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Abstract   

Diagnosis of banana plant disease is a crucial aspect of sustaining the harvest of crops 

and their quality. Visual inspection of certain diseases like Black Sigatoka, Panama disease, 

and aphids is not easy and can lead to misjudgments. Generally, traditional deep learning 

approaches have been previously used but they have not performed well in addressing issues 

of class imbalance, sensitive disease differentiation and noisy images obtained in the field. 

Furthermore, most models are based on a collection of predetermined preprocessing methods 

and single-path networks that limit their ability to generalize to a wide variety of environments. 

Current methods of deep learning tend to achieve reasonable overall performance but fail to 

perform well on key performance indicators such as recall and F1-score when considering 

underrepresented and overlapping classes, such as Yellow and Black Sigatoka. Such constraints 

impede efficient field implementation, as diseases of minority classes are often falsely 

classified. To overcome these deficiencies, we develop a novel Duel-Path Attention Fusion 

Network (DPAFNet) that is trained utilizing adaptive quantum monarch butterfly optimization 

(AQMBO). The concept behind the proposed model is to feed MaxViT and HorNet-S two 

feature extractors to deliver global contextual details and minute-scale textural features. The 

traditional filters which do a reasonable job in handling dynamic noise and contrast are replaced 

by a learnable preprocessing unit. The cross-layer fusion attention encourages interclass 

discriminative learning of diseased plants.   The suggested model has been trained and tested 

on an open-source dataset of Mendeley banana disease, which includes 5,170 images in 7 

disease categories and 1 control condition. The accuracy, F1-score and MCC of 98.6% and 0.93 

and 0.87 respectively (achieved experimentally) demonstrate the superiority of DPAFNet over 

baseline models such as EfficientNetB0 (accuracy 95.0%), DenseNet121 and ResNet50 

(accuracy 93.50% and 92.0% respectively). As can be seen, the model had a 0.26-0.48 increase 

in F1-score in the challenging Panama disease category. These results prove that the proposed 

architecture can be successfully used to achieve high-accuracy disease classification in smart 

agriculture that is robust and prepared for field implementation. 

Keywords: Dual-Path Attention Fusion Network (DPAFNet), Adaptive Quantum Monarch 

Butterfly Optimization (AQMBO), MaxViT; HorNet-S, Cross-Layer Attention Fusion 

(CLAF), Banana Leaf Disease Classification. 
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 Introduction 

Banana (Musa spp.) is one of the most widely consumed fruits across the globe, and it 

is a highly significant food security and economic livelihood crop in the tropics. It has 

application not only in the food industry but also in the textile, pharmaceutical and feed 

industries. However, banana production is plagued by many pests and diseases. Black Sigatoka 

and Panama Disease candrastically reduce yield and quality [1]. Hence, it is important that 

these conditions are identified at an early stage and with preciseness so that the transmission of 

these diseases can be prevented, and plans for controlling them without harming the 

environment need to be put into effect. However, traditional manual diagnostic methods are 

error-prone, controversial regarding competence, and inadequate for large-scale monitoring [2]. 

The issues faced by field-based diagnosis such as heterogeneous imaging conditions, 

overlapping symptoms among diseases, and class imbalance in the data are challenging. 

Diseases like Yellow and Black Sigatoka exhibit nearly identical lesion patterns that make 

visual distinction more complex. Moreover, a number of disease groups do not have sufficient 

labeled data resulting in biased model training and poor generalization. Histogram equalization 

is an older preprocessing approach that is not suitable for a wide variety of field conditions [3]. 

Furthermore, the application of deep learning models on edge devices like smartphones or 

drones is not viable in real-time due to heavy computational requirements [4-5]. 

CNNs have been implemented in various automated disease detection procedures and 

have outperformed other approaches on structured image-based tasks [6]. Transfer and 

multiscale feature methods have enhanced models like VGG16 and ResNet [7-8]. However, 

they are limited by being based on local receptive fields to identify distributed disease features. 

Mobile Lightweight CNNs can be applied in mobile systems at the expense of classification 

accuracy. These limitations have resulted in a move toward stronger structures such as 

attention-based Transformers that can handle both local and global patterns. 

Transformers such as Swin Transformer [9] and Vision Transformer (ViT) [10] 

function effectively to capture the long-range correlation between the appearance features of 

an observed disease. Swin's self-attention and ConvNeXt's convolutional precision provide 

better performance in disease detection through window and convolutional strategies 

respectively. Other attention-based models are not adaptively processed, lack multi-level 

feature integration, and do not tune their hyperparameters, which limits their real-world 

applicability in unstructured agriculture. All these limitations highlight the need for a self-

adapting multi-path model that can react to varying image properties and class distribution. 

The research work presented in this paper suggests DPAFNet, which is a Dual-Path 

Attention Fusion Network designed specifically to be optimal for banana disease classification. 

It begins with a CNN based trainable preprocessing module that adjusts dynamically for 

contrast and noise. It consists of two deep branches incorporated in parallel: MaxViT to learn 

global-local features and HorNet-S to understand fine texture processes.  MaxViT will be 

introduced as a hybrid CNN-Transformer backbone that is aimed to learn global semantic 

patterns and long-range relations, and HorNet-S as a lightweight convolutional net dedicated 

to extracting fine-grained local textures. These explanations will increase readers' 

understanding of the reasons why both are combined in the dual-path architecture. In addition 

to augmenting classification accuracy, the new architecture improves interpretability with 

attention-guided learning. The preprocessing process highlights lesion contours and attenuates 

background interference, and the Cross-Layer Attention Fusion module emphasizes spatial 
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patterns and channel patterns most associated with disease. These processes enable the 

predictions of the model to be followed back to observable leaf symptoms, rendering the 

decision-making process both transparent and actionable for farmers. 

Their features are fused via a Cross-Layer Attention Fusion (CLAF) based on attention-

based residual fusion. An Adaptive Quantum Monarch Butterfly Optimization (AQMBO) 

algorithm is also added to the proposed model for adaptive fine-tuning of learning rates and 

dropout rates through hybrid global-local search. Experimentation on a banana disease dataset 

supported the proposed DPAFNet in improving accuracy and generalizability compared to 

other methods. 

The major contributions of this research work are as follows 

1. Proposed a new multi-path classification model (DPAFNet) by parallelly 

combining MaxViT and HorNet-S to integrate global contextual patterns and 

local textural details for better disease classification. 

2. Introduced a learnable preprocessing module that substitutes conventional 

filters and allows dynamic improvement of leaf images under different lighting 

and noise conditions. 

3. Integration of a Cross-Layer Attention Fusion (CLAF) approach to efficiently 

combine dual-path features through channel and spatial attention, enhancing 

discrimination among similar disease symptoms. 

4. Development of the Adaptive Quantum Monarch Butterfly Optimization 

(AQMBO) algorithm for self-adaptive hyperparameter adjustment, facilitating 

rapid convergence and better performance. 

5. Large-scale validation on a publicly released Mendeley banana leaf disease 

dataset, with higher metrics like an accuracy of 98.6%, an F1-score of 0.93, and 

an MCC of 0.87. The performance of the proposed model surpasses that of 

EfficientNetB0, ResNet50, DenseNet121, VGG16 and ConvNextTiny models. 

The rest of the discussions in the paper are discussed following the sequence. Section 2 

describes the literature review of the latest research articles. Section 3 gives the mathematical 

model of the proposed disease detection model. Section 4 gives the results and discussion and 

section 5 concludes the research study. 

 Related Works 

Recent advancements in plant disease detection have utilized deep learning models for 

improved accuracy and efficiency. Numerous studies have explored convolutional 

architectures, optimization techniques, and hybrid feature extraction strategies across various 

crops. This section reviews key contributions, methodologies, and limitations that motivate the 

development of the proposed DPAFNet model. The comparative analysis of deep learning 

techniques for the detection of plant diseases detection in [11] incorporates eight advanced 

models like Xception, ResNet15v2, DenseNet201, and variants of EfficientNet (B0 to B4). 

Experimentations on benchmark datasets demonstrate that EfficientNetB3 achieves the best 

performance with higher accuracy and minimal loss compared to other models. Models like 

EfficientNetB0 and B2 also performed well but lagged slightly in terms of loss values. While 
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the experimental results validate the potential of deep learning in plant pathology, the study is 

limited by dataset class imbalance and a narrow crop focus. 

A comprehensive banana disease identification model is presented in [12] by integrating 

a dual-method approach involving image denoising and advanced feature extraction. The 

methodology starts with the K-scale VisuShrink Algorithm (KVA), which enhances banana 

leaf images by applying adaptive wavelet-based thresholding to reduce noise while preserving 

edge details. Following preprocessing, the paper introduces GR-ARNet, a deep learning model 

that utilizes Ghost Modules, ResNeSt Modules, and a hybrid RReLU-Swish activation strategy 

atop a ResNet-50 backbone. This architecture is developed to handle subtle inter-class 

variations and extract fine-grained features. The model achieved better classification accuracy 

on a diverse dataset comprising diseases like Sigatoka, Cordana, and Pestalotiopsis. The 

presented model limitations include a focus on only three disease classes and potential 

computational overhead during real-time deployment.  

Convolutional neural network (CNN) based early detection of banana diseases is 

reported in [13] specifically Fusarium Wilt and Black Sigatoka. The methodology centers 

around a four-layer CNN implemented using TensorFlow, designed to work on mobile 

platforms through TensorFlow Lite. The experimental results showed the model achieving best-

case accuracy with corresponding improvements in precision and recall across disease 

categories. However, one of the significant limitations is its reduced inference performance 

when deploying the model using TensorFlow Lite, which affected detection precision in low-

resource environments. A similar CNN based model presented in [14] is designed to detect 

three banana leaf diseases Pestalotiopsis, Sigatoka, and Cordana. The model incorporates a 

lightweight architecture built on the Fire module concept, optimized using Bayesian 

Optimization to fine-tune hyperparameters such as learning rate and regularization. Data 

augmentation techniques and transfer learning were applied to enhance model generalization 

on the BananaLSD dataset. Experimental evaluations demonstrate that BananaSqueezeNet 

achieves superior classification accuracy outperforming models like ResNet-101 and 

Inception-V3 while requiring significantly fewer computational resources. However, the model 

is limited by a relatively small dataset size and narrow disease diversity. 

