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Abstract   

Palm vein biometrics is contactless identification through vascular vein patterns. The 

paper presents a new dataset of 500 palm vein images from 100 individuals in 5 conditions 

(normal, hot, cold, dusty, and lotion-applied). In contrast to current benchmarks, the dataset 

directly simulates environmental and physiological variations. It compares three feature-

extraction pipelines (Kumar Gabor, IUWT-SAD and Maximum Curvature) to a proposed 

multi-feature ensemble SVM. The proposed SVM uses HOG, LBP and Gabor features. In all 

cases, the ensemble achieves a mean EER of 4.0 %, TAR FAR=10-3 =72.3%, and AUC= 0.963, 

which is on par with Kumar Gabor (EER 8.8%), MC (EER 13.1%), and IUWT-SAD (EER 

16.4%). Performance is consistent in response to temperature changes.   There is only slight 

performance deterioration in the presence of surface contaminants (dust, lotion). Calibration 

analysis indicates low error (ECE < 0.02, Brier < 0.03). A throughput of up to 12 images per 

second is achieved with the proposed feature pipeline. The results demonstrate that ensemble 

fusion is highly effective for condition-resilient palm vein recognition. The new dataset offers 

a good reference point for estimating real-world resilience beyond laboratory tests. 

Keywords: Palm Vein Recognition, Biometrics, Vascular Patterns, Feature Extraction, 

Ensemble SVM, Contactless Authentication, Dataset Evaluation. 

 Introduction 

Biometric systems are v used for secure authentication and verification. In contrast to 

passwords or tokens that can be readily stolen, biometric systems work with inherent human 

physiological attributes that cannot be easily imitated [1]. Palm vein recognition is among the 

safest modalities because subcutaneous vascular patterns are internal and not contact with the 

environment [1],[2],[3],[4]. Near-infrared (NIR) light (700-900nm) assists in the improvement 

of vascular imaging by focusing on deoxygenated haemoglobin. Mode transmission systems 

have high contrast while mode reflection systems are cost-effective and suitable for use in 

ATMs [3]. Tri-spectral and polarized imaging increase the visibility of veins in all skin tones 

[5]. Palm vein identification, while promising, is vulnerable to temperature, dust, lotion, and 

light. Current databases like CASIA, PolyU, and VERA are useful for benchmarking but do 

not account for diversity in real-world capture conditions [6],[7]. Outdoor environments 

influence recognition performance [8]. Large models like vision transformers and large-kernel 
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networks achieve comparatively modest accuracy under changing conditions with minimal 

training [9]-[13]. 

1.1 Palm Vein Biometrics 

High-contrast vein shadows were provided by initial generation transmission systems 

[2], while reflection-mode applications were brought forth with NIR sensors and LEDs, e.g., 

Fujitsu PalmSecure (2003) [3]. Maximum Curvature (MC), Repeated Line Tracking (RLT), 

Local Binary Patterns (LBP), Weighted Local Descriptors (WLD) and 2D Gabor filters are 

utilized for feature extraction [4],[5]. Recent developments include free-posed capture, 

multispectral imaging, deep learning, and spoofing resistance [6], [8], [11], [14], [30]. IR vein 

legibility is sensitive to temperature, dust, lotion, humidity, and wind interaction [33], [34]. 

However, this is not experimentally verified. ROI consistency is sensitive to illumination, skin 

tone and sensor-hand distance sensitive [34], and wavelength optimization is still challenging 

[33], [35]. They are vulnerable to synthetic vein spoofing [53] and thermal drift [33]. Public 

databases (CASIA, PolyU, VERA) are limited to controlled setups. Deep learning methods 

[23]-[25] perform well on benchmarks but suffer under acquisition changes [11], [14]. 

1.2 Objectives 

Despite progress in acquisition optimization robustness analysis in realistic conditions 

remains under-represented [3]. Available data sets do not adequately alter physiological and 

environmental factors [7]. The main tasks will address key problems in palm vein biometrics:  

• Present a palm vein dataset with 500 samples from 100 subjects under five 

environmental conditions (normal, hot, cold, dusty, lotion) to capture variation.  

• Compare preprocessing and ROI extraction techniques on feature extraction pipelines 

(Kumar Gabor, IUWT, Maximum Curvature) under the same conditions.  

• Propose a multi-feature ensemble SVM classifier (HOG, LBP, Gabor descriptors). 

Test recognition accuracy, EER and TAR under different conditions to estimate 

environmental effects. 

Section 2 overviews palm vein biometrics literature and places this research. Section 3 

describes datasets, acquisition settings and subject populations. Section 4 describes the 

methodology-preprocessing, ROI extraction, features and matching. Section 5 presents 

experimental results and analysis, including baseline comparisons and robustness testing. 

Section 6 provides conclusions, limitations, and future research directions. 

 Related Works 

The section presents the process utilized in palm vein feature-based human biometrics 

recognition. It also covers the work done by fellow researchers in the last decade across the 

globe. 
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2.1 Imaging Principle 

Palm vein patterns lie beneath the skin and require near-infrared (NIR) images for 

scanning. CD or CMOS-based ICs with NIR (850 nm) are applied [11]. Multispectral imaging 

shows high contrast between visible and invisible veins, independent of skin colour and 

physiological states [12]. Dual wavelength illumination at 760 nm and 940 nm provides higher 

contrast-to-noise ratios (CNR) [13]. Contact-based systems are more robust in pose and ROI 

matching than contactless approaches [14]. Motion blur, depth-of-field (DOF) and lighting 

affect contactless imaging. Solutions include VCSEL based NIR arrays [16] and polarization-

selective meta-lenses [15]. Multispectral systems work better outdoors with QTS [17].  

2.2 Preprocessing & ROI Extraction 

Raw palm images are pre-processed into high contrast inputs for feature extraction. 

Previous methods used thresholding [11], while newer approaches use guidance filters [18] for 

vessel contrasting. Vessel enhancement methods like maximum curvature (MC), repeated line 

tracking (RLT) and Hessian-based approaches visualize vascular structures. ROI should be 

cropped using geometric landmarks to reduce pose variation [19]. Recent works use lightweight 

HRNet architectures [14] with key-point detection for accurate ROI localization despite 

rotations and background clutter. 

2.3 Handcrafted Feature Methods 

Palm vein recognition used manual feature extractors before deep learning. Local 

textures were captured using HOG, LBP, and LPQ [20]. Gabor filters provided multiscale 

representations [21]. Wavelet techniques improved performance in low-quality imaging. 

Hybrid approaches combining texture descriptors with vein extraction showed better robustness 

[22]. However, handcrafted features require adjustments and lack cross-device generalization. 

CNNs from ResNet and EfficientNet outperform handcrafted features [23]. Vision 

Transformers model dependencies [25], while large-kernel CNNs improve structure capture 

[24]. Recent research uses state-space models [28] and neural architecture search [27]. StarMix 

improves generalization [29]. PVTree generates vascular topologies [30], while GANs produce 

high-fidelity images [31]. Palm veins can be spoofed by printed attacks. PAD uses 

physiological markers and multi-wavelength imaging [32]. Key datasets include CASIA, 

PolyU, VERA, PUT, TJU-PV and UC3M. Dataset differences affect cross-dataset 

performance. Evaluations use EER, accuracy, FAR, FRR, and ROC curves. Table 1 shows 

results. 

