑥 =  ∑ 𝑤𝑖𝑥𝑖 + 𝑏 =  𝑤0𝑥0 +  𝑤1𝑤1+ . . . + 𝑤𝑛𝑏𝑛 + 𝑏 = 𝑤. 𝑥 + 𝑏𝑛
𝑖=0             (8) 
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3.5   Evaluation 

In this stage, the detected patterns shall be revealed, whether they are interesting or not. 

This study utilized the confusion matrix that shows the precision (specificity) and recall 

(sensitivity), the area under the curve (AUC), and finally, the model performance before and 

after the application of the factorial analysis algorithm. 

Accuracy is the fraction of the number of correctly predicted examples to the total 

number of instances in the dataset. It is given by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (𝑇𝑃+𝑇𝑁)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (9) 

Precision is the ratio of true positive, relevant instances to the total number of retrieved 

instances. It is given by: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                           (10) 

Recall is also called sensitivity, which is the fraction of correct positive examples 

predicted out of the total number of positive occurrences. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                           (11) 

The F1-score, also known as the F-score or F-measure, is a metric used to evaluate a 

machine learning model's performance. It combines precision and recall into a single score. 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                                    (12) 

 Results and Discussion 

4.1   Tikog Leaf Classification Model Performance 

Based on the simulation results to test the optimized CNN model using various 

algorithms such as Color Lab Space for color representation, Autoencoders for feature 

extraction, Mean-Max Pooling for the pooling technique, and Dropout for fine-tuning four (4) 

models emerged from 27 models and cases utilizing various scenarios such as the number of 

epochs ranging from 100 to 200, learning rate ranging from 0.01 to 0.0001, and CNN activation 
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functions such as sigmoid, hyperbolic tangent (tanh), and relu as shown in Table 1. The four 

(4) cases that had better performance than the rest were case 5, case 11, case 12, and case 15.  

For Case 5, it shows that a 150-epoch training with a learning rate pegged at 0.001 using 

the sigmoid function as its CNN activation has an augmentation time of 26.85 sec, training 

time of 1106.04 sec, evaluation time of 9.81 sec, and validation time of 5.72 sec resulting in a 

training performance of 96.97% accuracy, 96.62% precision, 97.33% recall, 96.98% F1-score, 

and 99.59% ROC/AUC with a Sum of Squares Errors (SSE) of 91, demonstrating significant 

performance as an image classification model. However, when testing its model, the results 

show 90% accuracy, 85.21% precision, 96.80% recall, 90.6% F1-score, and 98.32% 

ROC/AUC with a Sum of Squares Error (SSE) of 50. These results imply that while Case 5 

demonstrates strong performance in the image classification model based on its training results, 

it struggles with precision in the test data. This indicates that the model may slightly overfit the 

training data, as it is more prone to false positives when exposed to unseen data. Further fine-

tuning in the activation function, learning rate, and regularization can be applied to improve its 

generalizability.  

As illustrated in Table 1, Case 11 shows that with 100 epochs, a learning rate of 0.001, 

and using hyperbolic tangent as its activation function, the model achieved a 28.31 sec 

augmentation time, 723.03 sec training time, 9.08 sec evaluation time, and 6.09 sec validation 

time, resulting in 98.03% accuracy, 96.45% precision, 99.73% recall, 98.07 F1-score, and 

99.89% ROC/AUC with a Sum of Squares Errors (SSE) of 59. However, the testing set 

declined to 89.80% accuracy, 93.07% precision, 86% recall, 89.40% F1-score, and 96.27% 

ROC/AUC with a Sum of Squares Errors (SSE) of 51. These results imply strong performance 

in the training model, with exceptional accuracy, recall, and F1-score. However, the decline in 

testing performance highlights challenges in the model's generalizability, particularly regarding 

accuracy rate and precision. The significant decrease in recall (99.73% in training vs. 86% in 

testing) suggests that the model struggles with identifying Standard Tikog leaves in unseen 

data. This is a key indicator of overfitting, where the model has learned specific patterns from 

the training data that do not generalize well to new samples. Thus, the results indicate the 

likelihood of overfitting caused by the higher learning rate, tanh activation, and epoch count. 