Another CNN based solution is reported in [15] for early detection of plant diseases 

using leaf images. The methodology involves a sequential CNN architecture composed of 

convolutional, pooling, and fully connected layers, preceded by robust data preprocessing steps 

such as normalization, standardization, and image augmentation. The model was trained on the 

Plant Village dataset and achieved an average classification accuracy. Experimentally, the 

model outperformed the traditional K-Nearest Neighbors (KNN) classifier, confirming the 

advantages of deep learning in handling complex visual patterns. However, its performance 

indicates its relatively low validation accuracy and introduces limitations in generalization. 

The plant disease diagnostic model presented in [16] introduces a large-scale plant-

specific pretraining methodology to enhance deep learning performance in plant disease 

recognition. Unlike conventional approaches that rely on general-purpose models trained on 

ImageNet, this proposed model constructs a domain-specific pretraining image set from 

different agricultural environments. The presented pre-trained CNN and Transformer-based 

models are trained on this dataset to improve classification, detection, and segmentation of 

plant diseases. Experimental evaluations demonstrate significant improvements in model 

accuracy and convergence speed, especially when combined with ImageNet weights. However, 
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the main limitation lies in the computational cost of training such large models and the lack of 

mobile-optimized variants. 

The Deep Spectral Generative Adversarial Neural Network (DSGAN2) presented in 

[17] detects diseases in plant leaves through spectral data analysis. The presented model 

incorporates an Improved Threshold Neural Network (ITNN) to enhance image clarity and 

perform segmentation through Segment Multiscale Neural Slicing (SMNS) to segment disease-

affected regions. Further feature selection is done using Spectral Scaled Absolute Feature 

Selection (S2AFS) in combination with Social Spider Optimization with Closest Weight (S2O-

FCW) to refine the most informative features. The classification is executed using a SoftMax 

activation-based DSGAN2 model trained to distinguish healthy from diseased samples. 

Experimental analysis, performed on a benchmark dataset demonstrates the model performance 

with better accuracy over existing models like CNN, AlexNet, and APS-DCCNN.  

The feature selection framework reported in [18] incorporates an enhanced Salp Swarm 

Algorithm for plant disease detection. The presented methodology extracts handcrafted features 

from plant leaf images. SSAFS is used to identify the most informative subset of these features 

by simulating the foraging behavior of salps with a chaotic initialization strategy and Sine 

Cosine Algorithm-enhanced population evolution. The selected features are fed into a neural 

network classifier, and performance is validated across multiple UCI and PlantVillage datasets. 

Experimental results indicate that SSAFS outperforms standard optimization methods like 

PSO, ABC, and IBGWO in classification accuracy, feature reduction, and convergence speed. 

However, the model is limited by its reliance on handcrafted features and a lack of evaluation 

in real outdoor agricultural environments. 

The ensemble deep learning framework presented in [19] is for the accurate recognition 

of cotton leaf diseases. The model combines a standard CNN with a fine-tuned VGG16 

network, using transfer learning to enhance generalization from pre-trained ImageNet weights. 

The methodology involves preprocessing through data augmentation, followed by training 

individual networks that are later ensembled for improved classification robustness. The dataset 

includes six cotton disease categories and was built from both field-captured and PlantVillage 

images. Experimental analysis demonstrates superior accuracy over CNN and fine-tuned VGG 

models. However, limitations include class imbalance in the dataset and potential overfitting 

risks, particularly with rare diseases like Areolate and Myrothecium.  

A similar ensemble-based deep learning approach is presented in [20] to detect plant 

leaf diseases incorporating DenseNet169, InceptionV3, and Xception models. The 

methodology focuses on combining the confidence scores from these pretrained CNNs through 

two custom-designed non-linear equations that emulate exponential and sigmoid behaviors to 

enhance decision reliability. This ensemble mechanism improves classification accuracy by 

minimizing deviation across confidence scores, effectively mitigating model bias. The 

experimental evaluation demonstrates the model peak accuracy over traditional ensemble 

techniques like fuzzy rank, soft voting, and weighted average. However, the model’s high 

computational demands and limited interpretability of the fusion mechanism pose challenges 

for real-time deployment.  

The hybrid approach presented in [21] for plant leaf disease classification combines 

multiple image processing and machine learning techniques. The presented methodology 

begins with resizing and contrast enhancement of tomato leaf images, followed by K-means 

clustering for segmentation and contour tracing for structural boundary detection. To extract 

meaningful features, it employs a combination of Discrete Wavelet Transform (DWT), 
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Principal Component Analysis (PCA), and Gray-Level Co-occurrence Matrix (GLCM). These 

features are then classified using Support Vector Machine (SVM), K-Nearest Neighbor (KNN), 

and Convolutional Neural Network (CNN) classifiers. The results exhibit the CNN highest 

accuracy performance over other models. However, the model's limitation is present in its focus 

on handcrafted feature techniques. Also, its dependence on structured datasets and evaluation 

limited to leaf samples highlights the need for broader validation on diverse plant species and 

real-world images. 

The deep learning model presented in [22] incorporates ResNet-50 and Inception-v3 as 

a hybrid model for early plant disease detection. The methodology includes structured 

preprocessing, data augmentation, and normalization to ensure robustness under real-world 

agricultural conditions. The hybrid model utilizes ResNet-50’s skip connections and Inception-

v3’s multi-scale feature learning to provide better feature extraction. Experimental analysis 

demonstrated the model better classification performance with better accuracy, and F1-score. 

However, the results exhibit overfitting in validation trends for small epoch range which limits 

adaptability in real-time deployment. 

The Hybrid Learning Model (HLM) presented in [23] combines Deep Reinforcement 

Learning (DRL) with Transfer Learning (TL) for early detection of plant diseases. The 

approach incorporates an advanced image preprocessing procedure. Adaptive Median Filter 

(AMF) and Color Histogram Techniques (CHT) are used to improve visual clarity and reduce 

noise. Further feature extraction is performed using the MobileNetV2 architecture, followed by 

fine-tuning done through reinforcement learning to classify diseases based on evolving decision 

patterns. The model was trained and tested on a benchmark dataset and the experimental results 

showed its outstanding performance over VGG19 and DoubleGAN models. However, the 

presented model faces challenges in computational efficiency due to DRL’s iterative training 

nature and lacks testing under diverse real-world agricultural conditions.  

A visual information-guided multi-modal anomaly detection framework is presented in 

[24] for plant disease identification using vision-language models (VLMs). The model 

integrates visual guidance to optimize prompt tuning, enhancing anomaly detection by aligning 

visual features across known and unknown categories. Experimental evaluations on the 

PlantVillage dataset showed a significant improvement achieving high AUROC scores and 

reduced FPR outperforming baseline fine-tuned models. However, the presented approach 

remains limited by computational overhead and dependence on the quality of vision-language 

pretraining. 

Research Gap: The literature review reveals several recurring limitations that justify 

the development of a novel, more robust plant disease classification framework. Many existing 

studies rely heavily on either shallow CNN architectures or traditional handcrafted feature 

extraction methods, limiting their ability to capture complex spatial hierarchies and inter-class 

visual similarities. Although a few models are lightweight and efficient, they often sacrifice 

fine-grained classification accuracy, especially in underrepresented or visually overlapping 

classes. Several approaches focus on limited disease categories or single-crop datasets, 

reducing generalizability to broader agricultural settings. Moreover, although some papers 

incorporate advanced optimizers or pretraining strategies, there is often a lack of effective 

feature fusion mechanisms to fully exploit multi-scale contextual information. Computational 

inefficiency, absence of real-time adaptability, and minimal attention to class imbalance further 

constrain performance in real-world deployments. Few models address integrated 

preprocessing, attention-guided learning, and hyperparameter tuning as a unified pipeline. 
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These gaps highlight the necessity for a more comprehensive solution that incorporates 

adaptive preprocessing, dual-path feature learning, attention-based fusion, and optimizer-

driven parameter tuning. The proposed DPAFNet aims to overcome these limitations by 

providing a scalable, accurate, and generalizable deep learning architecture for complex, multi-

class plant disease detection. 

 Proposed Work 

The work introduces DPAFNet (Dual-Path Attention Fusion Network), a novel deep 

network for accurate and efficient banana plant disease classification. By merging MaxViT and 

HorNet-S, the architecture efficiently extracts both global and local feature representations. 

Using its hierarchical convolutions, HorNet-S develops local contextual awareness, whereas 

MaxViT offers multiscale attention mechanisms for learning semantic structures at higher 

levels. To achieve the best possible channel and spatial information fusion throughout the 

network, these two-stream outputs are then combined with a Cross-Layer Attention Fusion 

(CLAF) module. To manage an uneven distribution of data and provide improved 

generalization, a class-balanced focal loss function is employed. In addition, an adaptive 

quantum monarch butterfly optimization (AQMBO) algorithm is used to adapt 

hyperparameters in order to improve convergence through dynamic learning rate adjustment 

and weight regularization.  

 

Figure 1. Proposed Model Overview 
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A learnable preprocessing step that refines raw input images is the first step in the 

process, as shown in Figure 1. The next step involves using the MaxViT and HorNet-S branches 

to extract features in parallel. After being combined using CLAF, these characteristics are sent 

to a classification head, which creates the final disease category. Because of this well-integrated 

pipeline, DPAFNet is a very dependable option for real-time plant disease diagnostics, 

improving both precision and recall. 

