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Abstract    

Early identification was essential in efficient the management of Alzheimer's disease 

(AD), which is one of the biggest causes of dementia. Conventional Medical Imaging (CMI) 

methods such as Magnetic Resonance Imaging (MRI) and Positron Emission Tomography 

(PET) scans are used to understand various aspects of health. However, they lack the ability to 

capture the dynamic progression of Alzheimer's disease without incorporating sequential data 

series. This research introduces a novel method that has been designed to address these 

limitations. By combining spatial-temporal analysis with dynamic sequence processing, the 

work presents the "Attention Enhanced CNN+LSTM" architecture. The proposed dual pipeline 

architecture combinesLSTeM (Long ShortTerm enhanced Memory) for LSTM processing with 

an Attention ResNet for CNN processing. This work designs a novel "CS-Attention Block" 

with "Aggregate Weighted Pooling" for the enhancement of ResNet-50 and integration of 

LSTeM; further, a QKV (Query-Key-Value) attention mechanism for feature fusion is also 

proposed. For experiments, the Alzheimer’s disease Neuroimaging Initiative (ADNI) dataset 

containing longitudinal images provides the MRI and PET scan image data used for the 

analysis of the model. Results: The proposed model showed better performance for early AD 

12 months before clinical diagnosis. The model also achieved an accuracy of 0.9151, and the 

AUC reached a value of 0.9784. This result was further improved to be improved by0.9302 for 

the metric accuracy and 0.9913 for the metric AUC ahead of the 6-month prediction. The model 
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fuses spatial-temporal features and processes the sequences to predict AD by addressing the 

limitations of existing models. 

Keywords: Alzheimer's Disease, Deep Learning, Accuracy, AUC, LSTeM, ResNet.  

 Introduction 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the leading 

cause of dementia, marked by memory loss, cognitive decline, and behavioral changes. Early 

detection is crucial for timely intervention and management. Conventional AD detection 

models largely rely on imaging techniques like MRI and PET scans, with research showing 

improved diagnostic accuracy through their fusion. However, most models focus on static 

images and fail to capture the disease’s progressive nature, limiting early prediction 

capabilities. 

To address this, hybrid architectures combining CNN (for spatial feature extraction) 

and LSTM (for temporal sequence learning) have been explored. Yet, standard CNN+LSTM 

models struggle—CNNs inadequately model temporal progression, while LSTMs are 

challenged by the spatial complexity of neuroimages. To overcome this, attention mechanisms 

are introduced to enhance feature relevance and integration. 

This work proposes an Attention-Enhanced CNN+LSTM architecture for early 

Alzheimer's disease (AD) detection using longitudinal data. The model comprises an Attention 

ResNet (CNN) pipeline integrated with a Long Short-Term Enhanced Memory (LSTeM) unit. 

A novel CS-Attention Block with Aggregate Weighted Pooling refines spatial and channel 

features in ResNet-50, while LSTeM captures temporal progression. The outputs are fused 

using a QKV attention mechanism and classified using a dual fully connected layer. 

Experiments using the ADNI dataset demonstrate superior performance in early predictions at 

24, 36, and 48 months compared to state-of-the-art models, confirming the model’s robustness 

in longitudinal AD detection. 

1.1   Motivation 

Identifying Alzheimer's disease in its early stages is crucial for initiating prompt 

therapeutic interventions meant to halt cognitive decline and improve patients' quality of life. 

However, the degenerative and progressive characteristics of AD are inadequately represented 
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by static neuroimaging data, such as single-time-point MRI or PET scans. These scans are 

essential to conventional diagnostic frameworks. Because the disease progresses slowly, 

longitudinal imaging data are necessary to detect early, subtle changes that would otherwise go 

unnoticed. Additionally, integrating metabolic activity from PET and structural data from MRI 

achieves a comprehensive, multimodal representation of brain state. A sophisticated model that 

can learn spatial and temporal patterns from multiple imaging modalities will be essential for 

accurately predicting early-stage Alzheimer's disease. 

1.2   Contribution 

Several important considerations were taken into account when choosing LSTM and 

hybrid attention-basedCNN architectures for early Alzheimer's disease detection. First, given 

that the disease predominantly evolves and requires methodologies capable of illustrating time-

dependent alterations, LSTM and its more sophisticated variant, LSTeM, are employed. 

Second, deep convolutional neural networks, such as ResNet-50, can highlight the complex 

spatial patterns present in neuroimaging data, including MRI and PET scans. However, 

traditional CNNs often fail to effectively highlight nuanced yet clinically significant 

information. Spatial attention and channel obstruction augment feature concentration. 

Integrating temporal and spatial patterns through an appropriate merging approach yields a 

scaled dot-product attention mechanism. These integrated design choices effectively address 

critical challenges, including temporal modeling,, spatial accuracy, feature relevance, and 

sensitivity at the early stages. This makes the chosen method highly suitable for diagnosing 

longitudinal Alzheimer's disease. 

 Literature Review 

Recent advancements in machine learning and deep learning have significantly 

contributed to the early diagnosis and classification of Alzheimer’s Disease (AD). A variety of 

models and approaches have been proposed, each offering unique insights while also facing 

notable constraints. For instance, Song et al. (2021) developed the GM-PET model by 

combining MRI and FDG-PET modalities. Although their method provided valuable 

diagnostic insight, it lacked temporal analysis and focused only on static imaging. Janghel et 

al. (2021) and Mehmood et al. (2021) employed VGG-16-based architectures, leveraging fMRI 

and transfer learning techniques respectively, but their models did not incorporate multimodal 

or longitudinal data, restricting their application in disease progression modeling. Jo et al. 
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(2020) proposed a 3D CNN for tau PET scans that was effective for specific tasks but lacked 

general applicability beyond the tau imaging context. Several other studies also focused 

primarily on static image classification. Raees et al. (2021) utilized traditional SVM and DNN 

models on MRI scans but did not implement more sophisticated neural architectures. Murugan 

et al. (2021) introduced DEMNET for dementia staging using MRI, though it was confined to 

stage-level prediction without dynamic progression tracking. Mohammed et al. (2021) and 

Kamada et al. (2021) used deep learning models like ResNet-50, AlexNet, adaptive RBM, and 

DBN, but their evaluations were limited to single-time-point datasets, omitting longitudinal 

components critical to understanding AD progression. Further work by Hamdi et al. (2022), 

Basheera et al. (2021), and Salehi et al. (2020) focused on enhancing CNN performance 

through architectural innovations or transfer learning. However, these models still centered on 

static imaging and lacked integration of sequential or multimodal data. More recent 

developments such as BLADNet (Duan et al., 2023), Conv-Swinformer (Hu et al., 2023), and 

other attention-based architectures showed promise in improving feature extraction, yet many 

of these studies excluded non-imaging factors like clinical scores, cognitive tests, or genetic 

data, which are essential for comprehensive AD modeling. Attempts to integrate longitudinal 

and multimodal data have been made by researchers such as Tripathi et al. (2023), Zhu et al. 