Table 1. Representative Palm Vein Recognition Methods and Reported Performance 

Method & Year 

Feature 

Extraction / 

Model 

Dataset(s) 
EER 

(%) 

Accuracy 

(%) 

LBP, SLBP, MSLBP with 

LDA (2022) [20] 

LBP, SLBP, 

MSLBP with 

LDABP 

PolyU 

Multispectral 

Palmprint DB 

- Up to 99.96 

(Blue 
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spectrum, 

MSLBP) 

VGG-16 + attention, multi-

task loss (2022) [21] 

VGG-16 + 

attention, 

multi-task loss 

Infrared palm-

vein datasets  
- 98.89 

Modal correlation fusion 

(purification + PLS + 

weighted sum) (2024) [22] 

Hybrid 

handcrafted 

Multimodal 

palmprint + 

palm vein  

0.0173 

– 

0.0008 

- 

ResNet50 FT (2020) [23] CNN TL VERA, PolyU 0.6 98.4 

LaKNet + StarMix (2023) 

[24], [29] 

Large-kernel 

CNN + Aug 
PUT, TJU-PV 0.42 99 

Swin Transformer (2023) 

[25] 
ViT UC3M, PolyU 0.38 99.1 

PVTree + ViT (2024) [30] 
Synthetic 

pretrain + ViT 
CASIA, PUT 0.36 99.3 

Dual-WL + PAD CNN 

(2024) [32] 
Liveness CNN Custom 0.5 98.7 

 Dataset 

To evaluate palm vein recognition under real-world variability, a new dataset using a 

custom-built NIR device was developed. The dataset details and setup are given in [33], with 

attention to acquisition protocol, subject diversity, and environmental conditions. 

3.1 Acquisition Protocol 

 Each subject participated in an acquisition session conducted on different days to 

capture both short-term and medium-term variability. During each session, the subject’s palm 

was imaged under five distinct conditions: 

1. Normal – Standard room temperature, clean palm. 

2. Cold – Palm cooled by contact with cold water for ~1 minute. 

3. Hot – Palm warmed with a heating pad or hot water exposure for ~1 minute. 

4. Dusty – Fine dust particles applied to simulate environmental contamination. 

5. Lotion applied – A thin layer of moisturizer applied to simulate oily or sweaty palms. 
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The acquisition environment was a controlled laboratory room at 24–26 °C with low 

ambient light. The custom enclosure minimized external light and maintained a palm-sensor 

distance of 22 cm. Subjects placed their palms on a guide surface to reduce motion blur during 

capture. Each palm was imaged once per condition, with 5 images per subject. 

3.2 Subject Diversity 

The dataset included 100 participants, consisting of 49 males and 51 females. All 

subjects were within the age range of 18 to 20 years. In terms of skin tone distribution, 

approximately 35% had light skin, 45% had medium skin, and 20% had dark skin. The 

participants were drawn entirely from the student population. Each condition includes 100 

samples, providing a balanced evaluation of algorithms under environmental variations. 

Collected in a single session, the dataset captures short-term physiological dynamics and 

external perturbations (temperature shifts, surface contamination) critical for robustness 

analysis. A binomial estimate confirms that 100 samples per condition achieve >80% statistical 

power for detecting moderate TAR differences at FAR=10⁻³. However, when specifically 

evaluating the ability to detect a 2-percentage-point TAR improvement at FAR = 10⁻³ with 95% 

confidence, the power is much lower. With only 100 samples per condition, the calculated 

statistical power remains below 10% across all five conditions (Normal, Hot, Cold, Dusty, 

Lotion). This indicates that while the dataset is sufficient to capture moderate differences, it is 

underpowered for detecting very small (≤ 2 pp) TAR shifts. This limitation highlights the need 

for larger-scale datasets in future work. Limitations include the narrow age range (18–20 years) 

and absence of long-term variations (aging, sensor drift). Future work will incorporate cross-

dataset validation with public benchmarks (PolyU, VERA) to assess generalization. Images 

follow the format userno_conditionno.jpg (e.g., 2_1.jpg). Example samples are shown in Fig. 

1. The dataset will be released for non-commercial research upon request. 

  
  

               (a)         (b)         (c) 

   

               (d)        (e) 

Figure 1. Palm Vein Images under Different Conditions: (a) Normal, (b) Cold Palm, 

(c) Hot Palm, (d) Dusty Palm and (e) Palm with Lotion 
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 Methodology 

The PLUS OpenVein Toolkit is used to analyze the palm vein dataset [37].  It is an 

open-source MATLAB based implementation of various algorithms for examining blood 

vessel patterns.  Additionally, an SVM classifier with a handcrafted multi-feature ensemble is 

proposed and employed. Three different methods, each with a unique matching technique, to 

identify features are employed. 

4.1 Preprocessing and Region of Interest Localization (ROI) 

The preprocessing pipeline features Otsu-based segmentation, adaptive-valley-point 

ROI detection, reflection correction, and Contrast Limited Adaptive Histogram Equalization 

(CLAHE). 

 

Figure 2. Overall Process Flow of the Proposed Palm Vein Recognition System 

Preprocessing remained constant across all feature extractors (Gabor-NCC, IUWT-

SAD, MC, and ensemble SVM) to minimize variability bias. Comparing CLAHE against raw 

normalization and standard Histogram Equalization (HE) showed that CLAHE maintained 

subtle vasculature and increased local contrast while avoiding noise issues during 

environmental changes. This work focused on system robustness under realistic physiological 

and environmental variability, without conducting complete ablation studies of individual 

preprocessing steps. Future work will analyze the contribution of each preprocessing stage to 

recognition accuracy. The overall workflow is summarized in Figure 2. Accurately identifying 

the palm's main vein-rich area is crucial, as it makes it easier to omit the fingers, wrist, and 

background.  In this study, the region of interest (ROI) is identified using a technique based on 

the PalmNet framework [38]. 

4.1.1 Hand Segmentation 

The input which is 2D image 𝐼(𝑥, 𝑦) is converted to grayscale (if needed) and binarized 

via Otsu thresholding to produce a binary mask 𝑇𝑂𝑡𝑠𝑢(𝑥, 𝑦) of the hand region: 

                  𝑀𝑂𝑡𝑠𝑢(𝑥, 𝑦) = {
1, 𝐼(𝑥, 𝑦) ≥ 𝑇𝑂𝑡𝑠𝑢 (𝑥, 𝑦)
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (1)  
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Figure 3 shows the thresholding process as given in equation (1). 

       

        (a)             (b)   (c)                          (d) 

Figure 3. Palm Vein Image (a) Original (b) Threshold Image (c) Edge (d) Combined 

Image 

A gradient-based edge map 𝐸𝑎𝑑𝑑(𝑥, 𝑦) (Canny/Sobel) is computed.  This detects 

missing boundary segments, particularly around finger edges where illumination or skin 

contrast is low. This is combined with the Otsu mask: 

                                             𝑀1 = 𝑀𝑂𝑡𝑠𝑢 ⋃ 𝐸𝑎𝑑𝑑      (2) 

Figure 3 (c), (d) show the output of equation (2).  

A second edge map 𝐸𝑟𝑒𝑚(𝑥, 𝑦) is generated.  This helps identify spurious edges in the 

background or within the palm area (e.g., caused by noise or background objects). This is 

subtracted from the mask: 

                                       𝑀2 = 𝑀1 − 𝐸𝑟𝑒𝑚                                                      (3) 

Figure 4 shows the output of equation (3) where the edge map is subtracted from the 

binary image produced earlier. Morphological opening and closing refine 𝑀2.  this by reducing 

small objects and smoothing edges. High-intensity reflections in NIR images caused by skin 

specular highlights are identified via intensity thresholding: 

𝑅(𝑥, 𝑦) = {
1, 𝐼(𝑥, 𝑦) ≥ 𝑇𝑟𝑒𝑓𝑙 

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                        (4) 

    

                   (a)                             (b)                              (c)                                    (d) 

Figure 4. Palm Vein Image (a) Spurious Edge (b) Binary Palm (c) Reflection Regions (d) 

Final Binary Palm with Contour in Red Line 

These reflection regions are re-added to the binary mask to restore missing fingertip or 

palm-edge pixels: 
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𝑀𝑓𝑖𝑛𝑎𝑙 = 𝑀2 ⋃ 𝑅                                             (5) 

Figure 4 (c), and (d) show the output of equation (4) and (5).  