3.1 Input Acquisition 

Banana leaf photos are the first step in the diagnostic pipeline. These images are taken 

in a variety of environmental settings with handheld cameras, drones, or mobile devices. Since 

these photos frequently have changes in lighting, shadows, background noise, and clutter, the 

input acquisition step is crucial to guaranteeing the quality and interpretability of feature 

extraction procedures that follow. Let's assume that the raw image that was taken is represented 

mathematically as 

ℐ𝓇 ∈ 𝑅ℎ×𝑤×𝑐     (1) 

where ℐ𝓇  indicates the raw image matrix, h indicates the height (in pixels), w indicates 

the width (in pixels), c indicates the number of channels (typically c = 3 for RGB color space). 

Due to outdoor conditions, the raw image is often affected by random fluctuations in 

illumination and sensor noise. To model the corrupted observation, we assume the presence of 

additive noise in the image acquisition process. The observed image ℐℴ is mathematically 

formulated as 

ℐℴ(𝑥, 𝑦) = ℐ𝓇(𝑥, 𝑦) + ϵ(𝑥, 𝑦)   (2) 

Where ℐℴ(𝑥, 𝑦) indicates the observed pixel intensity at position (𝑥, 𝑦), ϵ(𝑥, 𝑦) indicates 

the noise term representing distortion or corruption at pixel (x,y). The noise component 

ϵ(𝑥, 𝑦) is assumed to follow a Gaussian distribution, which is formulated as 

ϵ(𝑥, 𝑦) ∼ 𝒩(0, σ2)    (3) 

where 𝒩(0, σ2) indicates the normal distribution with mean zero and variance σ2, σ2 

indicates the noise variance estimated from low-frequency background regions of the image. 

In practice, pixel values in ℐ𝓇  are restricted to the digital range [0,255] for 8-bit color channels. 

However, for compatibility with deep learning models, the observed image is rescaled to 

normalized floating-point values in the interval [0,1], using the transformation which is 

expressed as follows 

ℐ𝓃(𝑥, 𝑦, 𝑘) =
ℐℴ(𝑥,𝑦,𝑘)

255
    (4) 

where  ℐ𝓃(𝑥, 𝑦, 𝑘) indicates the normalized intensity at pixel location (𝑥, 𝑦)  and 

channel 𝑘, 𝑘 ∈ {1, 2, 3}  denotes the RGB channel index. Additionally, to ensure consistency 

across samples and compatibility with the model input dimensions, the image is resized to a 

fixed shape using bilinear interpolation which is mathematically expressed as 

ℐ𝓈 = Resize(ℐ𝓃, ℎ𝑠 , 𝑤𝑠)   (5) 
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where ℐ𝓈: size-adjusted image, ℎ𝑠 , 𝑤𝑠 indicates the standardized height and width (e.g., 

224 × 224 pixels). The final step in acquisition involves preparing the image for batch-based 

processing. A batch of N such images is stacked into a 4D tensor which is mathematically 

formulated as 

ℬ = {ℐ𝓈
(1)

, ℐ𝓈
(2)

, … , ℐ𝓈
(𝒩)

} ∈ 𝑅𝑁×ℎ𝑠×𝑤𝑠×𝑐 (6) 

where ℬ indicates the input batch tensor, ℐ𝓈
(𝒾)

 indicates the 𝑖𝑡ℎ image in the batch, * 𝑁: 

number of samples per batch. This batch ℬ is then passed to the next stage of the model for 

preprocessing and feature extraction. The care taken in this stage ensures that noise is modeled 

correctly, dynamic range is normalized, and spatial resolution is consistent all of which are 

essential. 

3.2 Learnable Preprocessing Module 

After acquiring and normalizing the input batch ℬ ∈ 𝑅𝑁×ℎ𝑠×𝑤𝑠×𝑐, the images are passed 

through a learnable preprocessing module. Unlike conventional methods that apply static 

filters, this module is constructed using a shallow convolutional neural network designed to 

perform dynamic noise suppression and contrast enhancement, trained end-to-end with the rest 

of the network. The first stage of this module is a convolutional transformation which is 

mathematically expressed as 

ℱ1 = σ1(BN1(𝑊1 ∗ ℬ + 𝑏1))   (7) 

Where ℱ1 ∈ 𝑅𝑁×ℎ𝑠×𝑤𝑠×𝑓𝟙 indicates the output feature map of the first layer, 𝑊1 

indicates the convolution kernel of shape 𝑘1 × 𝑘1 × 𝑐 × 𝑓1, 𝑏1 indicates the bias vector for the 

first layer, ‘*’ indicates the 2D convolution, BN1(⋅) indicates the batch normalization, σ1(⋅)  

indicates the activation function (e.g., ReLU or GELU), 𝑓1 indicates the number of filters in 

layer 1, 𝑘1: kernel size. The convolution step detects local patterns while also allowing for noise 

smoothing through learnable kernels. The batch normalization ensures stable gradient flow and 

compensates for internal covariate shift, while the activation introduces non-linearity to handle 

varying illumination. Next, a second layer deepens the transformation which is mathematically 

expressed as 

ℱ2 = σ2(BN2(𝑊2 ∗ ℱ1 + 𝑏2))  (8) 

where ℱ2 ∈ 𝑅𝑁×ℎ𝑠×𝑤𝑠×𝑓𝟚 indicates the refined feature map, 𝑊2 indicates the kernel 

matrix of shape 𝑘2 × 𝑘2 × 𝑓1 × 𝑓2, 𝑏2 indicates the bias term of second layer, 𝑓2 indicates the 

number of output channels, σ2(⋅): activation function. This layer acts as an adaptive contrast 

enhancer, where the feature filters are trained to emphasize boundaries, lesions, and gradient 

regions that signify disease symptoms, even in the presence of varying image quality. A final 

convolutional layer is applied to transform the enhanced feature representation back to image-

like structure which is mathematically formulated as 

ℐ𝓅 = σ3(𝑊3 ∗ ℱ2 + 𝑏3)   (9) 

where ℐ𝓅 ∈ 𝑅𝑁×ℎ𝑠×𝑤𝑠×𝑐: preprocessed image batch (same shape as input), 𝑊3 indicates 

the kernel for the final transformation with shape 𝑘2 × 𝑘2 × 𝑓1 × 𝑓2, 𝑏2 indicates the bias vector 

for the final layer, σ3(⋅)  indicates the activation function. The output ℐ𝓅 preserves the original 
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image dimensions and is optimized to suppress noise, highlight discriminative regions, and 

normalize brightness and contrast. This learnable approach adapts to various acquisition 

environments by updating weights {𝑊1, 𝑊2, 𝑊3} and biases {𝑏1, 𝑏2, 𝑏3} during 

backpropagation. To summarize the full pipeline of the preprocessing module, it is defined as 

a composite function which is expressed as 

ℐ𝓅 = 𝒢(ℬ; 𝛩𝑝𝑟𝑒)    (10) 

where 𝒢(⋅): stacked operations, 𝛩𝑝𝑟𝑒 = {𝑊1, 𝑊2, 𝑊3, 𝑏1, 𝑏2, 𝑏3} indicates the learnable 

parameters of the preprocessing module. This preprocessed batch ℐ𝓅 becomes the input to the 

subsequent dual-path feature extraction stage, where both global and local disease traits are 

analyzed. The adaptability of the preprocessing ensures that feature extraction operates on 

images with enhanced quality, regardless of the initial acquisition conditions. 

3.3 Dual-Path Feature Extraction 

Following preprocessing, the enhanced image tensor ℐ𝓅 ∈ 𝑅𝑁×ℎ𝑠×𝑤𝑠×𝑐 is forwarded 

into a dual-path architecture designed to extract both global contextual features and local 

textural information. This two-stream design enhances the discriminative capability of the 

model across diseases with varying symptom patterns. 

3.3.1 MaxViT-Based Global Feature Extraction 

This stream captures long-range spatial dependencies and coarse-scale semantic 

structures using a hybrid CNN-transformer model. Initially, the preprocessed image is divided 

into n non-overlapping patches which are mathematically expressed as 

𝑃 = Split(ℐ𝓅),  𝑃 ∈ 𝑅𝑁×𝑛×𝑝𝟚⋅𝑐  (11) 

where 𝑃 patch matrix, p patch dimension, 𝑛 =
ℎ𝑠⋅𝑤𝑠

𝑝2   total number of patches. Each patch 

is passed through a linear projection to obtain a low-dimensional embedding which is 

formulated as 

𝐸 = 𝑃 ⋅ 𝑊𝑒 + 𝑏𝑒 ,  𝐸 ∈ 𝑅𝑁×𝑛×𝑑  (12) 

where E embedded patch tokens, 𝑊𝑒 ∈ 𝑅(𝑝𝟚⋅𝑐)×𝑑 learnable weight matrix, 𝑏𝑒 ∈ 𝑅𝑑 bias 

vector, 𝑑 embedding dimension. The embedded sequence 𝐸 is then input to a MaxViT block 

consisting of local convolutional encoding and two types of attention: block attention 𝒜𝒷 and 

grid attention 𝒜ℊ  which is formulated as 

𝐹𝐴 = 𝒜ℊ (𝒜𝒷(𝒞(𝐸)))   (13) 

where 𝐹𝐴 ∈ 𝑅𝑁×𝑛×𝑑 indicates the output from MaxViT, 𝒞(⋅) indicates the depthwise 

convolutional transformation, 𝒜𝒷 indicates the attention within local image blocks, 𝒜ℊ 

indicates the attention across spatial grids. Each attention layer computes self-attention which 

is formulated as 
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Attn(𝑄, 𝐾, 𝑉) = Softmax (
𝑄𝐾𝑇

√𝑑𝑘
+ 𝐵) 𝑉  (14) 

where 𝑄 = 𝐸𝑊Q, 𝐾 = 𝐸𝑊k, 𝑉 = 𝐸𝑊V  indicates the query, key, and value matrices, 

𝑊𝑄 , 𝑊𝐾, 𝑊𝑉 ∈ 𝑅𝑑×𝑑 indicates the trainable projections, 𝑑𝑘 indicates the dimensionality of 

keys, B indicates the relative position bias. MaxViT’s interleaved attention mechanism enables 

the model to integrate fine and coarse global information hierarchically. Figure 2 depicts an 

illustration of global feature extraction using MaxViT. 