(2021), and El-Sappagh et al. (2021), who combined imaging with clinical or cognitive 

assessments. However, these approaches were often hindered by issues such as missing data, 

dataset specificity, or lack of generalizability. Moreover, while attention mechanisms have 

been introduced in some models to focus on critical regions in neuroimages, their usage 

remains limited, particularly in dual-pathway or hybrid networks that could simultaneously 

process spatial and temporal information. 

In summary, although numerous deep learning approaches have contributed to AD 

diagnosis, a substantial gap remains. Most current models treat AD detection as a static image 

classification task, failing to capture the complex temporal dynamics and multimodal factors 

involved in disease progression. There is a pressing need for a unified, attention-augmented 

hybrid architecture capable of fusing spatial, temporal, and clinical data while preserving 

contextual relevance. Such a model would enhance diagnostic accuracy and offer meaningful 

predictions regarding the progression of Alzheimer’s disease, aligning more closely with real-

world clinical needs. 
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 Methodology 

In order to increase the model performance as well as maintain consistency of the data, 

we carefully preprocessed MRI and PET images. Scanner-specific gradient non-linearity 

induced geometric distortions were corrected with Gradwarp on the MRI data. To correct for 

intensity variations across the magnetic field B1 nonuniformity was applied afterward. To 

sharpen images and correct for low-frequency intensity non-uniformity, we then estimated the 

bias field with the N3 procedure. The PET images were reconstructed by temporally co-

registering individual scan frames and then averaging all frames to yield one composite image 

per scan. The PET scans were subsequently smoothed to 8 mm FWHM through a Gaussian 

filter, after spatial normalization to a [160 × 160 × 96] voxels format with 1.5 mm³ isotropic 

voxel size. For the input of the model, all MRI and PET images were rescaled intensity-wise 

and shape-wise. Longitudinally aligned MRI and PET scans were used to obtain a temporal 

sequence for each participant. The length of sequences for different individuals was normalized 

by padding with zeros or truncation. 

3.1   Aggregate Weighted Pooling (AWP) 

In this section, a new technique called “Aggregate Weighted Pooling” is introduced 

for improving the processing of convolutional feature maps. The traditional types of models 

that we use, such as global average pooling and max pooling, however, don’t perform wellwith 

complex patterns of images. The errors of global average pooling at this layer stem from losing 

important spatial information, while max pooling fails to capture essential features of less 

salient objects. The AWP approach is developed to combine the strengths of global average 

and max pooling. AWP is a methodology that is implemented through a 1×1 convolutional 

layer to strengthen spatial and channel attention in training. 

In the case of multiple image inputs, the size of the convolutional feature map grows 

along with redundant information. The AWP strategy can avoid this by forcing the network to 

concentrate and enhance the discriminative information. This helps AWP to process the 

complexity introduced by the increased feature maps and emphasize only the most necessary 

and temporally important features. This will efficiently enhance the feature extraction of CNNs 

towards the early-stage signs of AD, which would increase the accuracy and dependability of 

the employed predictive model. Fig. 1 (a) illustrates the method for averaging channel 

information using variable weights. Let's consider the convolutional feature matrix 𝑋, which is 
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defined in the space ℝ𝐻×𝑊×𝐶, where 𝐻,𝑊, and 𝐶 represent the height, width, and number of 

channels are represented respectively.  

        

Figure 1. (a) Average Weighted Channel Pooling for Channel Information; (b) 

Average Weighted Spatial Pooling for Spatial Information 

3.2   Channel and Spatial Attention Blocks 

Using the proposed AWP, this work introduces an attention model termed Channel 

Spatial (CS)-Attention Block; the individual channel and spatial attention blocks are described 

in the following sections: 

3.2.1   Channel Attention Block (CAB) 

In CNN, the feature maps are 3D, referred to as height, channel, and width. All channel 

maps are formed through a convolution kernel, leading to potential information redundancy, 

particularly with many channels. The approach explores these inter-channel relationships and 

minimizes redundancy by generating a Channel Attention Matrix (CAM) through a specialized 

CAB.  

In the design, as shown in Fig. 2 (a), for an input feature 𝑋𝐼 in ℝ𝐶×𝐻×𝑊, the CAB 

commences by compressing the feature map along its channel axis utilizing the Aggregate 

Weighted Pooling (AWP). This squeezing process employs a 1×1 convolution kernel 𝜔𝑠 in 

ℝ1×1×𝐶, resulting in a projection tensor 𝑋WAP 
𝑐  in ℝ𝐻×𝑊. Each element 𝑥(𝑖,𝑗) in 𝑋 signifies a 

linear combination of all 𝐶 channels at the spatial location (𝑖, 𝑗). Then, a convolutional layer 

with a 1×1 kernel size is applied, which is then followed by ReLU activation and Batch 

Normalization, which create an intermediate feature map 𝑋𝑐; EQU (1) where: 

𝑋𝑐 = Conv⁡(𝑋WAP
𝑐 )                 (1) 
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where 𝑋𝑐 is a representation in ℝ𝐶×1×1. This process effectively condenses the spatial 

information and makes the model focus on channel-wise features. Then, the feature map 𝑋𝑐 is 

reshaped and transposed to obtain two new feature maps, one with dimensions C×1 and the 

other 1×C. Matrix multiplication is employed, followed by a SoftMax operation on these maps 

to create the CAM,  𝑀𝐶, EQU (2) 