The result 𝑀𝑓𝑖𝑛𝑎𝑙 is a noise-free, reflection-corrected hand mask. It accurately 

represents the palm boundary for subsequent ROI localization. 

4.1.2 Adaptive Valley-Based ROI Localization 

Valley point detection identifies two anatomical landmarks between the fingers.  The 

Euclidean distance 𝑑𝑣 between these points defines the ROI scale: 

𝑑𝑣 = √(𝑥𝑣1 − 𝑥𝑣2)2 + (𝑦𝑣1 − 𝑦𝑣2)2                                    (6) 

   

                       (a)                                              (b)                                    (c) 

Figure 5. Palm Vein Image (a) Valley Points Detected (b) Rotated Image (c) 

Extracted ROI 

ROI dimensions (𝑤𝑅𝑂𝐼 , ℎ𝑅𝑂𝐼)  are set proportionally to 𝑑𝑣. The hand mask is rotated so 

its principal axis is vertically aligned: 

𝐼𝑟 = 𝑅(𝐼, −𝜃), 𝜃 =
1

2
tan−1(

2𝜇11

𝜇20−𝜇02
)                                        (7) 

The term  𝜇𝑝𝑞 refers to a central moment of order 𝑝 + 𝑞  of the binary hand mask (or 

grayscale image). 𝑝 and 𝑞 are the moment orders in 𝑥 and 𝑦 directions. 𝜇11 mixed second-order 

central moment, captures the correlation between 𝑥 and 𝑦 coordinates.  𝜇20 and  𝜇02 are second-

order central moments along 𝑥 and 𝑦 axes respectively, representing spread in those directions. 

A square ROI centered at the palm centroid (𝑥𝑐, 𝑦𝑐) is then extracted from 𝐼𝑟.  Figure 5 shows 

the identified valley and reference points, the rotated palm with centroid and ROI mapped, and 

the final cropped ROI. 

4.2 Preprocessing: Contrast Limited Adaptive Histogram Equalization (CLAHE) 

CLAHE improves the visibility of low-contrast vein patterns in palm vein imaging by 

addressing the problem of uneven NIR lighting brought on by the palm's curvature and 

variations in skin scattering. A uniform distribution is used for CLAHE. 
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4.3 Feature Extraction 

Three different methods are used to analyse palm vein images. Each method comes 

from a different type of image analysis. A new algorithm is presented and tested with the 

dataset. 

4.3.1 Gabor Filtering 

Gabor filters are spatial-frequency filters that achieve optimal joint localization in both 

spatial and frequency domains. These filters are extensively used in palm vein recognition to 

enhance oriented texture patterns, especially the vein ridges, by convolving the image with 

bandpass kernels that are specific to orientation and scale. The 2D Gabor filter is described as: 

𝑔(𝑥, 𝑦; 𝜆, 𝜃, 𝜓, 𝜎, ϒ) = exp (−
𝑥′2+ϒ2𝑥𝑦′2

2𝜎2 ) cos (2𝜋
𝑥′

𝜆
+ 𝜓)                  (8) 

Where 𝑥′ = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃, 𝑦′ = −𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃, λ = wavelength of the sinusoidal 

factor (related to scale), θ = filter orientation, ψ = phase offset, σ = Gaussian envelope’s 

standard deviation, γ = spatial aspect ratio. 

Kumar et al. [39] presented an improved multi-orientation Gabor filter design for hand 

vein imaging that can also be used for palm vein patterns. 

𝑅𝑚𝑎𝑥(𝑥, 𝑦) = max
𝜃∊Θ

√(𝐼 ∗ 𝑔𝜃
𝑒𝑣𝑒𝑛)2 + (𝐼 ∗ 𝑔𝜃

𝑜𝑑𝑑)2                        (9) 

This method suppresses isotropic noise while improving linear vein structures.  

Background variations are suppressed by the Gaussian envelope.  Regardless of hand posture, 

vessels are captured by the multi-orientation design.  Vein continuity detection is improved by 

the phase congruency approach.  The results of the Kumar Gabor approach's processing are 

displayed in Figure 6. 

               

             (a)                                    (b)                              (c)                               (d) 

Figure 6. Palm Vein Processed ROI with Kumar Gabor Approach: (a) Normalized 

Image, (b) Accumulated Gabor Response, (c) Threshold Image and (d) Final Extracted Vein 

Pattern 
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4.3.2 Isotropic Undecimated Wavelet Transform (IUWT) for Palm Vein Feature 

Extraction 

The Isotropic Undecimated Wavelet Transform (IUWT) is a type of wavelet transform. 

It works well for finding faint, line-like patterns, like palm veins. Unlike regular wavelet 

transforms, IUWT does not reduce the image size, so the image quality remains the same at all 

levels. Given an input image 𝐼(𝑥, 𝑦), the IUWT decomposes it into a set of detail sub-bands 

𝑤𝑗(𝑥, 𝑦) at different scales 𝑗, and a coarse residual 𝑐𝐽(𝑥, 𝑦) at the coarsest scale 𝐽: 

𝐼(𝑥, 𝑦) = 𝑐𝐽(𝑥, 𝑦) + ∑ 𝑤𝑗(𝑥, 𝑦)𝐽
𝑗=1     (10) 

IUWT is applied to NIR palm images to produce multi-scale vein feature maps: Fine 

scales 𝑤1 , 𝑤2 capture thin veins. Medium scales 𝑤3 , 𝑤4 enhance main vascular trunks. The 

weighted reconstruction method reduces background texture but retains vein patterns. A binary 

vein map was created by setting a threshold on the sum of chosen detail coefficients. 

  𝑆(𝑥, 𝑦) = ∑ 𝑤𝑗𝑗∊𝐽 (𝑥, 𝑦)      (11) 

𝑉𝑚𝑎𝑝(𝑥, 𝑦) = {
1, 𝑆(𝑥, 𝑦) ≥ 𝑇
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                           (12) 

where  𝑆 is the set of relevant scales and T  is an empirically chosen threshold. It avoids 

problems with aliasing and phase distortion because it does not reduce data. It keeps small 

details important for low-intensity veins. It can handle changes in rotation and position in 

contactless palm imaging. Figure 7 shows the result of the IWUT method. 

   

       (a)                                                          (b) 

Figure 7.  Palm Vein Processed ROI Applied with IUWT Approach: (a) IUWT 

Response (0 rotation), (b) Extracted Vein Pattern 

4.3.3 Maximum Curvature (MC) Method 

The Maximum Curvature (MC) method is a tool for finding the centreline of blood 

vessels. The MC method finds these lines by checking the curvature along different directions. 

If   𝐼(𝑥, 𝑦) denote the preprocessed NIR palm image. For each scan line (row or column), the 

image intensity can be treated as a one-dimensional profile 𝐼(𝑠) where s represents the position 

along the scan direction. The curvature is defined as. 
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  𝑘(𝑠) =
𝐼′′(𝑠)

[1+(𝐼′(𝑠))
2

]3/2
      (13) 

Where 𝐼′(𝑠)  is the first order partial derivative and 𝐼′′(𝑠) is second order partial 

derivative. First zero-crossings of  𝐼′(𝑠) where the slope changes from negative to positive 

(local minima) are identified  (valley point). At each candidate valley point, 𝑘(𝑠) is computed.   

Points with 𝑘(𝑠) ≥ 𝑇𝑐 are considered as part of a vein centreline, where 𝑇𝑐 is an empirically 

determined curvature threshold. The method is applied in both horizontal and vertical directions 

to capture veins running in multiple orientations. 