Further tuning can be achieved by utilizing hyperparameter tuning or lowering the learning rate 

and increasing the epoch count. 
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Results shown in Table 1 indicate that Case 12, with 100 epochs, a learning rate of 

0.0001, and hyperbolic function (tanh) as its activation function, resulted in 25.04 sec 

augmentation time, 756.89 sec training time, 8.71 sec evaluation time, and 7.07 sec validation 

time, generating 94.23% accuracy, 92.45% precision, 96.33% recall, 94.35% F1-score, and 

98.18% ROC/AUC with a Sum of Squares Errors (SSE) of 173 during the training of the 

optimized CNN model. Results from the validation of the optimized model show an increase 

in all validation performance metrics, such as 96.83% accuracy, 95.77% precision, 98% recall, 

96.87 F1-score, and 99.40% ROC/AUC with a Sum of Squares Errors (SSE) of 19. Case 12 

results imply an exceptional model showing a highly effective, optimized CNN model based 

on the parameters. The low training and validation time suggest an efficient model despite its 

complexity and low reported error; thus, there is computational efficiency and stability during 

the training and testing of the model, and it quickly adapts to unseen data while maintaining 

stable performance. Furthermore, the optimized CNN model suggests excellent precision and 

recall based on the F1-score and Receiver Operating Characteristic/Area Under Curve 

(ROC/AUC) metrics in identifying, determining, and handling false positives and false 

negatives during training and validation data. Finally, the results imply that the model's 

generalizability was exceptional, even better on the unseen data, which contained fewer 

ambiguities or noise in both datasets. 

In the last result, Case 15 was simulated with the following parameters: 150 epochs, a 

learning rate of 0.0001, and hyperbolic (tanh) as its activation function. In this context, the 

generated augmentation time is 24.09 seconds, 1162.87 seconds training time, 8.93 seconds 

evaluation time, and 7.16 seconds validation time. As a result, it shows 95.52% accuracy, 

92.94% precision, 98.52% recall, 95.65% F1-score, and 99.18% ROC/AUC with a Sum of 

Squares Errors (SSE) of 153 during the training of the optimized CNN model. Meanwhile, the 

results during validation were 93.40% accuracy, 88.34% precision, 100% recall, 93.81% F1-

score, and 99.78% ROC/AUC with a Sum of Squares Errors (SSE) of 23. The results imply 

that the optimized CNN model demonstrates a well-optimized approach for tikog leaf 

classification, given that the simulation revealed efficient time performance in all parameters 

relative to time performance. The training results show a promising outcome in terms of 

accuracy, precision, recall, F1-score, ROC/AUC, and SSE, indicating minimal error. However, 

when validated, although it shows promising results in accuracy, recall, F1-score, ROC/AUC, 

and a significant drop in SSE, it lacks or has significantly reduced precision during validation, 
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indicating effects in identifying positive and false positive classes. Thus, the slightly reduced 

precision (88.34%) in validation implies a minor increase in false positives, which may require 

further refinement depending on the application's tolerance for misclassification. 

Table 1. Model Performance Matrix of Tikog Leaf Classification 

 

 

4.2   Best Performing Optimized Model based on Training and Testing Datasets 

Based on the results presented in Table 2, Case 12 reflects a well-tuned and optimized 

CNN model that balances accuracy (94.23%, 96.83%), precision (92.45%, 95.77%), recall 

(96.33%, 98.00%), F1-score (94.35%, 96.87%), ROC/AUC (98.18%), and SSE (173, 19), 

which is computationally cost-effective with minimized misclassification, as shown in Figures 

5, 6, 7, and 8. Moreover, Model 12 maintains high classification reliability and excellent 

agreement beyond chance, with MCC and Cohen’s Kappa values of 0.951, which strengthens 

its suitability for deployment in real-world applications. The Matthews Correlation Coefficient 

(MCC) value of 0.951 indicates a very strong correlation between the predicted and actual 

classifications of Tikog leaf quality. MCC is particularly useful for evaluating binary 

classification tasks on imbalanced datasets, as it considers all elements of the confusion matrix 

(true positives, true negatives, false positives, and false negatives). Furthermore, Cohen’s 