𝑀𝐶 = Softmax⁡(𝑋𝑐 ⊗ (𝑋𝑐)𝑇)                (2) 

Each element 𝑀𝐶(𝑖,𝑗)
 in the channel attention matrix is further enhanced as following 

EQU (3): 

     𝑀𝐶(𝑖,𝑗)
=

exp⁡((𝑋𝑐)𝑖⋅(𝑋
𝑐)𝑗
𝑇)

∑  𝐶
𝑘=1  exp⁡((𝑋

𝑐)𝑘∗⋅(𝑋
𝑐)𝑗
𝑇)

                (3) 

In this equation, 𝑀𝐶 ∈ ℝ𝐶×𝐶 represents a 2-D matrix that indicates the inter-channel 

relationships among channel pairs. In the model, the element 𝑀𝐶(𝑖,𝑗)
 of the CAM denotes the 

effect of the channel 𝑖 on the channel 𝑗 . Subsequently, 𝑋𝐼. The feature is refined using this 

channel's attention. The channel-refined feature 𝑋𝐶 in ℝ𝐶×𝐻×𝑊, is obtained through a 

combination of matrix multiplication with the channel attention matrix 𝑀𝐶 and a residual 

shortcut connection, EQU (4). 

𝑋𝐶 = 𝑋𝐼 ⊕ (𝛼(𝑀𝐶 ⊗𝑋𝐼))     (4) 

Here, 𝛼 is a learnable parameter. Initially, 𝛼 is set to 0 to simplify the model's 

convergence in the early training epochs. This approach allows the channel attention 𝑀𝐶 to act 

effectively as a kernel selector, identifying the most appropriate filters for the task. 

3.2.2   Spatial Attention Block (SAB) 

The specifics of this spatial attention block are detailed in Fig. 2 (b), providing a clear 

visualization of its role in the proposed attention module. 

For a given channel-refined feature 𝑋𝐶 in ℝ𝐶×𝐻×𝑊, the SAB begins by compressing the 

spatial axis’s feature map using AWP. This squeezing is accomplished using a 1 × 1 

convolution kernel 𝜔𝑠 in ℝ1×1×𝐶, resulting in a projection tensor 𝑋AWP
𝑠  in ℝ𝐻×𝑊. Each element 

𝑥(𝑖,𝑗) in 𝑋 is a linear combination of the 𝐶 channels at the spatial location (𝑖, 𝑗). Following 

channel concatenation, a convolutional layer with a 3 × 3 kernel size is applied. This is 
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succeeded by a ReLU activation function and Batch Normalization to generate a transitional 

feature map 𝑋𝑠. For maintaining feature map size, a stride of 1 and padding of 1 are employed. 

Therefore, the intermediate feature map is given by EQU (5): 

𝑋𝑠 = Conv⁡([𝑋AWP
𝑠 ])                 (5) 

where 𝑋𝑠 ∈ ℝ1×𝐻×𝑊. This spatial attention process allows the model to focus on and 

amplify significant spatial features in the fused MRI and PET images. 

 

Figure 2. (a) Channel Attention Block, (b) Spatial Attention Block 

Following the initial processing of the intermediate feature map 𝑋𝑠, it is the ‘n’ 

reshaped and transposed to 𝐻𝑊 × 1⁡feature map and  1 × 𝐻𝑊 feature map.  The SoftMax 

operation is applied after matrix multiplication to these maps to create the spatial attention 

matrix 𝑀𝑆, where the SoftMax function is measured across every row of the spatial matrix. 

This process can be mathematically expressed as EQU (6) 

𝑀𝑆 = SoftMax⁡(𝑋𝑠 ⊗ (𝑋𝑠)𝑇)     (6) 

  For a more detailed explanation, each element 𝑀𝑆(𝑖,𝑗)
 in the spatial attention 

matrix is calculated as EQU (7) 

𝑀𝑆(𝑖,𝑗)
=

exp⁡((𝑋𝑠)𝑖⋅(𝑋
𝑠)𝑗
𝑇)

∑  𝐻𝑊
𝑘=1  exp⁡((𝑋

𝑠)𝑘∗⋅(𝑋
𝑠)𝑗
𝑇)

     (7) 
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In this expression, 𝑀𝑆 is a matrix in ℝ𝐻𝑊×𝐻𝑊, representing the inter-spatial 

relationships between every two positions in the input feature map that emphasize the most 

informative spatial regions in the fused MRI and PET images. 

In the model, the element 𝑀𝑆(𝑖,𝑗)
 in the spatial attention matrix signifies the impact of 

the 𝑖𝑡ℎ position on the 𝑗𝑡ℎ position. Subsequently, the matrix is applied to the channel-refined 

feature 𝑋𝐶 through matrix multiplication to obtain a spatially-refined feature 𝑋𝑆 in ℝ𝐶×𝐻×𝑊, 

enhanced by residual shortcut learning. This process can be formulated as EQU (8): 

𝑋𝑆 = 𝑋𝐶 ⊕ (𝛽(𝑋𝐶 ⊗ (𝑀𝑆)
𝑇))                (8) 

The parameter 𝛽 is a learnable factor, initially set to 0 to simplify the early stages of 

the training process and facilitate smoother convergence. Through this mechanism, the spatial 

attention matrix 𝑀𝑆 effectively acts as a positional mask, highlighting the most crucial areas 

within the feature maps for analysis.  