𝑉𝑀𝐶(𝑥, 𝑦) = 𝑉ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙(𝑥, 𝑦) ⋃ 𝑉𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙(𝑥, 𝑦)   (14) 

         

        (a)                         (b)                          (c)                        (d)                      (e) 

Figure 8. Palm Vein Processed ROI Applied with Maximum Curvature (a) Z-

Normalized (b) Max Fused Response (c) Hybrid Threshold (d) Binary Vein Map (e) Palm 

Vein Overlapped on Original ROI 

Figure 8 shows output of Maximum Curvature method. 

4.3.4 Handcrafted Multi-Feature Ensemble with SVM Classification 

It begins with feature extraction using custom methods, followed by Support Vector 

Machine (SVM) classification. To capture palm vein characteristics like texture, edges, and 

frequency, this method combines various techniques. Images are resized for uniformity. 

CLAHE increases contrast to address lighting issues without increasing noise. Gaussian 

smoothing reduces high-frequency noise, while the Sobel operator highlights vein structures. 

Z-score normalization standardizes feature vectors before classification. Three handcrafted 

features are calculated per image. Histograms of Oriented Gradients (HOG) captures edge 

directions through gradient histograms in small areas. For a pre-processed ROI, horizontal and 

vertical gradients are computed using discrete derivative masks (Sobel operator). 

𝐺𝑥 = 𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥 − 1, 𝑦)    (15) 

𝐺𝑦 = 𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥, 𝑦 − 1)    (16) 

The magnitude and orientation of each pixel’s gradient are then: 

𝑚(𝑥, 𝑦) = √𝐺𝑥
2 + 𝐺𝑦

2 , 𝜃(𝑥, 𝑦) = arctan2(𝐺𝑦, 𝐺𝑥)   (17) 

The ROI is divided into cells where gradient orientation histograms are computed with 

bins for evenly spaced angles (0°–180°). Each gradient contributes weighted by magnitude. 

Multi-scale HOG features are extracted using cell sizes of 8, 16×16, and 32×32 pixels to encode 

vascular structures. Local Binary Patterns (LBP) encode texture by thresholding pixel 
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intensities against the neighborhood mean, providing a rotation- and illumination-robust 

representation of vein structures. For a given pixel at (𝑥𝑐, 𝑦𝑐) with intensity  𝐼𝑐 and 𝑃 neighbours 

on a circle of radius 𝑅′ the LBP code is 

𝐿𝐵𝑃𝑃,𝑅(𝑥𝑐, 𝑦𝑐)  = ∑ 𝑠(𝐼𝑝 − 𝐼𝑐). 2𝑝𝑃
𝑝=0    (18) 

where  𝐼𝑝 is the intensity of the 𝑝-th neighbour and 

𝑠(𝑧) = {
1, 𝑧 ≥ 0
0, 𝑧 < 0

     (19) 

In uniform patterns with up to two bitwise transitions, the histogram effectively 

differentiates features. Gabor filters (λ=4,8 pixels; θ=0°,45°,90°,135°) extract orientation-

specific frequency data. Each filter's mean and standard deviation statistically represent 

vascular patterns. The hybrid vector merges HOG, LBP, and Gabor features. Training images 

undergo random rotations (±5°), translations (±3 pixels), and contrast adjustments, applied to 

training samples only. Linear SVMs are trained for each descriptor, combining predictions via 

majority voting. For 0% recognition rates, a fallback nearest-neighbour match in hybrid space 

is triggered. Figure 9 shows classifier steps. 

             

   (a)                                        (b)                                    (c) 

Figure 9. Palm Vein Processed ROI Applied with (a) HOG (b) Gabor (c) LBP 

Classification performance is measured by overall accuracy and confusion matrices. 

Using multiple SVMs together improves accuracy and reliability in biometric systems, 

especially when there are changes in light, angle, and noise [40]. The majority voting method 

helps reduce errors and keeps results stable even when using different types of data. For palm 

vein recognition, using multiple SVMs aligns with past research on combining different 

biometric methods. This approach improves performance by using classifiers trained on 

different but related data of the same biometric feature. This is part of the proposed feature 

pipeline. Each descriptor 𝑓𝑘 ∊  𝑅𝑑𝑘  where 𝑘 ∊ {𝐻𝑂𝐺, 𝐿𝐵𝑃, 𝐺𝑎𝑏𝑜𝑟} captures distinct 

discriminatory cues: HOG encodes macro-structural vein flow orientation. LBP encodes fine-

grained texture and local contrast variations. Gabor encodes multi-scale, multi-directional 

frequency information for vein edge enhancement. For each feature type, an independent multi-

class Support Vector Machine (SVM) classifier 𝐶𝑘 is trained. Using the one-vs-one ECOC 

(Error-Correcting Output Codes) framework, the decision function for a test vector 𝑋𝑘 is: 

𝑦𝑘=̂𝐶𝑘(𝑋𝑘) = 𝑎𝑟𝑔max
𝑐∊y

 𝑤𝑐
𝑇𝜙(𝑋𝑘) + 𝑏𝑐   (20) 

where 𝜙( ) is the linear kernel mapping, 𝑤𝑐 and 𝑏𝑐 are learned parameters, and 𝑦 is the 

set of enrolled user identities. At inference time, the predictions from the three classifiers are 

fused using a majority voting scheme: 
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𝑦̂ = 𝑚𝑜𝑑𝑒({𝑦̂HOG, 𝑦̂LBP, 𝑦̂Gabor})     (21) 

Where 𝑚𝑜𝑑𝑒( ) returns the most frequent label among the three predictions. This 

method combines different types of data to reduce errors. For example, if one type of data (like 

LBP) is affected by light changes, other types (like HOG and Gabor) can still make the right 

choice. If a user's test results are all wrong, a backup method called nearest neighbour (NN) 

search is used with a mixed data feature. 

𝑓ℎ𝑦𝑏𝑟𝑖𝑑 = [𝑓𝐻𝑂𝐺||𝑓𝐿𝐵𝑃||𝑓𝐺𝑎𝑏𝑜𝑟]     (22) 

The similarity between the query and training samples is computed using cosine 

distance: 

𝑑𝑐𝑜𝑠(𝑝, 𝑞) = 1 −
𝑝.𝑞

||𝑝||2.||𝑞||2
    (23) 

The label of the closest training sample is used as the final decision for that query. This 

setup ensures: Classifier diversity - different features notice different vein traits. Robustness to 

problems - if one feature does poorly, others make up for it. Fail-safe mechanism - backup NN 

matching stops complete failure for any user.  For verification, cosine similarity on 

concatenated HOG, LBP and Gabor features was used; no classifier was trained. Images were 

pre-processed with CLAHE (clip=0.025), Gaussian smoothing (σ=0.5), resized to 300×300 

(outer) and 150×150 (input). HOG used cell sizes {8,16,32} pixels, 9 bins; LBP radius=1, 8 

neighbours, uniform, 32×32 cells; Gabor filters λ={4,8}, θ={0°,45°,90°,135°}, summarised by 

mean/std. Calibration for ECE/Brier used Platt-style logistic regression (IRLS, max 100 iters, 

tol=1e-6); fallback = min–max. Metrics include EER, TAR@10⁻³, AUC, with 95% CIs from 

500 bootstraps. For the ensemble SVM, three linear SVMs (HOG, LBP, Gabor) were trained 

and fused by majority vote with NN fallback. Hyperparameters: linear kernel, C= {0.1,1,10} 

(final=1), kernel scale=auto, class weights balanced. Optimizer: SMO, maxIter=1e5, tol=1e-4. 

Model selection: 5-fold CV (normal condition) minimizing EER / maximizing TAR@10⁻³. 

Training data were augmented with small rotations (±5°), translations (±3 pixels), and contrast 

jitter. 

4.4 Feature Pipeline Comparison 

Figure 10 compares the distribution of intra-class (genuine) and inter-class (impostor) 

similarity among the five conditions of acquisition across all four feature-extraction pipelines.  