 

Figure 2. MaxViT-Based Global Feature Extraction 

3.3.2 HorNet-S Based Local Feature Extraction 

HorNet-S was selected over alternative CNN backbones due to its large-kernel 

convolutional design, which excels at modeling subtle textural variations in leaf surfaces. This 

property is especially important for visually similar diseases such as Yellow and Black 

Sigatoka. Additionally, HorNet-S maintains a lightweight structure, ensuring computational 

efficiency while preserving high discriminative power, making it an ideal complement to 

MaxViT’s global feature extraction. 

This stream is engineered to extract texture-level details, which are especially critical 

for fine-grained disease detection. The image ℐ𝓅 is processed through stacked large-kernel 

convolutions, formulated as 

𝐹𝐵
(1)

= ϕ (BN3(𝑊4 ∗ ℐ𝓅 + 𝑏4))     (15) 

𝐹𝐵
(𝑙)

= ϕ (BN𝑙+2 (𝑊𝑙+3 ∗ 𝐹𝐵
(𝑙−1)

+ 𝑏𝑙+3))  for 𝑙 = 2, … , 𝐿 (16) 

 

where 𝐹𝐵
(𝑙)

∈ 𝑅𝑁×ℎ𝑠×𝑤𝑠×𝑓𝑙  indicates the output of HorNet-S at layer 𝑙, 𝑊𝑙+3 ∈

𝑅𝑘×𝑘×𝑓𝑙−𝟙×𝑓𝑙 indicates the convolution kernel with a large kernel size 𝑘, 𝑏𝑙+3 indicates the bias 
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term at layer 𝑙, ϕ(⋅) indicates the GELU activation, 𝐿 indicates the number of HorNet layers, 

𝑓𝑙 indicates the number of filters at layer 𝑙. The final output from this stream is formulated as 

𝐹𝐵 = 𝐹𝐵
(𝐿)

∈ 𝑅𝑁×ℎ𝑠×𝑤𝑠×𝑓𝐿   (17) 

To align dimensionality with the MaxViT output 𝐹𝐴, a global average pooling (GAP) is 

applied which is mathematically expressed as 

𝐹𝐵
′ = GAP(𝐹𝐵),  𝐹𝐵

′ ∈ 𝑅𝑁×𝟙×𝟙×𝑓𝐿  (18) 

It is then reshaped and linearly projected. Mathematically it is expressed as 

𝐹𝐵
′′ = 𝐹𝐵

′ ⋅ 𝑊𝑡 + 𝑏𝑡,  𝐹𝐵
′′ ∈ 𝑅𝑁×𝑛×𝑑  (19) 

where 𝑊𝑡 ∈ 𝑅𝑓𝐿×𝑑 indicates the transformation matrix, 𝑏𝑡 ∈ 𝑅𝑑 indicates the bias 

vector. This reshaping step ensures 𝐹𝐵
′′ matches the shape of 𝐹𝐴 for downstream fusion. At the 

end of this stage, the model produces two parallel feature representations. 𝐹𝐴 ∈ 𝑅𝑁×𝑛×𝑑 

indicates the global context features from MaxViT, 𝐹𝐵
′′ ∈ 𝑅𝑁×𝑛×𝑑 indicates the fine-grained 

texture features from HorNet-S. These are passed to the Cross-Layer Attention Fusion module, 

where they are merged to form a unified representation optimized for robust classification 

across banana disease types. Figure 3 depicts an illustration of local feature extraction using 

HorNet-S. 

 

Figure 3. HorNet-S Based Local Feature Extraction 

Unlike a single-path encoder–decoder that sequentially processes feature, the proposed 

dual-path architecture enriches feature representations by combining MaxViT’s global context 

learning with HorNet-S’s fine-grained texture extraction. This complementary fusion ensures 

that both long-range dependencies and subtle lesion patterns are preserved, thereby enhancing 

the discriminative power for visually overlapping banana disease categories. The dual-path 

attention fusion architecture improves feature richness because it extracts and merges 

complementary information streams that a single-path encoder–decoder cannot capture. In the 

proposed DPAFNet, one path uses MaxViT to capture long-range spatial dependencies and 
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coarse semantic structures, while the other path uses HorNet-S to capture fine-grained textural 

details critical for distinguishing visually similar banana diseases. These two parallel feature 

representations are then combined through the Cross-Layer Attention Fusion (CLAF) module, 

which applies both channel and spatial attention before residual merging. This ensures that 

disease-relevant patterns are selectively emphasized, enhancing the discriminative capability 

of the network across diverse and overlapping disease symptoms. 

Compared to a single-path encoder–decoder, which processes features sequentially and 

often misses either global dependencies or local textures, the dual-path design enriches the 

representation space by preserving and fusing both hierarchical context and detailed lesion 

morphology. This leads to superior performance, as reflected in the consistent improvements 

in precision, recall, and class-wise F1 scores reported in the experimental results. 

3.4 Cross-Layer Attention Fusion (CLAF) 

After extracting features from two distinct paths such as global context features 𝐹𝐴 ∈
𝑅𝑁×𝑛×𝑑 from MaxViT and local detail features 𝐹𝐵

′′ ∈ 𝑅𝑁×𝑛×𝑑 from HorNet-S. The next 

objective is to merge these representations in a meaningful and learnable manner. The Cross-

Layer Attention Fusion (CLAF) module is designed to emphasize disease-relevant patterns by 

utilizing channel and spatial attention mechanisms, followed by a residual combination. Both 

streams already yield feature tensors of equal dimensions. For clarity, it is represented as 

𝐹𝐺 = 𝐹𝐴,  𝐹𝐿 = 𝐹𝐵
′′    (20) 

where 𝐹𝐺  indicates the global token matrix from Path A, 𝐹𝐿 indicates the local token 

matrix from Path B, 𝑁 indicates the batch size, n indicates the number of patches, d indicates 

the embedding size. These tensors are the input to parallel attention refinement branches.  

The fusion layer resolves potential feature map conflicts and redundancy between the 

MaxViT and HorNet-S branches through the Cross-Layer Attention Fusion (CLAF) 

mechanism. This module applies channel-wise and spatial attention to selectively reweight 

overlapping activations, ensuring that disease-relevant patterns are emphasized while 

redundant signals are suppressed. The residual combination preserves complementary 

information from both branches, allowing the model to retain diverse contextual and textural 

cues without feature dilution. This learnable fusion strategy effectively integrates global and 

local representations into a unified feature map optimized for classification.  

To extract channel-wise dependencies from global features, channel attention masks are 

mathematically formulated as 

𝑀𝐶 = σ (𝑊2
𝐶 ⋅ δ (𝑊1

𝐶 ⋅ GAP(𝐹𝐺)))                             (21) 

𝐹𝐺
𝐶 = 𝐹𝐺 ⊙ 𝑀𝐶     (22) 

where 𝑀𝐶 ∈ 𝑅𝑁×𝟙×𝑑 indicates the channel attention mask, GAP(⋅) indicates the global 

average pooling over patches, 𝑊1
𝐶 ∈ 𝑅𝑑×𝑑𝑟 , 𝑊2

𝐶 ∈ 𝑅𝑑𝑟×𝑑 are the projection matrices, δ(⋅)  

indicates ReLU activation, σ(⋅) indicates the sigmoid function, ⊙ indicates  element-wise 

multiplication, 𝑑𝑟 indicates the reduction dimension. This highlights key semantic dimensions 

by amplifying relevant channels and suppressing redundant ones. To capture spatially 
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significant regions, attention across patches is computed from local features. Mathematically it 

is expressed as 

𝑀𝑆 = 𝜎(𝐶𝑜𝑛𝑣1×1[𝐴𝑣𝑔𝑃(𝐹𝐿); 𝑀𝑎𝑥𝑃(𝐹𝐿)])  (23) 

𝐹𝐿
𝑆 = 𝐹𝐿 ⊙ 𝑀𝑆     (24) 

where 𝑀𝑆 ∈ 𝑅𝑁×𝑛×𝟙 indicates the spatial attention mask, 𝐴𝑣𝑔𝑃, 𝑀𝑎𝑥𝑃 indicates 

average and max pooling across channels, 𝐶𝑜𝑛𝑣1×1 indicates the pointwise convolution, σ(⋅) 

indicates sigmoid activation. This step localizes important spatial patches, enabling sharper 

boundary and lesion focus. After attention refinement, the outputs 𝐹𝐺
𝐶 and 𝐹𝐿

𝑆 are fused. The 

fusion incorporates a learnable scalar gate λ ∈ [0,1] to balance contributions. Mathematically 

it is expressed as 

𝐹fused = λ ⋅ 𝐹𝐺
𝐶 + (1 − λ) ⋅ 𝐹𝐿

𝑆 + η ⋅ (𝐹𝐺 − 𝐹𝐿) (25) 

where 𝐹fused ∈ 𝑅𝑁×𝑛×𝑑 indicates fused representation, λ indicates trainable attention 

gate, η indicates residual scaling factor. The last term introduces a residual discrepancy 

compensation, encouraging the model to learn the difference between global and local cues. 

The fused tensor is projected to match the classifier’s input requirements. A normalization and 

projection layer are applied which is formulated as follows 

𝐹final = LN(𝐹fused) ⋅ 𝑊𝑓 + 𝑏𝑓    (26) 

where 𝐿𝑁(⋅) indicates layer normalization, 𝑊𝑓 ∈ 𝑅𝑑×𝑑 indicates the final projection 

matrix, 𝑏𝑓 ∈ 𝑅𝑑 indicates the projection bias. 𝐹final ∈ 𝑅𝑁×𝑛×𝑑 is the output passed to 

classification head. The Cross-Layer Attention Fusion module ensures that global semantics 

and local textures are adaptively merged. It learns not only to enhance but also to weigh the 

importance of each feature pathway dynamically, strengthening the classifier's robustness to 

subtle or overlapping disease symptoms. 