 

Figure 3. Proposed Architecture for Early Prediction of AD 

3.3   Proposed Attention CNN+LSTM Architecture for Early Detection of AD 

In this section, we propose a Hybrid Neural Network Model (HNNM) which consists 

of an CNN for spatial analysis and a LSTM for temporal processing, complemented with 

attention mechanisms for the early detection of Alzheimer’s. It uses Attention ResNet for 

capturing spatio-temporal features and an LSTM module for temporal changes in longitudinal 

MRI and PET images. These features are then concatenated, and this combined feature set is 

fused using scaled dot-product attention mechanism, followed by fully connected layers and a 

sigmoid function to predict the probability of AD, resulting in effective early diagnosis. 
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3.3.1   Focused Spatial FE Using Channel and Spatial Attentive ResNet 

The CNN pipeline we use is ResNet-50 (Fig. 4(a)), a type of deep network with skip 

connections introduced to prevent the training problem of vanishing gradients. It consists of 

50 layers and it starts with a 7×7 convolutional layer, batch normalization, ReLU activation, 

and max pooling. The network is designed with bottleneck blocks, which include two 1×1 

convolutions for dimensionality reduction and a 3×3 convolution for feature extraction, 

followed by batch normalization and ReLU. Mayank, Yadav et al./ JATIT 11 (3) (2016) 298 – 

305 299 Skip connections and identity blocks help in the training of deeper layers. Following 

the last residual block average pooling decreases the spatial dimensions, followed by a FC 

layer with SoftMax activation to produce classification scores. ResNet-50’s strong feature 

learning capabilities render it highly suitable for challenging image recognition tasks, and an 

optimal starting point for more advanced deep learning models. 

 

                                                        (a) 

 

                                                            (b) 

Figure 4. (a) ResNet 50 architecture, (b) Attention Enhanced ResNet 50 

Though the deep-architecture, including stacked convolutions, batch normalization, 

and residuals, makes ResNet-50 proficient in extracting features, the same treatment for the 

features at all spatial and channel dimensions is inadequate for the task of MI, where fine-

grained feature differences are essential. To overcome this, we include CS-Attentive Blocks 

following all the residual blocks (Fig. 4(b)). These attention modules selectively weight 
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diagnostically useful patterns and automatically recalibrate feature maps on both spatial and 

channel dimensions.  

 

Figure 5. CS-Attentive Block in ResNet-50 

Previous studies have indicated a preference for placing channel attention ahead of 

spatial attention (Fig. 5), which was also confirmed in our experimental analysis. Embracing 

this insight, similar formats have adapted to this model accordingly. In the context of the 

proposed work, focusing initially on channel attention allows the network to better discern and 

prioritize the varied and intricate features across different channels in the fused image data. 

This is particularly important in medical imaging, where additional channels can represent 

distinct aspects of the brain's structure and function, crucial for early Alzheimer's detection. 

Following channel attention, spatial attention then refines the focus within the spatial 

dimensions of each channel, further improving the model's capacity to pinpoint areas of interest 

in the sequential image data. The feature map is denoted as 𝐹 in ℝ𝐶×𝐻×𝑊 and 𝐹c represent 

output after applying the channel attention map to 𝐹 and 𝐹s represents the output following the 

application of spatial attention to 𝐹c. These steps are mathematically described as EQU (9) 

 
𝐹c = 𝑀𝐶(𝐹) ⊗ 𝐹

𝐹𝑠 = 𝑀𝑆(𝐹
𝑐) ⊗ 𝐹𝑐

     (9) 

Where 𝑀𝐶(𝐹) is the channel attention map applied to 𝐹, and 𝑀𝑆(𝐹
𝑐) is the spatial 

attention map applied to 𝐹𝑐. The symbol ⊗ denotes the element-wise multiplication operation. 

Finally, the output feature vector of 8 × 512 × 1 dimension from the last FC layer is used as 

the ResNet feature, EQU (10) 

𝓇𝑣 = 𝑓resnet (𝑣𝑓)                           (10) 

Here, 𝑟𝑣 is the final feature vector obtained from the ResNet model, and 𝑣𝑓 refers to the 

input vector.  
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3.3.2   Temporal Sequence FE using LSTeM 

The LSTM model is a type of RNN that processes data sequences by passing items 

through a chain of repeating cell modules one at a time. Each cell in an LSTM is equipped with 

a three-gate structure: input, forget, and output gates. These gates regulate the flow of 

information.  

Given an input 𝑥𝑡 at time step 𝑡, along with the previous hidden state ℎ𝑡−1 and memory 

cell state 𝑐𝑡−1, the LSTM operates as follows: EQU (11) to EQU (16) 

Input Gate (𝑖𝑡): 𝑖𝑡 = 𝜎𝑠(𝑈
(𝑖)𝑥𝑡 +𝑊(𝑖)ℎ𝑡−1)                         (11) 

Forget Gate (𝑓𝑡): 𝑓𝑡 = 𝜎𝑠(𝑈
(𝑓)𝑥𝑡 +𝑊(𝑓)ℎ𝑡−1)                         (12) 

Output Gate (𝑜𝑡): 𝑜𝑡 = 𝜎𝑠(𝑈
(𝑜)𝑥𝑡 +𝑊(𝑜)ℎ𝑡−1)                         (13) 

Memory Cell (𝑐̃𝑡): 𝑐̃𝑡 = 𝜎𝑡(𝑈
(𝑐)𝑥𝑡 +𝑊(𝑐)ℎ𝑡−1)                         (14) 

Update Memory Cell State (𝑐𝑡): 𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ 𝑐̃𝑡                        (15) 

Update Hidden State (ℎ𝑡): ℎ𝑡 = 𝑜𝑡 ⋅ 𝜎𝑡(𝑐𝑡)                         (16) 

In these equations, 𝜎𝑠 and 𝜎𝑡 represent the sigmoid and hyperbolic tangent functions, 

respectively. The gates and the current memory cell are calculated as activated sums of the 

weighted current input 𝑥𝑡 and the previous hidden state ℎ𝑡−1. The forget gate 𝑓𝑡 removes data 

from the memory cell state while the input gate 𝑖𝑡 decides which new information is added. 

The output gate 𝑜𝑡 then uses the updated memory cell state 𝑐𝑡 to compute the current hidden 

state ℎ𝑡. The parameters 𝑈(∗) and 𝑊(∗) represent the model's weights. 

The standard LSTM has limitations when applied to problems that need enhanced 

memory capabilities and advanced temporal pattern recognition. To address these limitations, 

the LSTeM for the sequential recommendation model (Duan et al. 2023) is employed in this 

work.  
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Figure 6. LSTeM Architecture 

In the proposed architecture (fig 6), the LSTeM architecture is integrated into the LSTM 

pipeline to process temporal features of the fused MRI and PET longitudinal images. This novel 

LSTM variant introduces a recovery gate in addition to the standard input, forget, and output 

gates, thereby enhancing the model's ability to interpret complex temporal sequences. 