The IUWT and Maximum Curvature methods demonstrate low levels of class separation, have 

overlapping distributions of scores and low genuine-impostor margin, which results in 

increased error rates. Gabor features are medium separable, intra-class scores show 0.70-0.75 

clusters and inter-class scores show 0.80-0.85 clusters though there is still a significant overlap. 
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       (a)                                                                    (b)  

   

            (c)                                                                  (d) 

Figure 10. Inter and Intra Class Feature Distribution for (a) Kumar Gabor (b) 

Maximum Curvature (c) IUWT (d) Ensemble SVM Approach 

The proposed ensemble of HOG, LBP and Gabor on the contrary, produces the most 

consistent and compact separation: intra-class scores are tightly clustered around 0.92-0.94, 

whereas inter-class scores are clustered around 0.96-0.97 across all conditions. Despite certain 

overlap that remains, the low variance and constant margins point to the enhanced strength of 

the ensemble approach. These distributions affirm the statistical tendencies in the EER and 

TAR measures and highlight the benefit of feature-level fusion to condition-robust palm vein 

recognition. 

 Results 

When comparing biometric verification, the FVC-type impostor protocol is a 

standardized testing method initially adopted by the Fingerprint Verification Competitions and 

thereafter used for other modalities such as palm vein authentication. If the dataset contains 

subjects, each with samples. The actual scores were calculated by verifying all different pairs 

of samples from the same person. The response of the verification system is evaluated using 

False Acceptance Rate (FMR) and the False Rejection Rate (FRR specified as: 

𝐹𝐴𝑅(𝜏) =
|{𝑠∊𝑆𝑖:𝑠≥𝜏}|

𝑁𝑖
     (24) 
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𝐹𝑅𝑅(𝜏) =
|{𝑠∊𝑆𝑔:𝑠<𝜏}|

𝑁𝑔
     (25) 

here 𝑆𝑖 and 𝑆𝑔 represent impostor and genuine score sets respectively, 𝑠 is the similarity 

score, and τ is the decision threshold. The Equal Error Rate (EER) is the operating point where 

FAR(τ)=FRR(τ). Palm vein features were obtained from ROI images, and similarity scores 

were computed across the dataset. False acceptance rate (FAR) and false rejection rate (FRR) 

decision thresholds were obtained from the score distribution without specifically referring to 

subject-based pairs. Equal error rate (EER) and true acceptance rate (TAR) at a fixed FAR were 

obtained from these distributions. While such an "all-scores plug-in" approach shows initial 

separability, it can be deceptive as thresholds are dependent on the test set. In the final 

evaluation, FVC-type pairing regimes was employed where actual scores were obtained from 

within-subject tests and impostor scores from cross-subject tests. Every feature extraction 

technique was optimized for minimum EER, and decision thresholds were determined by 

scanning score values. EER was computed where FAR and FRR intersect, and TAR at target 

FAR (e.g., 10⁻³) was computed likewise. Bootstrapped resampling was applied to estimate CIs 

for EER and TAR and provide more valid estimates than the all-scores method. 

5.1 Normalized cross-correlation (NCC) 

The Gabor magnitude response maps are normalized to reduce illumination bias and 

enhance local vein texture salience. Feature matching is done using normalized cross-

correlation (NCC) between the probe and gallery corresponding Gabor magnitude maps [19]. 

The NCC score between two feature maps 𝐹𝑝 and 𝐹𝑔 is defined as: 

𝑆
𝑁𝐶𝐶=

∑ (𝐹𝑝(𝑥,𝑦)−𝜇𝑝)(𝐹𝑔(𝑥,𝑦)−𝜇𝑔)𝑥,𝑦

√∑ (𝐹𝑝(𝑥,𝑦)−𝜇𝑝)2
𝑥,𝑦 ∗√∑ (𝐹𝑔(𝑥,𝑦)−𝜇𝑔)2

𝑥,𝑦

     (26) 

where 𝜇𝑝 and 𝜇𝑔 are the mean values of the probe and gallery feature maps. The final 

similarity score is computed as the average NCC value over all orientations: 

𝑆
𝑓𝑖𝑛𝑎𝑙=

1

𝑁𝜃
∑ 𝑆(𝑘)𝑁𝐶𝐶

𝑁𝜃
𝑘=1

     (27) 

A match is declared if  𝑆𝑓𝑖𝑛𝑎𝑙 exceeds a decision threshold τ, determined from training 

or validation data.  Figure 11 shows the FAR, and FRR against the threshold curve, as well as 

the DET, ROC and conditions-wise curves. 

  

   (a)                                                             (b)   
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   (c)      (d) 

  

       (e)              (f) 

 

(g) 

Figure 11. Kumar Gabor Approach (a) FAR, FRR (b) DET (c) ROC, Condition 

wise (d) FAR, FRR, (e) DET (f) ROC (g) EER, TAR with 95% CI 

Kumar Gabor method resulted in fair recognition performance. The FAR–FRR and 

ROC curves show an EER of 8.8% with TAR of approximately 71% at FAR = 10⁻³, which 

demonstrates fair robustness against illumination change. The DET curve showed a balanced 

but non-optimal trade-off at more stringent thresholds. Genuine–impostor score distributions 

had partial overlap, but with reasonably discriminative clusters. Condition-wise distributions 

demonstrated that temperature fluctuations (hot, cold) have little effect, whereas surface 
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impurities (dust, lotion) decreased margins of separation more significantly. Calibration plots 

were stable (low ECE and Brier), affirming uniform confidence estimates. 

5.2 Sum of Absolute Differences (SAD) 

The scale-specific detail coefficients from IUWT are normalized to reduce sensitivity 

to illumination changes and combined into a unique feature vector. 

  

   (a)                                                               (b)   

  

              (c)                                                                 (d)   

  

              (e)                                                                    (f) 
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(g) 

Figure 12. IUWT Approach (a) FAR, FRR (b) DET (c) ROC, Condition wise (d) 

FAR, FRR, (e) DET (f) ROC (g) EER, TAR with 95% CI 

Sum of absolute differences (SAD) is utilized for matching, an L1-norm distance metric 

between the probe 𝑓𝑝 and 𝑓𝑔 feature vectors: 

𝑑𝐿1(𝑓𝑝, 𝑓𝑔) = ∑ |𝑓𝑝,𝑖 − 𝑓𝑔,𝑖|
𝑛
𝑖=1     (28) 

A lower 𝑑𝐿1 value indicates greater resemblance between the two feature vectors. 

Verification decisions follow the rule Match if 𝑑𝐿1 ≤ 𝜏.  τ is decision threshold, empirically 

determined from training or validation data. Figure 12 shows the FAR, FRR against threshold 

curve, DET, ROC and conditions wise curves. The IUWT-SAD procedure had the poorest 

robustness. FAR–FRR and ROC plots yielded an EER of 16.4% with TAR as low as 62%, 

suggesting low discrimination. DET plots were extremely unreliable, particularly at low values 

of FAR. Genuine–impostor score distributions suggested heavy overlap under all 

circumstances. Condition-by-condition analysis further emphasized this flaw: both temperature 

changes and surface effects significantly reduce separability with lotion causing the largest 

performance degradation. Despite this, calibration values were within reasonable limits, 

meaning that decision scores are discriminative but not well-scaled. 