 

Figure 4. Cross Layer Attention Fusion 
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3.5 Classification Head 

Once the fused feature representation 𝐹final ∈ 𝑅𝑁×𝑛×𝑑 is obtained from the Cross-Layer 

Attention Fusion (CLAF) module, it is passed into the classification head, which is responsible 

for producing the final disease category prediction for each input image. This stage involves 

token aggregation, fully connected transformation, and SoftMax-based probability estimation. 

To consolidate the patch-wise information into a compact vector per image, a token aggregation 

operation is applied across the patch dimension which is mathematically expressed as 

𝑣𝑖 = Mean(𝐹final

(𝑖)
),  𝑣𝑖 ∈ 𝑅𝑑   (27) 

where 𝐹final

(𝑖)
∈ 𝑅𝑛×𝑑 indicates the feature matrix for the 𝑖-th image, 𝑀𝑒𝑎𝑛(⋅) indicates 

the average across all patches, 𝑣𝑖 indicates the aggregated embedding vector for image 𝑖, 𝑑 

indicates the feature dimension. After processing all N images, the result is a matrix which is 

given as follows 

𝑉 = [𝑣1, 𝑣2, … , 𝑣𝑁]𝑇 ∈ 𝑅𝑁×𝑑    (28) 

This vector 𝑉 summarizes all contextual and spatial features for each input in a single 

descriptor. The aggregated feature vector V is passed through a linear classifier, which maps it 

to a set of class scores as follows 

𝑧𝑗
(𝑖)

= 𝑉(𝑖) ⋅ 𝑤𝑗 + 𝑏𝑗  for 𝑗 = 1,2, … , 𝐶 (29) 

where 𝑧𝑗
(𝑖)

 indicates the score assigned to class j for sample 𝑖, 𝑤𝑗 ∈ 𝑅𝑑: weight vector 

for class 𝑗, 𝑏𝑗 ∈ 𝑅:  bias for class 𝑗,  𝐶:  total number of classes, 𝑉(𝑖) indicates the aggregated 

feature vector for sample 𝑖. Stacking all outputs produces the score matrix which is 

mathematically expressed as 

𝑍 = 𝑉 ⋅ 𝑊𝑐 + 𝐵𝑐 ∈ 𝑅𝑁×𝐶   (30) 

where 𝑊𝑐 ∈ 𝑅𝑑×𝐶 indicates the classification weight matrix, 𝐵𝑐 ∈ 𝑅𝟙×𝐶 indicates the 

bias vector for all classes, 𝑍 indicates the unnormalized logits for the batch. The raw scores in 

𝑍 are converted into class probabilities using the SoftMax function which is mathematically 

expressed as 

𝑦̂𝑗
(𝑖)

=
𝑒

𝑧
𝑗
(𝑖)

∑ 𝑒
𝑧

𝑘
(𝑖)

𝐶
𝑘=1

    (31) 

where 𝑦̂𝑗
(𝑖)

∈ [0,1] is the predicted probability of sample 𝑖 belonging to class 𝑗, 

∑ 𝑦̂𝑗
(𝑖)𝐶

𝑗=1 = 1 ensuring the output forms a valid probability distribution. The resulting matrix 

𝑌̂ ∈ 𝑅𝑁×𝐶 contains the predicted class probabilities for each image in the batch. The predicted 

class label 𝑐̂𝑖 for sample 𝑖 is determined by selecting the class with the highest predicted 

probability. Mathematically it is expressed as 

𝑐̂𝑖 = arg max
𝑗

𝑦̂𝑗
(𝑖)

    (32) 
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where 𝑐̂𝑖 ∈ {1,2, … , 𝐶} is the final class prediction for input 𝑖. This result serves as the 

output of the model and indicates which banana disease (or healthy status) is identified for each 

test image. The output of the classification head is a matrix 𝑌̂ ∈ 𝑅𝑁×𝐶, where each row 

corresponds to the predicted class probability vector for an image. The training objective is to 

minimize a loss function that not only penalizes incorrect predictions but also accounts for class 

imbalance and difficult samples. For this purpose, a Class-Balanced Focal Loss is used, which 

combines two components: class frequency reweighting and focal modulation. Let the ground 

truth label for sample 𝑖 be encoded as follows 

𝑦𝑖 = [𝑦𝑖
(1)

, 𝑦𝑖
(2)

, … , 𝑦𝑖
(𝐶)

] ∈ {0,1}𝐶  (33) 

where 𝑦𝑖
(𝑗)

= 1  if image 𝑖 belongs to class 𝑗, otherwise 0, 𝐶 indicates the total number 

of classes, 𝑁 indicates the number of training samples in a batch. To compute Class Frequency 

and Inverse Weighting, consider the number of samples belonging to class 𝑗 be 𝑓𝑗. The class 

weight α𝑗  is formulated as 

α𝑗 =
1

log(1+𝑓𝑗)
      (34) 

where α𝑗 ∈ 𝑅 indicates the weight assigned to class 𝑗, inversely proportional to its 

frequency, 𝑓𝑗 indicates the total count of class 𝑗 in the dataset. This ensures minority classes 

contribute more to the loss, while frequent classes are down-weighted. To emphasize hard-to-

classify samples and reduce the impact of well-classified ones, a modulating factor is applied 

to each predicted probability which is mathematically expressed as 

𝑚𝑖
(𝑗)

= (1 − 𝑦̂𝑖
(𝑗)

)
𝛾

    (35) 

where 𝑦̂𝑖
(𝑗)

 indicates the predicted probability for class 𝑗 on image 𝑖, 𝑚𝑖
(𝑗)

 indicates the 

modulation weight, γ ∈ 𝑅+ indicates the focusing parameter. A higher γ places more weight on 

misclassified examples. To compute Class-Balanced Focal Loss per Sample the loss for image 

𝑖 with respect to class 𝑗 is formulated as 

l𝑖
(𝑗)

= −α𝑗 ⋅ 𝑚𝑖
(𝑗)

⋅ 𝑦𝑖
(𝑗)

⋅ log (𝑦̂𝑖
(𝑗)

)  (36) 

where l𝑖
(𝑗)

 indicates the individual cross-entropy-based loss for class 𝑗 on sample 𝑖, 𝛼𝑗 

indicates the class-balancing coefficient, 𝑚𝑖
(𝑗)

 indicates the focal modulation, 𝑦𝑖
(𝑗)

 indicates the 

binary ground truth indicator, log (𝑦̂𝑖
(𝑗)

) indicates the logarithmic penalty for predicted 

confidence. To aggregate total loss across batch and classes, the complete loss for a mini-batch 

of 𝑁 samples is formulated as 

ℒ =
1

𝑁
∑ ∑ l𝑖

(𝑗)𝐶
𝑗=1

𝑁
𝑖=1     (37) 

substituting l𝑖
(𝑗)

 

ℒ = −
1

𝑁
∑ ∑ α𝑗

𝐶
𝑗=1

𝑁
𝑖=1 ⋅ (1 − 𝑦̂𝑖

(𝑗)
)

γ

⋅ 𝑦𝑖
(𝑗)

⋅ log (𝑦̂𝑖
(𝑗)

) (38) 
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where ℒ indicates the overall batch-averaged class-balanced focal loss, 𝑁 indicates the 

batch size, 𝐶 indicates the number of classes. This loss is minimized during training using 

gradient-based optimization. 

3.6 Adaptive Quantum Monarch Butterfly Optimization (AQMBO) 

The performance of deep neural networks like DPAFNet significantly depends on the 

choice of hyperparameters such as learning rate, dropout rate, attention depth, and 

regularization strength. Manual tuning is inefficient and prone to suboptimal results. To address 

this, the Adaptive Quantum Monarch Butterfly Optimization (AQMBO) algorithm is 

employed. 

 

Figure 5. Adaptive Quantum Monarch Butterfly Optimization 

It combines the migration behavior of monarch butterflies, quantum-inspired 

randomness, and adaptive update control for efficient convergence in high-dimensional search 

spaces. To define the hyperparameter search space the hyperparameter vector is denoted as 

θ𝑖
𝑡 = [η𝑖

𝑡 , λ𝑖
𝑡, 𝑑𝑖

𝑡 , 𝑝𝑖
𝑡, α𝑖

𝑡]   (39) 

where θ𝑖
𝑡 indicates the hyperparameter vector of the 𝑖𝑡ℎ butterfly at iteration 𝑡, η𝑖

𝑡 

indicates the learning rate, λ𝑖
𝑡 indicates the weight decay, 𝑑𝑖

𝑡 indicates the attention depth, 𝑝𝑖
𝑡 

indicates the dropout rate, α𝑖
𝑡 indicates the fusion gate weight. The algorithm optimizes θ𝑖

𝑡 to 

minimize the loss ℒ(θ𝑖
𝑡), evaluated via model validation. Let the population consist of 𝑃 

candidate butterflies Θ0 = {θ1
0, θ2

0, … , θ𝑃
0 }, Each θ𝑖

0 is randomly sampled within its allowed 

range θ𝑖
0(𝑗) ∼ 𝒰(θmin(𝑗), θmax(𝑗)) in which θ𝑖

0(𝑗) indicates the  𝑗𝑡ℎ component of vector θ𝑖
0, 

𝒰(⋅): uniform distribution over feasible bounds. Further the fitness function is defined as the 

validation loss 

𝑓𝑖
𝑡 = ℒv𝒶l(θ𝑖

𝑡)     (40) 

where 𝑓𝑖
𝑡 indicates the fitness value of the butterfly 𝑖 at iteration 𝑡. Lower 𝑓𝑖

𝑡 implies 

better hyperparameter performance. The global best solution at iteration 𝑡 is expressed as 

θ𝑔
𝑡 = arg min

θ𝑖
𝑡∈Θ𝑡

𝑓𝑖
𝑡    (41) 
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Each butterfly updates its position based on its proximity to the global best which is 

mathematically expressed as 

θ𝑖
𝑡+1 = θ𝑖

𝑡 + 𝑟 ⋅ (θ𝑔
𝑡 − θ𝑖

𝑡)   (42) 

where 𝑟 ∼ 𝒰(0, β𝑡): adaptive step size, β𝑡: migration coefficient that decreases with 𝑡, 

defined as 

𝛽𝑡 = 𝛽0 ⋅ (1 −
𝑡

𝑇
)    (43) 

β0 indicates the initial migration influence, 𝑇 indicates the total number of iterations. 