• Embedding Layer for MRI and PET Image Data 

Each series of images is transformed into a fixed-length embedding sequence, denoted 

as 𝐸(𝑖𝑚𝑔) = [𝑒1
(𝑖𝑚𝑔)

, 𝑒2
(𝑖𝑚𝑔)

, … , 𝑒𝑛
(𝑖𝑚𝑔)

], where 𝑛 is the predetermined sequence length. For 

series with fewer images than 𝑛, padding (represented as zero vectors) is added at the beginning 

to maintain a consistent length across all sequences. In cases where a series has more than 𝑛 

images, only the most recent 𝑛 images are retained for analysis. An embedding matrix 𝐸 ∈

ℝ𝑁×𝑑 is constructed, where 𝑑 is the dimensionality of the embeddings. This matrix is used in 

conjunction with an embedding lookup table to map each image series 𝑆(𝑖𝑚𝑔) to its embedding 

representation 𝐸(𝑖𝑚𝑔) ∈ ℝ𝑛×𝑑. 

• Adapting Gate Structures with "Q-K-V" Mechanism for Alzheimer's Detection 

The LSTeM augments the standard LSTM's input, forget, and output gates, which are 

typically expressed as 𝑈(∗)𝑒𝑡
(𝑖𝑚𝑔)

+ 𝑊(∗)ℎ𝑡−1. The "Q-K-V" mechanism offers an improved 

method for processing temporal sequences from MRI and PET image data, emphasizing the 

correlation among the current image input 𝑒𝑡
(𝑖𝑚𝑔)

 and the previous hidden state ℎ𝑡−1.  
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The Q-K-V Self-Attention model encodes each sequence element 𝑥𝑖 into a triplet of 

query 𝑞𝑖, key 𝑘𝑖, and value 𝑣𝑖. It determines 𝛼𝑖𝑗 correlation among 𝑥𝑖 and 𝑥𝑗 through the 

normalized product of the query of 𝑥𝑖  and the key of 𝑥𝑗 , resulting in a weighted value 𝛼𝑖𝑗𝑣𝑗.  

The attention for the entire sequence is calculated as, 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉             (17) 

In this EQU (17), 𝑄 = {𝑞𝑖}𝑖, 𝐾 = {𝑘𝑖}𝑖 , 𝑉 = {𝑣𝑖}𝑖, and 𝑑𝑘 is the dimensionality of the 

key. For normalization, the SoftMax function is employed on the attention weights, ensuring 

their sum equals one, and reflects the relative importance of each element in the sequence.  

The self-attention identifies the correlation among the current image embedding𝑒𝑡
(𝑖𝑚𝑔)

, 

the previous hidden state ℎ𝑡−1, and memory 𝑐𝑡−1, along with the global memory 𝑚𝑡−1
𝑎𝑣𝑔

. This 

mechanism maps these elements into each gate's query, key, and value groups. Unlike Self-

Attention, which computes the overall relevance of each pair, "Q-K-V" in LSTeM focuses 

solely on capturing correlations, using the sigmoid function instead of SoftMax to normalize 

gate weights between 0 and 1.  

The input gate manages the data accepted into memory at each time step. It derives 

information from two sources: the current image embedding 𝑒𝑡
(𝑖𝑚𝑔)

 and  ℎ𝑡−1. The operation 

performed in the gate involves two key products: the first is between the query of 𝑒𝑡
(𝑖𝑚𝑔)

 and 

the key of ℎ𝑡−1, determining the relevance of short-term memory to the current input; the 

second is between the query of ℎ𝑡−1 and the key of 𝑒𝑡
(𝑖𝑚𝑔)

, identifying which aspects of the 

current input are significant. A single vector is employed as a query and key for 𝑒𝑡
(𝑖𝑚𝑔)

 and 

ℎ𝑡−1, leading to the EQU (18): 

𝑖𝑡 = Sigmoid⁡ (
𝑞𝑘(𝑡,𝑖,𝑒)⋅𝑞𝑘(𝑡,𝑖,ℎ)

√𝑑
) , ⁡𝑐̃𝑡 = 𝑖𝑡 ⋅ (𝑣(𝑡,𝑖,𝑒) + 𝑣(𝑡,𝑖,ℎ))            (18) 

Here, 𝑞𝑘(𝑡,𝑖,𝑒) and 𝑞𝑘(𝑡,𝑖,ℎ) are the combined query and key for the current embedding 

and previous hidden state, while 𝑣(𝑡,𝑖,𝑒) and 𝑣(𝑡,𝑖,ℎ) are their values. The forget gate, which 

determines the information to be discarded from the long-term memory 𝑐𝑡−1, the "Q- K − V " 

mechanism is again employed. This gate's function is formulated as EQU (19): 
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𝑓𝑡 = Sigmoid⁡ (
𝑞(𝑡,𝑓,𝑒)⋅𝑘(𝑡,𝑓,ℎ)

√𝑑
) , ⁡𝑐̃𝑡−1 = 𝑓𝑡 ⋅ 𝑐𝑡−1             (19) 

Here, 𝑞(𝑡,𝑓,𝑒) = 𝑈(𝑓)𝑒𝑡
(𝑖𝑚𝑔)

 and 𝑘(𝑡,𝑓,ℎ) = 𝑊(𝑓)ℎ𝑡−1 are the query and key for the forget 

gate with 𝑈(𝑓) and 𝑊(𝑓) as the trainable parameters. The key of ℎ𝑡−1 in place of 𝑐𝑡−1 the key 

is used considering ℎ𝑡−1 as a selective projection of 𝑐𝑡−1. 