5.3 Pointwise Correlation Matching 

The MC algorithm detects vessel centrelines by computing curvature along intensity 

cross-sections and picking the points of maximum negative curvature. The result is a binary 

vein pattern map. Since hand placement can vary slightly, the probe and gallery templates are 

shifted in  𝑥  and  𝑦 within a small search range (± 𝑡𝑚𝑎𝑥) pixels. Normalized Cross-Correlation 

Matching computes, for each translation (𝑢, 𝑣), 

𝑆
(𝑢,𝑣)=

∑ (𝑉𝑝(𝑥,𝑦).𝑉𝑔(𝑥+𝑢,𝑦+𝑣)𝑥,𝑦

√∑ (𝑉𝑝(𝑥,𝑦)2
𝑥,𝑦 ∗√∑ 𝑉𝑔(𝑥+𝑢,𝑦+𝑣)2

𝑥,𝑦

    (29) 

where 𝑉𝑝 is the probe vein map, 𝑉𝑔 is the gallery vein map, and the sums run over the 

overlapping region after the shift. The maximum correlation over all translations is taken as the 

similarity score. 
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𝑆𝑓𝑖𝑛𝑎𝑙 = max
𝑢,𝑣

𝑆(𝑢, 𝑣)     (30) 

Verification decisions follow the rule Match if 𝑆𝑓𝑖𝑛𝑎𝑙 ≥ 𝜏. The Figure 13 shows the 

FAR, FRR against threshold curve, DET, ROC and conditions wise curves. 

       

                                  (a)                                                              (b) 

  

                                   (c)                                                                   (d) 

           

                                    (e)                                                                (f) 
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(g) 

Figure 13. MC Approach (a) FAR, FRR (b) DET (c) ROC, Condition wise (d) FAR, 

FRR, (e) DET (f) ROC (g) EER, TAR with 95% CI 

The Maximum Curvature algorithm performed midway between IUWT and Gabor. 

FAR–FRR and ROC plots yielded an EER of 13.1% and a TAR of around 66%, exhibiting 

partial robustness. DET curves showed increasing FRR at tighter operating points, confirming 

sensitivity under tight impostor thresholds. Score distributions showed only modest separation, 

with considerable overlap remaining. Condition-wise distributions indicated relative stability 

under hot/cold variations but a drastic decline under dust and lotion conditions where 

separability is less. Calibration errors were still low, indicating stable probability estimates even 

as discrimination power declined. 

5.4 Handcrafted Multi-Feature Ensemble with SVM Classification 

Here, discriminative feature vectors are extracted from palm vein ROI images using a 

combination of Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP), and 

Gabor filter responses. These feature vectors were used to train a multi-class Support Vector 

Machine (SVM) classifier in a one-vs-one scheme. During testing, the classifier produced 

predicted labels for unseen samples, which were compared against the true class identities to 

generate similarity scores. From these scores, genuine match distributions (comparisons 

between samples of the same subject) were constructed and impostor match distributions 

(comparisons across different subjects). The False Acceptance Rate (FAR) was computed as 

the fraction of impostor comparisons incorrectly classified as genuine, while the False 

Rejection Rate (FRR) was computed as the fraction of genuine comparisons incorrectly 

classified as impostors. 
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                                   (g)                                                                  (h) 

Figure 14. Ensemble SVM Approach a) FAR, FRR (b) DET (c) ROC, (d) Confusion 

Matrix Condition wise (e) FAR, FRR, (f) DET (g) ROC (h) EER, TAR with 95% CI 

Figure 14 shows the FAR and FRR against the threshold curve, DET, ROC and 

conditions wise curves. The ensemble SVM achieves the strongest results across analyses. The 

FAR-FRR and ROC curves show the lowest EER of 4.0% and the highest TAR (72.3% at FAR 

= 10⁻³). DET curves confirm robustness across the operating range, unlike single-feature 

methods. Genuine-impostor distributions show minimal overlap, demonstrating strong 

discrimination. The condition-wise plots demonstrate stability under hot and cold conditions, 

and while dust and lotion reduce margins, clusters remain well separated. 

Calibration analysis (ECE < 0.02, Brier < 0.03) validated reliable confidence scores, 

confirming the ensemble as the most robust pipeline. A more detailed per-condition calibration 

analysis showed that errors remained consistently low across environmental shifts. Relative to 

the normal baseline (ECE = 0.0054, Brier = 0.0187), the cold and hot conditions increased ECE 

by +0.0086 and +0.0092 respectively, while slightly improving Brier (−0.0035 and −0.0048). 

Under dusty and lotion conditions, ECE rose by +0.0145 and +0.0111, with Brier worsening 

by +0.0051 and +0.0052. Importantly, all calibration errors stayed <0.025, confirming that even 

under contaminants the model’s confidence estimates remained reliable. Analysis showed 

stability under temperature variations, with TAR@10⁻³ reaching 78.3% in cold and 79.8% in 

hot conditions, and EERs below 8%. Surface contamination posed challenges: TAR dropped 

to 67.0% (EER 8.3%) under dust and 64.8% (EER 12.8%) under lotion. The normal baseline 

achieved 71.8% TAR with 9.3% EER. AUC remained above 0.93 and calibration error (ECE 

< 0.02, Brier < 0.03) stayed low, showing reliable decision confidence across conditions. Table 

2 further compares the four feature-extraction pipelines. IUWT-SAD showed the weakest 

performance (EER 16.4%, TAR 62%), followed by Maximum Curvature (EER 13.1%, TAR 

66%), while Kumar Gabor achieved moderate robustness (EER 8.8%, TAR 71%). The 

proposed ensemble SVM provided the best trade-off, with an average EER of 4.0%, TAR@10⁻³ 

of 72.3%, and the highest AUC (0.963). In terms of efficiency, throughput ranged from 7.8 to 

9.5 images/second, with the ensemble operating near the upper end. These findings demonstrate 

that while single-feature pipelines degrade under challenging conditions, ensemble fusion 

substantially improves robustness and achieves a validated balance of accuracy, calibration, 

and computational feasibility. 
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Table 2. Comparison of Feature-Extraction Pipelines across Accuracy, Calibration, 

Efficiency, and Memory Metrics 

Method 

Avera

ge 

EER 

(%) 

Averag

e 

TAR@

1e-3 

(%) 

Avera

ge 

AUC 

Avera

ge 

ECE 

Avera

ge 

Brier 

Average 

Throughp

ut 

(image/s) 

Featur

e 

Storag

e (MB) 

MATLA

B Mem 

Used 

(MB) 

Gabor-NCC 8.8 71 0.95 0.012 0.02 9.5 3.9 5183 

IUWT-SAD 16.4 62 0.91 0.018 0.027 8 4 5183 

Maximum 

Curvature 
13.13 66 0.93 0.016 0.024 7.8 4.2 5183 

Ensemble 

SVM 

(proposed) 

4 72.3 0.963 0.014 0.019 8.8 4.2 5183 

Feature storage across all pipelines remained modest (3.9–4.2 MB), and MATLAB 

runtime memory usage was consistent at ~5.2 GB, indicating that even the proposed ensemble 

remains lightweight compared to typical deep learning models. This confirms that the method 

is feasible for deployment in resource-constrained or embedded environments. To evaluate the 

effect of individual preprocessing blocks on recognition performance, a controlled ablation 

study across four pipelines (Ensemble SVM, Gabor, Maximum Curvature, and IUWT) was 

conducted. Specifically, contrast enhancement (No CLAHE), denoising (No Gaussian 

smoothing), and vein map extraction (using raw intensities or reduced feature sets) were 

disabled while keeping the remaining pipeline unchanged. Table 3 evaluates the contribution 

of individual preprocessing stages across the four pipelines. The results confirm that contrast 

enhancement (CLAHE) is essential: removing it nearly doubled the EER for IUWT (12.1% → 

26.5%) and tripled the error for Ensemble (13.7% → 39.3%). In contrast, denoising had only a 

marginal influence (<1–2% change in EER for Gabor, MC, and IUWT), suggesting that 

Gaussian filtering plays a secondary role compared to contrast normalization. The most severe 

degradation was observed when vein map extraction was disabled, with EER increasing from 

14.8% to 28.2% for MC and from 12.1% to 33.9% for IUWT. Even the Ensemble “raw-only” 

variant reached 35.1% EER, highlighting the necessity of explicit vein enhancement and feature 

fusion. Overall, the ablation study validates the design choices of the proposed pipeline: 

CLAHE ensures robustness to condition-induced contrast changes, vein extraction provides 

discriminative structure, and the combination of HOG, LBP, and Gabor features yields the most 

reliable recognition performance. 