This mechanism promotes exploration in early iterations and exploitation in later phases. To 

escape local optima, quantum perturbation is introduced with probability δ 

𝜃𝑖
𝑡+1 = 𝜃𝑖

𝑡+1 + ϵ𝑞 ⋅ 𝑠𝑖𝑛(𝜙) + ϵ𝑞
′ ⋅ 𝑐𝑜𝑠(𝜙) (44) 

where ϕ ∼ 𝒰(0,2π) random angle, ϵ𝑞 , ϵ𝑞
′  small step size constants, the sine and cosine 

terms introduce multi-directional randomness, this mimics quantum tunneling across barriers 

in the loss landscape. The new position θ𝑖
𝑡+1 is accepted if it leads to improved performance: 

𝑓𝑖
𝑡+1 < 𝑓𝑖

𝑡 ⇒ accept θ𝑖
𝑡+1, else retain θ𝑖

𝑡 (45) 

This elitist selection ensures the algorithm does not regress in fitness. The algorithm 

continues until a stopping criterion is met 𝑡 = 𝑇 or no improvement for τ generations. At 

termination, the optimal hyperparameter vector is 

θ∗ = θ𝑔
𝑇     (46) 

This optimized vector θ∗ is then used to train the final DPAFNet model. The AQMBO 

algorithm ensures effective navigation through the hyperparameter space, balancing between 

exploration and convergence. The incorporation of adaptive migration and quantum-inspired 

randomness allows the model to reach globally optimal configurations for training, thereby 

improving classification accuracy, convergence speed, and generalization performance across 

diverse banana disease classes. 

Pseudocode for the proposed DPAFNet with AQMBO for Banana Plant Disease 

Classification 

Input: Raw image set 𝒟 = {ℐ𝓇
1 , ℐ𝓇

2 , … , ℐ𝓇
ℳ}, Labels 𝒴 = {𝑦1, 𝑦2, … , 𝑦𝑀, 𝑤ℎ𝑒𝑟𝑒𝑦𝑖 ∈

{1,2, … , 𝐶} 

Output: Predicted class 𝑦̂𝑖 for each image, Optimized model parameters 𝛩∗ 

Begin 

Initialization: Set maximum iterations 𝑇, population size 𝑃, quantum rate 𝛿, Define 

hyperparameter bounds for 𝜃 = [𝜂, 𝜆, 𝑑, 𝑝, 𝛼], Initialize butterfly population 𝛩0 =

{𝜃1
0, 𝜃2

0, … , 𝜃𝑃
0}, Set 𝑡 =  0 

For each ℐ𝓇
𝒾 ∈ 𝒟 

Normalize pixel values to [0,1] 

Resize to fixed dimensions ℎ × 𝑤 

Stack to form batch tensor ℬ 
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For each image in ℬ 

Apply three-layer CNN 

ℱ1 = 𝜙(BN(𝑊1 ∗ ℐ + 𝑏1)),  ℱ2 = 𝜙(BN(𝑊2 ∗ ℱ1 + 𝑏2)),  ℐ𝓅 = 𝜙(𝑊3 ∗ ℱ2 + 𝑏3) 

Initialize Dual-Path Feature Extraction 

For each ℐ𝓅 

Global Path: Split into patches, embed with 𝐸 = 𝑃 ⋅ 𝑊𝑒 + 𝑏𝑒 

     Apply MaxViT 𝐹𝐴 = 𝒜ℊ (𝒜𝒷(𝒞(𝐸))) 

Local Path  

    Pass through HorNet-S 𝐹𝐵
(1)

= 𝜙 (BN(𝑊4 ∗ ℐ𝓅 + 𝑏4)) 

                                 Repeat 𝐿 times → 𝐹𝐵
(𝐿)

= 𝐹𝐵 

Global pool and transform 𝐹𝐵
′′ = GAP(𝐹𝐵) ⋅ 𝑊𝑡 + 𝑏𝑡 

Cross-Layer Attention Fusion (CLAF) 

Input: 𝐹𝐴, 𝐹𝐵
′′ 

Compute channel attention 𝑀𝐶 = 𝜎 (𝑊2
𝐶 ⋅ 𝛿(𝑊1

𝐶 ⋅ GAP(𝐹𝐴))), 𝐹𝐴
𝐶 = 𝐹𝐴 ⊙ 𝑀𝐶  

Compute spatial attention 𝑀𝑆 = 𝜎(Conv1𝑥1([AvgP(𝐹𝐵
′′); MaxP(𝐹𝐵

′′)])), 𝐹𝐵
𝑆 = 𝐹𝐵

′′ ⊙ 𝑀𝑆 

Fuse with residual 𝐹fused = 𝜆 ⋅ 𝐹𝐴
𝐶 + (1 − 𝜆) ⋅ 𝐹𝐵

𝑆 + 𝜂 ⋅ (𝐹𝐴 − 𝐹𝐵
′′) 

Normalize and project 𝐹𝑓𝑖𝑛𝑎𝑙 = 𝐿𝑁(𝐹𝑓𝑢𝑠𝑒𝑑) ⋅ 𝑊𝑓 + 𝑏𝑓 

Initialize Classification Head 

Aggregate patches 𝑉𝑖 = 𝑀𝑒𝑎𝑛(𝐹𝑓𝑖𝑛𝑎𝑙
(𝑖)

) 

Compute scores 𝑍 = 𝑉 ⋅ 𝑊𝑐 + 𝐵𝑐 

Convert to probabilities 𝑌𝑖̂ = SoftMax(𝑍𝑖) 

Predict 𝑦̂𝑖 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑗

(𝑌̂𝑖
(𝑗)

) 

For each sample 𝑖, class 𝑗 

                    Obtain 𝛼𝑗 = 1/ 𝑙𝑜𝑔(1 + 𝑓𝑗) 

                                  𝑚𝑖
(𝑗)

= (1 − 𝑌̂𝑖
(𝑗)

)
𝛾

 

ℒ𝑖
(𝑗)

= −𝛼𝑗 ⋅ 𝑚𝑖
(𝑗)

⋅ 𝑦𝑖
(𝑗)

⋅ 𝑙𝑜𝑔 (𝑌̂𝑖
(𝑗)

) 

Compute total loss ℒ =
1

𝑁
∑ ∑ 𝑙𝑖

(𝑗)
𝑗𝑖  

AQMBO Optimization Loop 

While 𝑡 <  𝑇 

For each butterfly 𝜃𝑖
𝑡 ∈ 𝛩𝑡 

   Train model using 𝜃𝑖
𝑡 

   Compute fitness 𝑓𝑖
𝑡 = ℒv𝒶l(𝜃𝑖

𝑡) 

Find best 𝜃𝑔
𝑡 = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑓𝑖

𝑡 

For each butterfly 

   Update 𝛽𝑡 = 𝛽0(1 − 𝑡/𝑇), 𝜃𝑖
𝑡+1 = 𝜃𝑖

𝑡 + 𝑟 ⋅ (𝜃𝑔
𝑡 − 𝜃𝑖

𝑡) 

   Apply quantum update with probability 𝛿 
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    𝜃𝑖
𝑡+1+= 𝜖𝑞 ⋅ 𝑠𝑖𝑛(𝜙) + 𝜖𝑞

′ ⋅ 𝑐𝑜𝑠(𝜙) 

   Accept if improved 

     𝑓𝑖
𝑡+1 < 𝑓𝑖

𝑡 ⇒ 𝜃𝑖
𝑡 = 𝜃𝑖

𝑡+1 

Increment 𝑡 =  𝑡 +  1 

Final Training Use 𝜃∗ = 𝜃𝑔
𝑇 

Train final DPAFNet with optimal configuration 

Deploy for testing and deployment 

End 

 Results and Discussion 

The proposed DPAFNet framework was evaluated on a benchmark banana leaf disease 

dataset from the Mendeley repository. The dataset comprises a balanced mix of healthy and 

diseased samples. The preprocessing stage includes an adaptive filtering module that 

dynamically enhances image contrast and suppressed noise prior to feature extraction. The 

dual-path feature extraction unit, integrating MaxViT and HorNet-S networks, captures both 

high-level spatial semantics and low-level texture information. Fusion was accomplished 

through a Cross-Layer Attention Fusion (CLAF) module, followed by classification using a 

fully connected SoftMax head. To enhance generalization and convergence, the Adaptive 

Quantum Monarch Butterfly Optimization (AQMBO) algorithm was applied for 

hyperparameter tuning. The model was trained and tested using an 80:20 ratio. Experiments 

were conducted in an NVIDIA GPU-accelerated environment with PyTorch 2.1 and Python 

3.11. The optimized hyperparameters listed in Table 1 are the values selected by AQMBO after 

50 search iterations. 