• Global Memory-Based Recovery Gate 

The recover gate employs a global memory vector, formulated using Self-Attention 

from prior image embeddings in the sequence. For a sequence 𝑋 = {𝑥𝑖}𝑖=1
𝑛 , the global memory 

vector for an element 𝑥𝑞 is computed as EQU (20) 

𝑥̂𝑞 = ∑  𝑛
𝑖=1 𝛼(𝑥𝑞 , 𝑥𝑖)𝑥𝑖               (20) 

Here, 𝛼(𝑥𝑞 , 𝑥𝑖) is the attention weight assigned to each element 𝑥𝑖 about 𝑥𝑞 which is 

based on their mutual dependencies. This Self-Attention mechanism allows the recover gate to 

integrate a more holistic view of the fused image sequence by generating the global memory 

vector at time 𝑡. For the embedding matrix 𝐸𝑡−1 ∈ ℝ(𝑡−1)×𝑑 of previous images, it first 

computes the dependencies among items, and then Global Average Pooling (GAP) is employed 

to create a global memory embedding 𝑚𝑡−1
𝑎𝑣𝑔

.  

The steps are, EQU (21) to EQU (23) 

Compute Affinities: 𝛼 = softmax⁡(𝐸𝑡−1𝐸𝑡−1
𝑇 )                                    (21) 

Generate Weighted Sequence Embedding: 𝐸‾𝑡−1 = 𝛼𝐸𝑡−1                        (22) 

Create Global Memory Embedding: 𝑚𝑡−1
𝑎𝑣𝑔

= GAP⁡(𝐸‾𝑡−1)                        (23) 

For the recover gate, the "Q-K-V" mechanism is employed with the current image 

embedding 𝑒𝑡 and global memory 𝑚𝑡−1
𝑎𝑣𝑔

 , EQU (24) and EQU (25) 

𝑟𝑡 = Sigmoid⁡ (
𝑞(𝑡,𝑟,𝑒)⋅𝑘(𝑡,𝑟,𝑚)

√𝑑
) , ⁡𝑚𝑡 = 𝑟𝑡 ⋅ 𝑣(𝑡,𝑟,𝑚)                        (24) 

Here, 𝑞(𝑡,𝑟,𝑒) = 𝑈(𝑟)𝑒𝑡, 𝑘(𝑡,𝑟,𝑚) = 𝑊(𝑟)𝑚𝑡−1
𝑎𝑣𝑔

, and 𝑣(𝑡,𝑟,𝑚) = 𝑃(𝑟)𝑚𝑡−1
𝑎𝑣𝑔

.            (25) 

Finally, the memory at step 𝑡 is updated by combining the outputs of the input, forget, 

and recover gates, EQU (26) 
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𝑐𝑡 = 𝑐𝑡 + 𝑐𝑡−1 +𝑚𝑡                             (26) 

 

Figure 7. Scaled Dot Product Attentive Fusion 

• Output Gate 

The output gate of the LSTeM cell evaluates the relevancy of the cell's output and 

determines which aspects of 𝑐𝑡 should be relayed forward. This gate's function is prejudiced 

by three query-key pairs that include the reciprocal query-key pairs of the current image 

embedding 𝑒𝑡 and the previous hidden state ℎ𝑡−1, denoted as 𝑞𝑘(𝑡,𝑜,𝑒) = 𝑈(𝑜1)𝑒𝑡 and 𝑞𝑘(𝑡,𝑜,ℎ) = 

𝑊(𝑜1)ℎ𝑡−1, where 𝑜 represents the output gate. 

The output gate is computed as EQU (27) 

𝑜𝑡 = Sigmoid⁡ (
𝑞𝑘(𝑡,𝑜,𝑒)⋅𝑞𝑘(𝑡,𝑜,ℎ)

√𝑑
) , ⁡ℎ𝑡 = 𝑜𝑡 ⋅ 𝑐𝑡             (27) 

Here, ℎ𝑡 is the output of the LSTeM cell at time 𝑡, which represents the model's hidden 

state. This mechanism ensures that most informative components of the cell state are 

selectively forwarded alone. 

• Prediction Layers 

The hidden state ℎ𝑡 is then processed through a two-layer Feed-Forward Neural 

Network (FFNN) to formulate the final representation ℓ𝑣 of the patient's neurological 

condition, EQU (28) 

ℓ𝑣 = 𝑊(𝑝2) (𝜎(𝑊(𝑝1)ℎ𝑡))                          (28) 

where, 𝑊(𝑝1) and 𝑊(𝑝2) in ℝ𝑑×𝑑 are the trainable parameters of the feedforward layers, 

and 𝜎 represents the Rectified Linear Unit (ReLU) activation function that is used to introduce 

non-linearity between the two layers. The resulting feature vector 𝑙𝑣 encapsulates the refined 

representation of the patient's neurological state derived from the input fused image data.  
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3.3.3   Feature Fusion Using Scaled Dot Product Attention 

The fusion process begins by concatenating the feature vectors obtained from the 

ResNet and LSTeM pipelines, as shown in Fig. 8. Let 𝓇𝑣 represent the spatiotemporal features 

extracted by ResNet and ℓ𝑣 denote the dynamic sequence FE by LSTeM. The initial step of 

fusion is represented by a direct concatenation of these vectors, EQU (29) 

𝑐𝑜𝑛𝑐𝑎𝑡(𝓇𝑣, ℓ𝑣) = [𝓇𝑣; ℓ𝑣]               (29) 

Following the concatenation then, the scaled dot-product attention mechanism is used 

to assess the inter-feature relationships between 𝓇𝑣 and ℓ𝑣. This transforms each feature set 

into query (𝑄 ), key (𝐾), and value (𝑉) vectors through differentiable weight matrices. The 

queries (𝑄𝑟, 𝑄𝑙), keys (𝐾𝑟, 𝐾𝑙), and values (𝑉𝑟 , 𝑉𝑙) are computed as following EQU (30) 

𝑄𝑟 , 𝐾𝑟 , 𝑉𝑟 =  LearnableTransform (𝓇𝑣)

𝑄𝑙, 𝐾𝑙 , 𝑉𝑙 =  LearnableTransform (ℓ𝑣)
             (30) 

The similarity between the features is modelled using a function 𝑓(𝑄, 𝐾), which 

calculates the attention weights, EQU (32) 

𝑓(𝑄, 𝐾) =
[𝑄𝑟

𝑇𝐾𝑙,𝑄𝑟
𝑇𝐾𝑙]

√𝑑
                (32) 

where 𝑑 represents the dimensionality of the query and key vectors. The softmax 

function is applied to these attention weights to normalize using the following: 

SoftMax⁡(𝑓(𝑄, 𝐾𝑖)) =
Exp⁡(𝑓(𝑄,𝐾𝑖))

∑  𝑗  Exp⁡(𝑓(𝑄,𝐾𝑗))
 

The final step involves calculating the attention values by a weighted summation of the 

value vectors and the reweighted attention scores, EQU (33) 

Attention⁡(𝑄, 𝐾, 𝑉) = ∑𝑖  SoftMax⁡(𝑓(𝑄, 𝐾𝑖))𝑉𝑖             (33) 

This attention mechanism allows for context-aware fusion of the features. To further 

refine the feature interaction, a residual model similar to ResNet is employed.  