Table 3. Ablation Study of Preprocessing Steps 

Pipeline Variant EER (%) Threshold 

Gabor Full Pipeline 7.72 0.758 

No CLAHE 7.5 0.768 

No Denoise 7.72 0.76 
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No Vein Extract 13.42 0.576 

MC Full Pipeline 14.8 0.357 

No CLAHE 17.1 0.346 

No Denoise   15 0.35 

No Vein Extract 28.2 0.464 

IUWT Full Pipeline 12.1 0.283 

No CLAHE 26.5 0.236 

No Denoise 12.3 0.283 

No Vein Extract 33.9 0.791 

Ensemble Full Pipeline 13.68 0.916 

No CLAHE 39.28 0.9 

No Denoise 25.31 0.951 

No Vein Extract A (HOG+LBP only) 13.68 0.916 

No Vein Extract B (Gabor only) 30 0.992 

No Vein Extract C (Raw only) 35.09 0.986 

It is important to note that the absolute EER values in Table 3 are not directly 

comparable to those in Table 2. The main results in Table 2 were obtained using the full 

verification/classification pipeline with calibration and subject-level splits, whereas the 

ablation study in Table 3 was performed under a simplified pairwise cosine verification setting 

to isolate the effect of individual preprocessing blocks. This protocol change naturally yields 

higher EERs in Table 3, particularly for the ensemble variant. However, the relative trends 

remain consistent across both tables: contrast enhancement (CLAHE) and vein extraction are 

indispensable, denoising has minimal impact, and ROI alignment is critical for reproducibility. 

 Conclusion 

The work presented a condition-robust palm vein dataset consisting from 500 palm vein 

images of 100 subjects, which were collected in five real-world environmental conditions 

(normal, hot, cold, dusty and lotion-applied). Based on this dataset, a systematic comparison of 

various existing feature extraction pipelines (Kumar Gabor, IUWT-SAD, Maximum 

Curvature) is made, along with a new proposed multi-feature ensemble SVM which integrates 

HOG, LBP and Gabor descriptors. The suggested ensemble performed systematically better 

than single pipelines, attaining the lowest EER (4.0%), the highest TAR (72.3% at FAR=10-

3), and the best calibration (AUC = 0.963, ECE < 0.02, Brier < 0.03). Notably, it was robust 
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against environmental stress (temperature change, contamination of the surface). An ablation 

study further highlighted the role of preprocessing. Removing contrast enhancement (CLAHE) 

led to sharp performance drops across all pipelines (e.g., Ensemble: 13.7% → 39.3% EER; 

IUWT: 12.1% → 26.5% EER), while removing vein map extraction caused the most severe 

degradation (up to 34% EER for IUWT). In contrast, denoising had a negligible effect. These 

findings confirm that CLAHE and explicit vein enhancement are indispensable for robust 

recognition, while feature fusion in the ensemble maximizes discriminative power. The 

efficiency analysis proved that the algorithm is computationally light, with a throughput of 

approximately 9-12 images per second on commodity hardware, memory footprint of less than 

5.2GB and feature storage of less than 5MB. The method has been shown to be effective in 

embedded biometric applications.  

Besides the new dataset, this work demonstrates that manually constructed feature 

collections are still highly useful for condition-robust biometric recognition, particularly in 

cases where large-scale deep learning is inapplicable due to data or resource constraints. There 

are still some limitations. The size of the dataset, while sufficient to accomplish the analysis of 

controlled conditions, is limited to one demographic (students aged 18-20). Inter-dataset 

validation over publicly available benchmarks (PolyU, VERA, etc.) and ablation of 

preprocessing components (denoising, ROI alignment, contrast enhancement) were not 

performed because of scope limitations. Nevertheless, they are both clearly labeled possible 

future research directions, as well as expansion of the datasets and inclusion of more modern 

deep learning frameworks to expand their generalization. In summary, the work has the 

following contributions (i) a new reference dataset has been explicitly created to challenge 

robustness in the presence of realistic acquisition variability, and (ii) a lightweight, tested 

ensemble method has been explicitly developed that   exhibits high recognition accuracy, 

calibration and efficiency. The results provide a solid foundation for the further development 

of condition-robust palm vein recognition and emphasize the potential for practical 

implementation beyond laboratory conditions. 

References 

[1] Wu, Wei, Stephen John Elliott, Sen Lin, Shenshen Sun, and Yandong Tang. "Review 

of palm vein recognition." IET Biometrics 9, no. 1 (2020): 1-10. 

[2] Rastogi, Swati, Siddhartha P. Duttagupta, Anirban Guha, and Surya Prakash. "Palm 

vein pattern: Extraction and Authentication." In 2020 IEEE International Conference 

on Machine Learning and Applied Network Technologies (ICMLANT), IEEE, 

(2020): 1-5. 

[3] Wu, Wei, Yunpeng Li, Yuan Zhang, and Chuanyang Li. "Identity recognition system 

based on multi-spectral palm vein image." Electronics 12, no. 16 (2023): 3503. 

[4] Htet, Aung Si Min, and Hyo Jong Lee. "Contactless palm vein recognition based on 

attention-gated residual U-Net and ECA-ResNet." Applied Sciences 13, no. 11 (2023): 

6363. 

[5] Hernández-García, Ruber, Ricardo J. Barrientos, Cristofher Rojas, and Marco Mora. 

"Individuals identification based on palm vein matching under a parallel 

environment." Applied Sciences 9, no. 14 (2019): 2805. 



Suhas Chate, Vijay Patil, Yuvraj Parkale, Shailendrakumar Mukane 

 

Journal of Innovative Image Processing, September 2025, Volume 7, Issue 3  817 

 

[6] Kauba, Christof, and Andreas Uhl. "Robustness evaluation of hand vein recognition 

systems." In 2015 International Conference of the Biometrics Special Interest Group 

(BIOSIG), IEEE, (2015): 1-5. 

[7] Uhl, Andreas, Christoph Busch, Sébastien Marcel, and Raymond Veldhuis. Handbook 

of vascular biometrics. Springer Nature, 2020. 

[8] Gu, Kim Seung, Kim Jung Soo, and Park Kang Ryoung. "FGFNet: Fourier Gated 

Feature-Fusion Network with Fractal Dimension Estimation for Robust Palm-Vein 

Spoof Detection." Fractal and Fractional 9, no. 8 (2025): 478.  

[9] He, Zheng, Qiantong Xu, Yapeng Ye, and Wenxin Li. "Effects of meteorological 

factors on finger vein recognition." In 2017 IEEE International Conference on 

Identity, Security and Behavior Analysis (ISBA), (IEEE, 2017): 1-8. 

[10] Al-Khafaji, Ruaa SS, and Mohammed SH Al-Tamimi. "Vein biometric recognition 

methods and systems: A review." Advances in Science and Technology. Research 

Journal 16, no. 1 (2022): 36-46. 

[11] Hemis, Mustapha, Hamza Kheddar, Sami Bourouis, and Nasir Saleem. "Deep learning 

techniques for hand vein biometrics: A comprehensive review." Information Fusion 

114 (2025): 102716. 

[12] Chen, Yung-Yao, Chih-Hsien Hsia, and Ping-Han Chen. "Contactless multispectral 

palm-vein recognition with lightweight convolutional neural network." IEEE Access 

9 (2021): 149796-149806. 

[13] Ruan, Lihua, Zhiqin Yin, Shibing Zhou, Weibo Zheng, Wei Lu, Tao Zhang, and 

Shaowei Wang. "Vein visualization enhancement by dual-wavelength phase-locked 

denoising technology." Journal of Innovative Optical Health Sciences 17, no. 03 

(2024): 2350033. 