Kappa value of 0.951 signifies almost perfect agreement between the predicted labels of the 

model and the actual labels, beyond what would be expected by chance. Kappa accounts for 

random agreement and is especially valuable in real-world classification tasks where class 

imbalance or subjective judgments might exist. Thus, reducing the risk of errors in real-world 

use, also known as generalization capability, makes it suitable for resource-constrained 
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environments or computational efficiency. Furthermore, the model suggests efficient learning 

without overtraining, which indicates that it has successfully learned from the data and captured 

the underlying patterns without requiring the entire 100 epochs and converging at the 77th 

epoch. The remaining 23 epochs likely served to fine-tune the parameters, ensuring stability 

and preventing deterioration due to overfitting. Thus, the optimization algorithms and 

parameters, or the chosen hyperparameters, were well-optimized. Therefore, the Case 12 

optimized CNN model shows a non-overfitting nature with computational efficiency and is 

highly effective, reinforcing its suitability as the best-performing model among the cases 

discussed. Furthermore, the memory efficiency of CNNs has mainly been overlooked in 

previous work because the memory behavior of CNNs can have a significant impact on their 

performance (Li, Yang, feng, Chakradhar, & Zhou, 2016), including computational efficiency 

and memory (Rizvi, Rahman, Sheikh, Fuad, & Shehzad, 2023), and reduces computational 

complexity (Limonova, Sheshkus, & Nikolaev, 2016), where this study has answered this gap. 

Moreover, based on the model configuration, the estimated computational complexity 

for Case 12 is approximately 12.62 GFLOPs (Giga Floating Point Operations). This value 

reflects the operations needed to process a single 224x224 Tikog leaf image through the 

network, as the convolutional and dense layers are complex. Relatively, it is a low 

computational cost for Case 12 and is interpreted as resource-efficient, making it suitable for 

deployment in environments with limited hardware capabilities. The model's ability to maintain 

high classification accuracy and generalization performance with minimal FLOPs supports its 

practicality for real-time quality control in indigenous industries, such as the banig weaving 

sector of Basey, Samar. 

Table 2. Case 12 Performance Metrics 

Performance Training Data 

Metrics 

Validation Data 

Metrics 

Accuracy 94.23% 96.83% 

Precision 92.45% 95.77% 

Recall 96.33% 98.00% 

F1-Score 94.35% 96.87% 

ROC/AUC 98.18% 99.40% 

SEE 173 19 
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Matthews Correlation 

Coefficient (MCC) 

 0.951 

Cohen’s Kappa  0.951 

 

        

                       

     

  

As shown in Table 3 and visualized in Figure 9, the training and validation loss curves 

of the four top-performing feature-engineered CNN models (Models 5, 11, 12, and 15) reveal 

distinct convergence behaviors and levels of generalization. Model 5 demonstrates a reasonable 

fit, with both training and validation losses decreasing over time; however, its relatively high 

converged validation loss of 0.7884 at epoch 51 suggests limited generalization and potential 

overfitting, as indicated by the divergence between training and validation curves. In contrast, 

Model 11 exhibits more pronounced overfitting, with a low training loss but a higher validation 

Figure 5. Case 12 Confusion Matrix in Training Data Figure 6. Case 12 ROC Curve in Training Data 

Figure 7. Case 12 Confusion Matrix in Validation Data Figure 8. Case 12 ROC Curve in Validation Data 
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loss of 0.8553 at epoch 55. This indicates a need for further regularization or learning rate 

adjustments. Model 15 achieves the most stable convergence and the lowest validation loss of 

0.3150, occurring early at epoch 43. The close alignment of its training and validation losses 

suggests excellent model robustness and minimal overfitting, even over extended epochs. 

Ultimately, Model 12 offers the best generalization performance among all models, with a 

converged validation loss of 0.5063 at epoch 77. Its training and validation losses are well-

balanced, reflecting a stable and well-regularized model. These findings suggest that while 

Model 15 excels in convergence speed and minimal error, Model 12 achieves the most reliable 

performance across varying data, making it the most suitable for real-world deployment in 

Tikog leaf quality classification. Among the tested components, the integration of Lab color 

space and autoencoder-based feature extraction provided foundational feature quality, 

enhancing the model's ability to distinguish color variations and structural patterns in Tikog 

leaves (Setyawan, Riwinanto, Nursyahid, & Nugroho, 2018; Prasad, 2017; Chen & Guo, 2023). 