This structure emphasizes the features requiring more attention by adding the input of 

the attention layer back to its output, EQU (34) 
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𝑦𝑖 = 𝜇𝑜𝑖 + 𝑥𝑖                 (34) 

Here, 𝑜𝑖 denotes the output of the attention mechanism and 𝑥𝑖 represents the 

concatenated input, [𝓇𝑣; ℓ𝑣]. This residual connection is followed by sigmoid activation to 

reweight each feature within the range [0,1], resulting in continuous masks 𝑚𝑣 and 𝑚𝑓 for 𝓇𝑣 

and ℓ𝑣, respectively, EQU (35) 

𝑚𝑟 = Sigmoid⁡(𝑦𝑖
𝑟[𝓇𝑣; ℓ𝑣])

𝑚𝑙 = Sigmoid⁡(𝑦𝑖
𝑙[𝓇𝑣; ℓ𝑣])

                          (35) 

Finally, both features are element-wise multiplied with their corresponding masks, 

resulting in the reweighted fused vector EQU (37) 

𝑓𝑓𝑢𝑠𝑒𝑑(𝓇𝑣, ℓ𝑣) = [𝓇𝑣 ⊙𝑚𝑟; ℓ𝑣 ⊙𝑚𝑙]             (36) 

3.3.4   Classification Layer  

The combined feature vector undergoes further processing in the classification layer. 

The fused features are first processed using the FC layer, which expands the feature dimensions 

to allow interpretation and facilitate the learning of complex patterns. The transformation is 

defined as EQU (38) 

ℎ1 = ReLU⁡(𝑊1 ⋅ 𝑓𝑓𝑢𝑠𝑒𝑑 + 𝑏1)                         (38) 

where, 𝑊1 and 𝑏1 represent the weights and biases of this layer, respectively. The ReLU 

function introduces nonlinearity that enables the model to capture more complex relationships 

in the data. To prevent overfitting, a dropout layer is included. The network then proceeds to a 

second FC layer to further refine the features, EQU (39) 

ℎ2 = ReLU⁡(𝑊2 ⋅ ℎ1 + 𝑏2)                          (39) 

where, 𝑊2 and 𝑏2 are the weights and biases of the second layer. The final output layer 

comprises a single neuron with a sigmoid activation function. This neuron provides a 

probability score that reflects the likelihood of AD presence, EQU (40) 

Output = Sigmoid⁡(𝑊3 ⋅ ℎ2 + 𝑏3)                         (40) 

The sigmoid function is ideal for binary classification. 
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 Experiment Analysis 

The experiments were performed on a machine having Intel Xeon Gold 6230 CPUs, 

256 GB DDR4 RAM, and NVIDIA Tesla V100 GPUs with 16 GB HBM2 memory. 

Implementation was performed using Python 3.8, and neural networks were constructed using 

TensorFlow 2.4 and Keras 2.4. NumPy version 1.19 and Panda’s version 1.2 was responsible 

for managing data operations, and OpenCV version 4.5 was used to support image operations. 

4.1   Analysing the proposed Attention ResNet50 

4.1.1   Training Attention ResNet 

The Attention ResNet model for early Alzheimer’s detection incorporates attention 

mechanisms within a structured ResNet framework. It begins with a 3×3 convolution (stride 

2), followed by batch normalization, ReLU activation, and bottleneck blocks with attention 

applied in three configurations: Parallel (ResNet(P)), Channel-Spatial (ResNet(C-S)), and 

Spatial-Channel (ResNet(S-C)). A final fully connected layer with 2048 neurons completes the 

model. Training used binary cross-entropyand hinge loss, with evaluation based on accuracy, 

precision, recall, and F1-score to compare performance across configurations. 

 4.1.2   Analysing the Attention ResNet 

This section evaluates the Attention ResNet model’s performance across different 

attention configurations compared to the baseline ResNet-50, using Binary Cross Entropy 

(BCE) and Hinge Loss (HL) (Table 8). As shown in Fig. 8, the baseline ResNet-50 achieved 

over 93% in all metrics under both loss functions. Introducing attention mechanisms led to 

notable improvements. The parallel attention configuration (Attn-ResNet(P)) exceeded 98% 

accuracy with BCE. Sequential placements,spatial before channel (Attn-ResNet(S-C)) and 

channel before spatial (Attn-ResNet(C-S))yielded further gains. Attn-ResNet(C-S) achieved 

nearly 99% across metrics, with a peak F1-score of 99.46%, reflecting strong balance between 

accuracy and recall.  



Attention Enhanced CNN with LSTM Model for Early Detection of Alzheimer's Disease Using Longitudinal Data         

 

                                                                                      

ISSN: 2582-4252  466 

 

 

Figure 8. Performance Comparison of ResNet Configuration for BCE Loss 

 

Figure 9. Performance Comparison of ResNet Configuration for Hinge Loss 

For HL, results (Fig. 9) behaves the same as the BCE, attention based models perform 

better than ResNet-50. Attn-ResNet (S-C) outperformed the baseline and Attn-ResNet (P), 

whereas Attn-ResNet (C-S) obtained the highest scores with results close to 99% across all 

metrics. 

Attn-ResNet(C-S) consistently dominated in accuracies across the 25 training epochs, 

increasing from 41.04% to 98.12% under BCE, and 41.05% to 95.96% under HL. In contrast, 

ResNet-50 achieved best performance at 89.76% (BCE) and 90.85% (HL). These findings 

support the success of channel-first attention placement. 