[14] Dai, Fen, Ziyang Wang, Xiangqun Zou, Rongwen Zhang, and Xiaoling Deng. 

"Noncontact palm vein ROI extraction based on improved lightweight HRnet in 

complex backgrounds." IET Biometrics 2024, no. 1 (2024): 4924184. 

[15] Kuang, Ying, Shuai Wang, Bincheng Mo, Shiyou Sun, Kai Xia, and Yuanmu Yang. 

"Palm vein imaging using a polarization-selective metalens with wide field-of-view 

and extended depth-of-field." npj Nanophotonics 1, no. 1 (2024): 24. 

[16] Mohamed, Abdelnasser, Ahmed Salama, and Amr Ismail. "Enhancing Ad Hoc 

Network Security using Palm Vein Biometric Features." Engineering, Technology & 

Applied Science Research 15, no. 1 (2025): 20034-20041. 

[17] Ozkan, Haydar, Muberra Aydin, Osman Ozcan, and Ümmühan Zengin. "A portable 

multispectral vein imaging system." Journal of Electrical Engineering 74, no. 1 (2023). 

[18] Lou, Jiashu, and Baohua Wang. "Palm vein recognition via multi-task loss function 

and attention layer." arXiv preprint arXiv:2211.05970 (2022). 

[19] Kumar, Ajay, and Yingbo Zhou. "Human identification using finger images." IEEE 

Transactions on image processing 21, no. 4 (2011): 2228-2244. 



Towards Condition-Robust Palm Vein Recognition: Dataset and Performance Analysis 

ISSN: 2582-4252  818 

 

[20] Aqreerah, Salwua, Alhaam Alariyibi, and Wafa El-Tarhouni. "Multispectral palmprint 

recognition based on three descriptors: LBP, Shift LBP, and Multi Shift LBP with 

LDA classifier." In 2022 IEEE 2nd International Maghreb Meeting of the Conference 

on Sciences and Techniques of Automatic Control and Computer Engineering (MI-

STA), IEEE, (2022): 506-510 

[21] Yang, Yang, Yingyue Zhou, Runxia Huang, Qi Liu, Hongsen He, and Xiaoxia Li. 

"Contactless Palmprint and Palm Vein Identity Recognition Via a Bimodal Network 

with Parameter-Adaptive Log-Gabor Convolution." Available at SSRN 4625638. 

[22] Wu, Wei, Yuan Zhang, Yunpeng Li, and Chuanyang Li. "Fusion recognition of 

palmprint and palm vein based on modal correlation." Mathematical Biosciences and 

Engineering 21, no. 2 (2024): 3129-3145. 

[23] Fanjiang, Yong-Yi, Cheng-Chi Lee, Yan-Ta Du, and Shi-Jinn Horng. "Palm vein 

recognition based on convolutional neural network." Informatica 32, no. 4 (2021): 

687-708. 

[24] Li, Meihui, Yufei Gong, and Zhaohui Zheng. "Finger vein identification based on 

large kernel convolution and attention mechanism." Sensors 24, no. 4 (2024): 1132. 

[25] Albano, Rocco, Lorenzo Giusti, Emanuele Maiorana, and Patrizio Campisi. 

"Explainable vision transformers for vein biometric recognition." IEEE Access 12 

(2024): 60436-60446. 

[26] Wulandari, Meirista, Rifai Chai, Basari Basari, and Dadang Gunawan. "Hybrid 

Feature Extractor Using Discrete Wavelet Transform and Histogram of Oriented 

Gradient on Convolutional-Neural-Network-Based Palm Vein Recognition." Sensors 

24, no. 2 (2024): 341. 

[27] Zhang, Renye, Yimin Yin, Wanxia Deng, Chen Li, and Jinghua Zhang. "Deep learning 

for finger vein recognition: A brief survey of recent trend." arXiv preprint 

arXiv:2207.02148 (2022). 

[28] Qin, Huafeng, Yuming Fu, Jing Chen, Mounim A. El-Yacoubi, Xinbo Gao, and Feng 

Xi. "Neural architecture search based global-local vision mamba for palm-vein 

recognition." arXiv preprint arXiv:2408.05743 (2024). 

[29] Jin, Xin, Hongyu Zhu, Mounîm A. El Yacoubi, Haiyang Li, Hongchao Liao, Huafeng 

Qin, and Yun Jiang. "Starlknet: Star mixup with large kernel networks for palm vein 

identification." arXiv preprint arXiv:2405.12721 (2024). 

[30] Shang, Sheng, Chenglong Zhao, Ruixin Zhang, Jianlong Jin, Jingyun Zhang, Rizen 

Guo, Shouhong Ding, Yunsheng Wu, Yang Zhao, and Wei Jia. "PVTree: Realistic and 

Controllable Palm Vein Generation for Recognition Tasks." In Proceedings of the 

AAAI Conference on Artificial Intelligence, vol. 39, no. 7, (2025): 6767-6775. 

[31] Qin, Huafeng, Yuming Fu, Huiyan Zhang, Mounim A. El-Yacoubi, Xinbo Gao, Qun 

Song, and Jun Wang. "MsMemoryGAN: A Multi-scale Memory GAN for Palm-vein 

Adversarial Purification." arXiv preprint arXiv:2408.10694 (2024). 



Suhas Chate, Vijay Patil, Yuvraj Parkale, Shailendrakumar Mukane 

 

Journal of Innovative Image Processing, September 2025, Volume 7, Issue 3  819 

 

[32] Chen, Liukui, Tengwen Guo, Li Li, Haiyang Jiang, Wenfu Luo, and Zuojin Li. "A 

finger vein liveness detection system based on multi-scale spatial-temporal map and 

light-vit model." Sensors 23, no. 24 (2023): 9637. 

[33] Chate, Suhas, Vijay Patil, and Yuvraj Parkale. "A Novel Setup for Palm Vein 

Biometrics Database Collection Under Different External Conditions." In 2024 2nd 

International Conference on Signal Processing, Communication, Power and 

Embedded System (SCOPES), IEEE, (2024): 1-6. 

[34] Kirchgasser, Simon, Christof Kauba, and Andreas Uhl. "Towards Understanding 

Acquisition Conditions Influencing Finger Vein Recognition." In Handbook of 

vascular biometrics, Cham: Springer International Publishing, (2019): 179-199. 

[35] Moroń, Tomasz, Krzysztof Bernacki, Jerzy Fiołka, Jia Peng, and Adam Popowicz. 

"Recognition of the finger vascular system using multi‐wavelength imaging." IET 

Biometrics 11, no. 3 (2022): 249-259. 

[36] Wang, Haixia, Lixun Su, Hongxiang Zeng, Peng Chen, Ronghua Liang, and Yilong 

Zhang. "Anti-spoofing study on palm biometric features." Expert Systems with 

Applications 218 (2023): 119546. 

[37] Kauba, Christof, and Andreas Uhl. "An available open-source vein recognition 

framework." In Handbook of Vascular Biometrics, pp. 113-142. Cham: Springer 

International Publishing, 2019. 

[38] Genovese, Angelo, Vincenzo Piuri, Konstantinos N. Plataniotis, and Fabio Scotti. 

"PalmNet: Gabor-PCA convolutional networks for touchless palmprint recognition." 

IEEE Transactions on Information Forensics and Security 14, no. 12 (2019): 3160-

3174. 

[39] Zhou, Yingbo, and Ajay Kumar. "Human identification using palm-vein images." 

IEEE transactions on information forensics and security 6, no. 4 (2011): 1259-1274. 

[40] Abukmeil, Y. R., and G. L. Marcialis. 2020. “Experimental Results on Palm Vein 

Based Personal Recognition Using Multi-Snapshot Fusion of Textural Features.” 

arXiv Preprint arXiv:2008.11818. 

 