Table 1. Simulation Hyperparameters of Proposed Model 

S.No Parameter Value 

1 Input Image Size 224 × 224 pixels 

2 Number of Epochs 100 

3 Batch Size 32 

4 Optimizer AdamW 

5 Initial Learning Rate 0.0002 

6 Learning Rate Scheduler Cosine Annealing 

7 Dropout Rate 0.25 

8 Backbone Networks MaxViT (Global), HorNet-S (Local) 

9 Feature Fusion Module Cross-Layer Attention Fusion (CLAF) 

10 Optimizer Enhancer AQMBO 

11 Weight Decay 0.0001 

12 Gradient Clipping Enabled (Max norm: 5.0) 

13 Attention Depth 6 



                                                                                                                                                                                                                 Kanimalar C., Karthikeyan M 

Journal of Innovative Image Processing, September 2025, Volume 7, Issue 3  779 

 

14 Activation Function GELU (Gaussian Error Linear Unit) 

The dataset utilized in this study involves a diverse spectrum of banana leaf diseases 

and pest-related conditions, serving as the foundational component for training and validating 

the proposed DPAFNet model. Collected from the publicly available Mendeley Data 

Repository [25], the dataset includes high-resolution images grouped into seven well-defined 

classes: Aphids, Bacterial Soft Rot, Black Sigatoka, Panama Disease, Pseudostem Weevil, 

Scarring Beetle, and Yellow Sigatoka. Each category corresponds to a distinct pathological or 

pest-induced anomaly, making the dataset highly relevant for real-world agricultural 

diagnostics. The details about the dataset samples are presented in Table 2. 

Table 2. Dataset Description 

S.No Class Name Train Samples Test Samples Total Samples 

1 Aphids 246 120 366 

2 Bacterial Soft Rot 753 325 1,078 

3 Black Sigatoka 337 137 474 

4 Panama Disease 62 40 102 

5 Pseudostem Weevil 1,928 808 2,736 

6 Scarring Beetle 105 45 150 

7 Yellow Sigatoka 188 76 264 
 

Total 4,421 749 5,170 

The evaluation metrics used here are accordingly defined as 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (47) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (48) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (49) 

𝐹1 =  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
     (50) 

Figure 6 shows the results obtained after the preprocessing part of the proposed 

DPAFNet model. The outcomes describe a significant improvement in the image and the 

capability of visualizing the region of the disease that appears in various categories of banana 

disease. The configured learnable preprocessing block adapts the intensities of pixels and 

spatial designs according to the relevance of features, so that input images are optimized for 

further learning. Using adaptive filtering, non-relevant background noise is effectively 

overcome while important structural attributes like lesion edges, discoloration, and fungal 

textures are simultaneously maintained and enhanced. The module also carries out intelligent 

contrast enhancement, where subtle changes in areas affected by the infection that might not 

be visible with raw imagery are magnified. This preprocessing procedure not only advances 

visual clarity but also allows feature extractors to concentrate on the most informative areas. 
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Figure 6. Input Samples and the Preprocessing Outputs 

The accuracy of the proposed DPAFNet model on the train and validation set, 

represented in Figure 7, shows a high improvement trend throughout the entire 100 training 

epochs. Starting with an initial accuracy of about 9.6%, the model returns to more than 94.5% 

in training after the first epoch and is maintained at 98.3% in validation by the last epoch. Such 

improvement in the first 20 epochs represents an effective representation of learning achieved 

by the dual-path architecture that combines the MaxViT and HorNet-S feature extractors. The 

similarity between training and validation curves during the learning process ensures a high 

level of generalization which is additionally supported by the class-balanced focal loss and 

adaptive tuning through the AQMBO algorithm. 

 

Figure 7. Training and Validation Accuracy of Proposed Model 

There is a corresponding decrease in loss over time, as shown in Figure 8, with the 

training and validation loss curves plummeting to about 0.06 and 0.08, respectively, starting 

above the 0.9 bracket in the first years. Convergence is smooth and parallel, indicating that the 

model is learning and not degrading as the process progresses. The decline in the first 2530 

epochs correlates with faster convergence on simpler class boundaries, while the smaller 
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decline thereafter indicates refinement in the precision of harder classes of diseases. The small 

difference between the two curves demonstrates the successful regularization and 

generalization of the architecture. The combination of these trends confirms the robustness of 

the proposed DPAFNet in terms of both high performance and stable learning dynamics on 

difficult classification tasks. 

 

Figure 8. Training and Validation Loss of Proposed Model 

The Precision-Recall (PR) curves shown in Figure 9 and 10 display the class-specific 

ability to detect using the proposed DPAFNet model during the training and testing periods. As 

evident in the raining PR curve (Figure 9), the model has perfect average precision (AP) scores 

in all seven classes thus learning is highly effective.  

 

Figure 9. Precision-Recall Analysis of Proposed Model Training 

Notably, Calibrations, such as Scarring Beetle, Pseudostem Weevil, and Bacterial Soft 

Rot reach AP values as high as 0.9995 with extremely accurate precision and recall. Agents 

such as Panama Disease and Black Sigatoka, which have high levels of complexity, had APs 

of 0.9950, confirming the high performance of the dual-path feature fusion and dynamic 

optimization approach. The DPAFNet remains highly effective during the testing phase, as the 
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APs of Aphids and Black Sigatoka remain at 0.9981 and 0.9935, respectively, in Figure 10. 

Minor decreases are seen in Bacterial Soft Rot (AP=0.9785) and Panama Disease (AP=0.9883), 

as expected because of the class imbalance and because the feature richness is shared. 

 

Figure 10. Precision-Recall Analysis of Proposed Model Testing 

There is a corresponding decrease in loss over time, as shown in Figure 8, with the 

training and validation loss curves plummeting to about 0.06 and 0.08, respectively, starting 

above the 0.9 bracket in the first years. Convergence is smooth and parallel, indicating that the 

model is learning and not degrading as the process progresses. The decline in the first 2530 

epochs correlates with faster convergence on simpler class boundaries, while the smaller 

decline thereafter indicates refinement in the precision of harder classes of diseases. 

 

Figure 11. ROC Analysis of Proposed Model Training 

The small difference between the two curves demonstrates the successful regularization 

and generalization of the architecture. The combination of these trends confirms the robustness 

of the proposed DPAFNet in terms of both high performance and stable learning dynamics on 

difficult classification tasks. 
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Figure 12. ROC Analysis of Proposed Model Testing 

The confusion matrices elaborated in Figure 13 provide information about the 

effectiveness of the structural classification of the proposed DPAFNet model along the seven 

sections of diseases and pests in both the training and testing cases. During the training process 

shown in Figure 13a, the model classified most of the samples correctly with minimal cross-

iteration. For example, Pseudostem Weevil reached the highest recognition rate, with 760 

precise predictions made out of the total, followed by Black Sigatoka and Bacterial Soft Rot, 

each with over 400 precise predictions made, respectively.  

 

                   (a) Training                                                            (b) Testing 

Figure 13. Confusion Matrix of Proposed Model (a) Training (b) Testing 

Aphids and Yellow Sigatoka also performed well, with 341 and 395 true positives, 

respectively. Nonetheless, moderate misclassifications were observed in Panama Disease, with 

several segments being mislabeled as other disease categories due to exhibiting similar 

symptom variations and reduced class volume. Such performance integrity is demonstrated by 

DPAFNet during the testing stage, as shown in Figure 13b, where there is consistently high 

recognition performance for Scarring Beetle (244), Black Sigatoka (132), and Aphids (128). 

Although classifying Panama Disease remained more difficult with slight misclassification, the 

overall diagonal dominance of the two matrices indicates that the model performs at a 
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satisfactory level. The results demonstrate that DPAFNet is reliable and can detect complex 

banana diseases. 

As Table 3 shows, the overall outcome of the training performance of the proposed 

DPAFNet model involved the outstanding capacity of the model to classify banana leaf diseases 

across various classes. The model had an overall accuracy of 98.37%, a precision of 0.9544, 

recall of 0.8541, an F1-score of 0.8892, and an MCC of 0.8939, demonstrating good learning 

capability and balanced results in the predictions. Class-specific metrics illuminate perfect 

classification of Scarring Beetle and Aphids, with mean F1-scores of 0.9923 and 0.9964, 

respectively. The outcomes show that the rates of false positives and false negatives are low, 

particularly in those categories that are well represented and visually differentiated. The metrics 

of classes like Black Sigatoka and Yellow Sigatoka were also maintained stably, which 

confirms that precision and generalization at the class level are robust. Panama Disease, 

however, had a significantly low recall (0.255) and F1-score (0.4065), indicating challenges in 

detecting this class because it was not sampled as much as others and due to its visual 

similarities with other infections. Table 4 presents a summary of the testing performance, which 

proves the utility of the DPAFNet to generalize well to unseen data, with a maximum overall 

accuracy of 98.18%, precision of 0.9496, recall of 0.8386, and F1-score of 0.8844. Black 

Sigatoka (0.9066) and Pseudostem Weevil (0.9493) displayed noteworthy testing accuracy and 

F1-scores, although Panama Disease, once again, exhibited low recall (0.188), indicative of the 

model tending to be more conservative toward uncertain cases. 