4.1.3   Visualization of Attention Module 

Feature maps of ResNet with and without attention are compared in Fig. 10. The top 

row (no attention) has the attention relatively evenly spread over the canvas, while on the 

bottom row, using ResNet(C-S), attention focuses more accurately to important regions. This 
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attention-embedded mapping contributes to better interpretability and generalization in 

medical imaging applications by emphasizing clinically important diagnostic features. 

 

Figure 10. Visualization of the Attention Model 

4.2   Analysis of the Attention-Enhanced CNN-LSTM for Early AD Prediction 

The article applies longitudinal MRI and PET data from 381 ADNI subjects (CN, MCI, 

AD) to predict conversion from MCI-to-AD at 36 and 48 months. For psychometric analyses 

we expanded temporal sequences by using a 12-month HLRF with appropriately sliding 

windows for subjects with FF data: 

12-month prediction: 160 →220 

24-month prediction: 183 →235 

The model integrates Attention ResNet for spatial features and LSTeM for temporal 

learning, with key settings: 

ResNet: 3x3 conv, 16 bottleneck blocks, channel-first attention, 2048 FC neurons 

LSTeM: 2 layers, 512 hidden units, 128-dim embedding 

Training: 50 epochs, batch size 64, learning rate 0.001, dropout 0.5 

Classification: 2 FC layers (1024 →512), sigmoid output, BCE loss 

The Attn_ResNet + LSTeM achieved better performances, including accuracy, AUC, 

precision, recall, and F1-score, than ResNet-50/LSTM/LSTeM, and exhibited good predictive 

capacity for the early stage of AD progression. 
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4.2.1   Performance Evaluation on AD Early Detection  

Within each dataset, the testing performance (ACC and AUC) of AD prediction for 

MCIc was conducted at 24-, 18-, 12-, and 6-month before the diagnostic time point. As shown 

in Table 11 and Fig. 11, the model was refined from 0.6563 ACC and 0.7026 AUC at 12 

months to 0.6779 ACC and 0.7326 AUC at 6 months. Attn_ResNet + LSTeM outperformed 

ResNet50+LSTM and ResNet50+LSTeM, with the highest ACC and AUC of 0.9302 and 

0.9913 at 6 months, verifying its better predictive performance. 

 

Figure 11. ACC and AUC for MCl→AD Subjects at the 24th Month  

 

Figure 12. ACC and AUC for MCl→AD Subjects at the 36th Month  

This comparison also examined models at 18, 12 and 6 months before AD diagnosis in 

MCI-C subjects who converted within 36 months (Table 12, Fig. 12). ResNet50+LSTM was 

0.7407/0.8083(ACC/AUC) and Attn_ResNet+LSTM was 0.7594/0.8173. ResNet50+LSTeM 

had moderate performance but Attn_ResNet+LSTeM had the best result - 0.9127 ACC and 

0.9436 AUC at 6 months. For 48-month converters, the performance of ResNet50+LSTM 
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improved to 0.6430/0.6841, while that of Attn_ResNet+LSTM increased to 0.6588/0.6892, 

further demonstrating the superiority of attention-enhanced models for early AD prediction.  

 

Figure 13. ACC and AUC for MCl→AD Subjects at the 48th month after Baseline 

Scan 

 

Figure 14. F1, Precision and Recall for MCl→AD Subjects at the 24th Month after 

Baseline Scan 

The ResNet50+LSTeM model performed well, and the ACC/AUC increased from 

0.7396/0.7788 (24-month) to 0.7930/0.8563 (6-month). The Attn_ResNet+LSTeM performed 

better than it and achieved 0.9051 ACC and 0.9119 AUC at 6 months. These findings 

demonstrate the benefit of the attention mechanism combined with spatial-temporal 

architectures for better prediction of early AD and future clinical applications. Performance 

(Tables 14–16, Figs. 14–16) provides additional suport for the utility of the model. Both 

reached their highest values 6 months in for the 24-month dataset (0.9801 for F1, 0.9736 for 

precision, and 0.985 for recall, confirming its high predictive capacity). 
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The proposed model is highly competitive on all the datasets which validated the utility 

of the attentions. At 18 months, it reached the values of 0.9004 (F1), 0.9077 (precision) and 

0.9112 (recall), increasing to 0.9101, 0.9377and 0.942 at 12 months.  

 

Figure 15. F1, Precision and Recall for MCl →36th month 

 

Figure 16. F1, Precision and Recall for MCl→48th Month 

 

Figure 17. Training vs Testing Accuracy 

4.3   Training and Validation Loss of the Proposed Model 

The Attention-Enhanced CNN+LSTM model achieved significant learning gains after 

25 epochs (Figs. 17 & 18), the training accuracy is increased from 5.47% to 93.97% and the 



                                                                                                                                                                                                                            Rajeswari S., Swathi K. 

Journal of Innovative Image Processing, June 2025, Volume 7, Issue 2  471 

 

testing accuracy is increased from 29.47% to 96.20%. Losses were drastically reduced 

indicating that the model is able to predict effectively. In comparison (Fig. 19), the model 

achieved higher scores than five other state-of-the-art AD prediction methods: accuracy of 

0.9302, AUC of 0.9913, precision of 0.9736, recall of 0.985, and F1 score of 0.9801, 

demonstrating its outstanding prediction ability. 

 

Figure 18. Training vs Testing Loss 

 

Figure 19. State-of-the-Art Comparison 

 Conclusion and Future Work 

In this research, an innovative "Attention Enhanced CNN+LSTM" structure was 

introduced for the early detection of Alzheimer's disease (AD) based on longitudinal MRI and 

PET images. The two-pipeline model combines features with deep learning to represent spatio-

temporal brain patterns and reduces the deficiencies of static image-based methods. Through 

integration of spatial MRI features with metabolic information derived from PET, the model 

yields additional insight into the evolution of the disease. The results showed high accuracy 

and AUC for the predictionof AD in the months prior to clinical diagnosis. Training LSTMs 
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with attention mechanisms developed the ability to interpret complex medical imaging data 

beyond what could be achieved using CNNs alone. 
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