Meanwhile, the use of mean-max pooling and dropout regularization ensured generalization 

and robustness by capturing diverse information and mitigating overfitting (Zhang, Wu, Li, & 

Li, 2018; Liu, Xu, Jin, Shen, & Darrell, 2023; Lim, 2021). These engineered features, when 

paired with carefully tuned hyperparameters such as learning rate, activation function, and 

number of epochs, notably improved the performance of Model 12 (Wojciuk, Swiderska-

Chadaj, Siwek, & Gertych, 2022; Sharma & Kumar, 2023). This multi-layered enhancement is 

supported by contemporary studies in image classification, confirming that a hybrid of 

preprocessing, feature reduction, and regularization yields optimal deep learning outcomes in 

specialized domains such as agriculture and cultural heritage (Gulzar, 2023; Gonçalves, Souza, 

& Fernandes, 2022; Mahbod, et al., 2020). 

The findings of this study have practical implications for both technological innovation 

and cultural preservation. The superior generalization ability of Model 12 suggests it is well-

suited for real-world deployment in classifying Tikog leaf quality, which can enhance quality 

control processes for the banig weaving industry in Basey, Samar. This demonstrates how 

artificial intelligence can support indigenous industries by improving product consistency 

while preserving traditional craftsmanship (Gulzar, 2023; Chen & Guo, 2023). Furthermore, 

the study presents a model selection framework based on convergence behavior and validation 

loss, offering a replicable approach for similar image classification tasks in agriculture and 

cultural heritage (Gonçalves, Souza, & Fernandes, 2022; Mahbod, et al., 2020). Finally, the 
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computational efficiency of the optimized CNN model highlights its potential for use in low-

resource or mobile environments (Li, Yang, feng, Chakradhar, & Zhou, 2016; Rizvi, Rahman, 

Sheikh, Fuad, & Shehzad, 2023) . 

Table 3. Training and Validation Loss Curve 

Feature-

Engineered 

Model 

Epoch of 

Convergence 

Converge 

Validation 

Loss 

Visual Behavior 

Model 5 

(Sigmoid, 

LR=0.001, 

Epochs=150) 

51 0.07884 Shows a smooth decline in loss; a 

small spike in validation loss near 

convergence 

Model 11 

(Tanh, LR=0.001, 

Epochs=100) 

55 0.8553 Shows early overfitting with a 

spike at convergence; gap 

between training and validation 

loss widens 

Model 12 

(Tanh, 

LR=0.0001, 

Epochs=100) 

77 0.5063 Smooth convergence with 

minimal gap between training 

and validation loss 

Model 15 (Tanh, 

LR=0.0001, 

Epochs=150) 

43 0.3150 Rapid and consistent 

convergence; training and 

validation curves closely aligned 

 

 

Figure 9. Training and Validation Loss with Convergence of Four (4) Performing 

Feature-Engineered Models 
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 Conclusion 

This study developed and optimized a convolutional neural network (CNN) model for 

classifying Tikog leaves utilized in the banig weaving industry, employing Lab color space, 

autoencoders, mean-max pooling, and dropout regularization. Among the 27 CNN models 

tested, Case 12 exhibited the highest performance, demonstrating strong generalizability 

without overfitting. Notably, this research represents a pioneering effort in applying artificial 

intelligence to indigenous crafts, fostering technological innovation in cultural preservation. 

The resulting model shows potential as a practical quality control tool for weavers in Basey, 

Samar, and similar communities, contributing to sustainable livelihoods and enhancing 

recognition of native craftsmanship through intelligent systems. 

While the study successfully developed and optimized a feature-engineered CNN 

model for classifying Tikog leaves, several limitations must be acknowledged. First, the dataset 

was limited to 1,000 raw images (500 per class), which, although augmented to improve 

generalization, may still constrain the model's ability to accommodate diverse environmental 

conditions and variations in leaf appearance. Second, the model is specifically tailored to Tikog 

leaves from the Basey, Samar region, and its performance on similar indigenous materials from 

other areas remains untested. Third, the model was trained and evaluated in a controlled 

environment using static images; real-time deployment on mobile or embedded devices with 

live camera input has not yet been explored. Lastly, while computational efficiency was 

assessed through floating-point operations per second (FLOPs), other deployment constraints 

such as energy consumption, latency on edge devices, and hardware compatibility were beyond 

the scope of this study. These limitations present opportunities for future research, particularly 

in expanding the dataset, validating the model across different regions, and testing deployment 

scenarios for mobile or field-based applications. 
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