Table 3. Training Performance of Proposed DPAFNet Model 

Class Accuracy Precision Recall F1-Score MCC 

APHIDS 0.9989 0.993 1.000 0.9964 0.9967 

BACTERIAL SOFT ROT 0.9621 0.9195 0.884 0.9006 0.8761 

BLACK SIGATOKA 0.9855 0.9264 0.9022 0.9132 0.9164 

PANAMA DISEASE 0.9879 1.000 0.255 0.4065 0.5021 

PSEUDOSTEM WEEVIL 0.9482 0.9413 0.9812 0.9609 0.9212 

SCARRING BEETLE 0.9991 0.9946 0.9901 0.9923 0.9918 

YELLOW SIGATOKA 0.9893 0.9073 0.9012 0.9043 0.8922 

Overall 0.9837 0.9544 0.8541 0.8892 0.8939 

Table 4. Testing Performance of Proposed DPAFNet Model 

Class Accuracy Precision Recall F1-Score MCC 

APHIDS 0.9993 1.000 0.9931 0.9965 0.9961 
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BACTERIAL SOFT ROT 0.9647 0.9361 0.8665 0.8999 0.8699 

BLACK SIGATOKA 0.9869 0.8735 0.9428 0.9066 0.8852 

PANAMA DISEASE 0.9814 1.000 0.188 0.3164 0.4363 

PSEUDOSTEM WEEVIL 0.9576 0.9278 0.9721 0.9493 0.8932 

SCARRING BEETLE 0.9993 1.000 0.9847 0.9923 0.9895 

YELLOW SIGATOKA 0.9912 0.9087 0.8421 0.8742 0.8647 

Overall 0.9818 0.9496 0.8386 0.8844 0.8786 

Further to validate the proposed model performance, conventional deep learning 

algorithms like ResNet50, VGG16, EfficientNetB0, DenseNet121, and MobileNetV2 are 

considered for comparative analysis. The simulation hyperparameters used for the existing 

models experimentation are presented in Table 5. 

Table 5. Simulation Hyperparameters of Existing Models 

S.No Algorithm Parameter Type/Range 

1 

ResNet50 

Learning Rate 0.001 

2 Batch Size 64 

3 Epochs 60 

4 Optimizer Adam 

5 

VGG16 

Learning Rate 0.0005 

6 Batch Size 32 

7 Epochs 60 

8 Optimizer SGD with Momentum (0.9) 

9 

EfficientNetB0 

Learning Rate 0.0007 

10 Batch Size 32 

11 Epochs 60 

12 Optimizer RMSProp 

13 

DenseNet121 

Learning Rate 0.0001  

14 Batch Size 64 

15 Epochs 60 

16 Optimizer Adam 

17 

MobileNetV2 

Learning Rate 0.0005 

18 Batch Size 32 

19 Epochs 60 

20 Optimizer Adam 

21 

ConVNeXtTiny 

Learning Rate 0.0003 

22 Batch Size 32 

23 Epochs 100 

24 Optimizer Spotted Hyena Optimizer 

25 Dropout Rate 0.3  
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26 Patch Size (Swin Transformer) 4 

27 Window Size 7 

Figure 14 illustrates the comparison graph in precision between the proposed DPAFNet 

model and existing deep learning models, demonstrating the strong performance of the 

proposed DPAFNet model over other models across 100 training epochs. As early as the first 

stages, DPAFNet shows a drastic and stable convergence to a precision that approaches 0.949, 

which is higher than all benchmark models over the learning curve. Interestingly, both 

ConvNeXtTiny and EfficientNetB0 showed competitive results regarding their precision, 

achieving around 0.91 and 0.89, respectively; however, they lagged behind the other models in 

terms of their overall course and post-optimization performance. DenseNet121 and ResNet50 

were close contestants, while VGG16 was observed to be substantially lower, peaking at the 

0.85 mark or below, which indicates structured simplicity and a lack of availability to dig 

deeper into feature hierarchies. 

 

Figure 14. Precision Comparative Analysis 

Figure 15 shows the recall comparison of the proposed DPAFNet model with existing 

DL models. Throughout the total training epochs of 100, DPAFNet has consistently dominated 

the top position in terms of recall performance, finally reaching its peak performance of about 

0.911, indicating it is very adept at identifying correct cases and limiting incorrect ones. Other 

"closely ranked" models like ConvNeXtTiny and EfficientNetB0 follow, with all the models 

converging to nearly the same recall values of around 0.89 and 0.86, respectively. Meanwhile, 

DenseNet121 performs moderately at about 0.83, while ResNet50 and VGG16 are lower, with 

recall values of about 0.81 and 0.78, respectively. The remarkable strength of DPAFNet is 

associated with its dual-stream structure, which is based on MaxViT to learn globally receptive 

fields and HorNet-S to learn details locally. 
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Figure 15. Recall Comparative Analysis 

As Figure 16 shows, the evolution of the F1-Score gives a clear picture of how well the 

suggested DPAFNet mechanism balances precision and initiative during learning. DPAFNet is 

outperforming its counterparts as the modal position across all models and translates to the 

highest F1-Score of about 0.930, representing the ability of DPAFNet to sustain a low false-

positive and false-negative rate. ConvNeXtTiny and EfficientNetB0 come next and plateau at 

0.89 and 0.87, respectively, proving to have reasonable but somewhat lower classification 

uniformity. DenseNet121 and ResNet50 converge to lower values of approximately 0.84 and 

0.81, while VGG16 has the lowest performance of slightly less than 0.79, indicating the model's 

failure to adapt to complicated visual information. 

 

Figure 16. F1-Score Comparative Analysis 
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Figure 17. Accuracy Comparative Analysis 

Figure 17 shows the relative accuracy improvement of the proposed DPAFNet model 

compared with other state-of-the-art deep learning architectures. The DPAFNet model stands 

at the top of the accuracy rankings with the highest performance of about 0.986. This outcome 

validates the strong performance of the proposed model in predicting disease categories as 

accurately as possible. The accuracies of ConvNeXtTiny and EfficientNetB0 are 0.977 and 

0.950, respectively, whereas DenseNet121 and ResNet50 stabilize at lower levels, close to 

0.935 and 0.920, respectively. VGG16 has the worst learning curve at 0.900, which is lower 

than that of the proposed model. Achieving high levels of accuracy with DPAFNet is based on 

its hybrid architecture, with MaxViT providing wide spatial coverage for feature extraction, 

and HorNeT-S facilitating the extraction of localized texture information that allows for precise 

differentiation between similarly appearing disease types. Such a dual-path fusion achieves 

scale-rich feature representation. In addition, the combination of the Adaptive Quantum 

Monarch Butterfly Optimization (AQMBO) allows for adapting the learning rate and 

optimizing parameters for convergence and parameter tuning more effectively. 

Table 6. Performance Comparative Analysis of Proposed and Existing Models 

S.No Model Precision Recall F1-Score Accuracy 

1 EfficientNetB0 0.913 0.865 0.875 0.950 

2 DenseNet121 0.896 0.832 0.847 0.935 

3 ResNet50 0.874 0.808 0.825 0.920 

4 VGG16 0.857 0.778 0.795 0.900 

5 ConvNeXtTiny 0.940 0.891 0.910 0.977 

6 Proposed DPAFNet 0.949 0.911 0.930 0.986 

A comprehensive comparison of the proposed DPAFNet model with existing deep 

learning models is given in Table 6 in terms of various measures. As a general trend, DPAFNet 

performs better than other existing models, achieving the best scores of precision (level 0.949 

vs. 0.800), recall (0.911 vs. 0.715), F1-score (0.930 vs. 0.750), and accuracy (0.986 vs. 0.827). 
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These findings support the potential of the model to achieve a balance between sensitivity and 

specificity, with the lowest rates of false negatives and false positives. ConvNeXtTiny achieves 

an F1-score of 0.910 and accuracy of 0.977, which proves its architectural power, although it 

has not yet attained the more detailed learning capacity of DPAFNet. Other models, such as 

EfficientNetB0 and DenseNet121, are average, recording accuracies of 0.950 and 0.935, 

respectively. In contrast, ResNet50 and VGG16 fall short in terms of recall and low F1-scores. 

This highlights the shortcomings of these models in the analysis of complex and multi-class 

variations of diseases. DPAFNet has the advantage of a dual-path structure, combining the 

global vision attention of MaxViT with the hierarchical convolutional features of HorNet-S. 

Additionally, the Adaptive Quantum Monarch Butterfly Optimization (AQMBO) provides a 

refined autotuned selection of hyperparameters that optimizes the model training process. This 

design enables DPAFNet to present a high-performance and extensible system for banana 

disease recognition in practice. 

The AQMBO-enhanced DPAFNet training cost is dominated by the time required to 

evaluate a population of P hyperparameter candidates over T AQMBO iterations; each 

candidate requires a validation run of E epochs, providing an effective search cost of O(T·P·E) 

model evaluations as compared to O(E) in a single conventional run. The AQMBO meta-update 

per iteration (migration plus quantum perturbation over d tuned variables) incurs O(P·d) in 

terms of arithmetic, which is negligible with respect to model evaluation (see the AQMBO 

formulation and hyperparameter vector in Eqs. (39) to (46)). Empirically, the tuned 

configuration has better validation accuracy early in training, surpassing ~94.5% in the first 

~20 epochs and leveling off at 98.3% around epoch 100 (Fig. 7), suggesting faster convergence 

that compensates for the overheads of the search; this is confirmed by the monotonic drop in 

training/validation loss (Fig. 8). 

 Conclusion 

 A novel deep learning architecture DPAFNet was proposed in this research for robust 

banana leaf disease identification. The proposed model incorporates a learnable preprocessing 

module, a dual-path feature extractor utilizing MaxViT and HorNet-S, and a cross-layer 

attention fusion (CLAF) mechanism. Additionally, optimization is done using the Adaptive 

Quantum Monarch Butterfly Optimization (AQMBO) algorithm. The proposed model was 

trained and evaluated using a banana disease dataset from Mendeley comprising seven disease 

categories and one healthy class. Extensive experiments were conducted and the proposed 

DPAFNet achieved a test accuracy of 0.986, precision of 0.949, recall of 0.911, and F1-score 

of 0.930 which is better than models such as EfficientNetB0 (accuracy: 0.950), DenseNet121 

(0.935), and ConvNeXtTiny (0.977). Precision-recall and ROC analysis further demonstrated 

the model’s robustness in recognizing underrepresented classes like Panama Disease. Despite 

these advancements, the model's recall on minority classes remains a challenge, indicating 

sensitivity to class imbalance. Future work could explore advanced data augmentation, 

synthetic data generation, and lightweight transformer integration for real-time deployment in 

mobile agricultural advisory systems. Overall, DPAFNet represents a scalable and accurate 

solution for smart agriculture and early disease intervention. 
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