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Abstract

Palm vein biometrics is contactless identification through vascular vein patterns. The
paper presents a new dataset of 500 palm vein images from 100 individuals in 5 conditions
(normal, hot, cold, dusty, and lotion-applied). In contrast to current benchmarks, the dataset
directly simulates environmental and physiological variations. It compares three feature-
extraction pipelines (Kumar Gabor, [IUWT-SAD and Maximum Curvature) to a proposed
multi-feature ensemble SVM. The proposed SVM uses HOG, LBP and Gabor features. In all
cases, the ensemble achieves a mean EER 0f 4.0 %, TAR FAR=10-3 =72.3%, and AUC=0.963,
which is on par with Kumar Gabor (EER 8.8%), MC (EER 13.1%), and IUWT-SAD (EER
16.4%). Performance is consistent in response to temperature changes. There is only slight
performance deterioration in the presence of surface contaminants (dust, lotion). Calibration
analysis indicates low error (ECE < 0.02, Brier < 0.03). A throughput of up to 12 images per
second is achieved with the proposed feature pipeline. The results demonstrate that ensemble
fusion is highly effective for condition-resilient palm vein recognition. The new dataset offers
a good reference point for estimating real-world resilience beyond laboratory tests.

Keywords: Palm Vein Recognition, Biometrics, Vascular Patterns, Feature Extraction,
Ensemble SVM, Contactless Authentication, Dataset Evaluation.

1. Introduction

Biometric systems are v used for secure authentication and verification. In contrast to
passwords or tokens that can be readily stolen, biometric systems work with inherent human
physiological attributes that cannot be easily imitated [1]. Palm vein recognition is among the
safest modalities because subcutaneous vascular patterns are internal and not contact with the
environment [1],[2],[3],[4]. Near-infrared (NIR) light (700-900nm) assists in the improvement
of vascular imaging by focusing on deoxygenated haemoglobin. Mode transmission systems
have high contrast while mode reflection systems are cost-effective and suitable for use in
ATMs [3]. Tri-spectral and polarized imaging increase the visibility of veins in all skin tones
[5]. Palm vein identification, while promising, is vulnerable to temperature, dust, lotion, and
light. Current databases like CASIA, PolyU, and VERA are useful for benchmarking but do
not account for diversity in real-world capture conditions [6],[7]. Outdoor environments
influence recognition performance [8]. Large models like vision transformers and large-kernel
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networks achieve comparatively modest accuracy under changing conditions with minimal
training [9]-[13].

1.1 Palm Vein Biometrics

High-contrast vein shadows were provided by initial generation transmission systems
[2], while reflection-mode applications were brought forth with NIR sensors and LEDs, e.g.,
Fujitsu PalmSecure (2003) [3]. Maximum Curvature (MC), Repeated Line Tracking (RLT),
Local Binary Patterns (LBP), Weighted Local Descriptors (WLD) and 2D Gabor filters are
utilized for feature extraction [4],[5]. Recent developments include free-posed capture,
multispectral imaging, deep learning, and spoofing resistance [6], [8], [11], [14], [30]. IR vein
legibility is sensitive to temperature, dust, lotion, humidity, and wind interaction [33], [34].
However, this is not experimentally verified. ROI consistency is sensitive to illumination, skin
tone and sensor-hand distance sensitive [34], and wavelength optimization is still challenging
[33], [35]. They are vulnerable to synthetic vein spoofing [53] and thermal drift [33]. Public
databases (CASIA, PolyU, VERA) are limited to controlled setups. Deep learning methods
[23]-[25] perform well on benchmarks but suffer under acquisition changes [11], [14].

1.2 Objectives

Despite progress in acquisition optimization robustness analysis in realistic conditions
remains under-represented [3]. Available data sets do not adequately alter physiological and
environmental factors [7]. The main tasks will address key problems in palm vein biometrics:

e Present a palm vein dataset with 500 samples from 100 subjects under five
environmental conditions (normal, hot, cold, dusty, lotion) to capture variation.

e Compare preprocessing and ROI extraction techniques on feature extraction pipelines
(Kumar Gabor, [UWT, Maximum Curvature) under the same conditions.

e Propose a multi-feature ensemble SVM classifier (HOG, LBP, Gabor descriptors).
Test recognition accuracy, EER and TAR under different conditions to estimate
environmental effects.

Section 2 overviews palm vein biometrics literature and places this research. Section 3
describes datasets, acquisition settings and subject populations. Section 4 describes the
methodology-preprocessing, ROI extraction, features and matching. Section 5 presents
experimental results and analysis, including baseline comparisons and robustness testing.
Section 6 provides conclusions, limitations, and future research directions.

2. Related Works

The section presents the process utilized in palm vein feature-based human biometrics
recognition. It also covers the work done by fellow researchers in the last decade across the
globe.
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2.1 Imaging Principle

Palm vein patterns lie beneath the skin and require near-infrared (NIR) images for
scanning. CD or CMOS-based ICs with NIR (850 nm) are applied [11]. Multispectral imaging
shows high contrast between visible and invisible veins, independent of skin colour and
physiological states [12]. Dual wavelength illumination at 760 nm and 940 nm provides higher
contrast-to-noise ratios (CNR) [13]. Contact-based systems are more robust in pose and ROI
matching than contactless approaches [14]. Motion blur, depth-of-field (DOF) and lighting
affect contactless imaging. Solutions include VCSEL based NIR arrays [16] and polarization-
selective meta-lenses [15]. Multispectral systems work better outdoors with QTS [17].

2.2 Preprocessing & ROI Extraction

Raw palm images are pre-processed into high contrast inputs for feature extraction.
Previous methods used thresholding [11], while newer approaches use guidance filters [18] for
vessel contrasting. Vessel enhancement methods like maximum curvature (MC), repeated line
tracking (RLT) and Hessian-based approaches visualize vascular structures. ROI should be
cropped using geometric landmarks to reduce pose variation [ 19]. Recent works use lightweight
HRNet architectures [14] with key-point detection for accurate ROI localization despite
rotations and background clutter.

2.3 Handcrafted Feature Methods

Palm vein recognition used manual feature extractors before deep learning. Local
textures were captured using HOG, LBP, and LPQ [20]. Gabor filters provided multiscale
representations [21]. Wavelet techniques improved performance in low-quality imaging.
Hybrid approaches combining texture descriptors with vein extraction showed better robustness
[22]. However, handcrafted features require adjustments and lack cross-device generalization.
CNNs from ResNet and EfficientNet outperform handcrafted features [23]. Vision
Transformers model dependencies [25], while large-kernel CNNs improve structure capture
[24]. Recent research uses state-space models [28] and neural architecture search [27]. StarMix
improves generalization [29]. PVTree generates vascular topologies [30], while GANs produce
high-fidelity images [31]. Palm veins can be spoofed by printed attacks. PAD uses
physiological markers and multi-wavelength imaging [32]. Key datasets include CASIA,
PolyU, VERA, PUT, TJU-PV and UC3M. Dataset differences affect cross-dataset
performance. Evaluations use EER, accuracy, FAR, FRR, and ROC curves. Table 1 shows
results.

Table 1. Representative Palm Vein Recognition Methods and Reported Performance

Feature
Method & Year Extraction / Dataset(s) 1?51)1 Acz;r)acy
Model ¢ °
: LBP, SLBP, PolyU
I]:gi’ (8216];)5)’ 1[\;[(?]14 BP with MSLBP with | Multispectral - Up t0 99.96
LDABP Palmprint DB (Blue
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(2024) [32]

spectrum,
MSLBP)
VGG-16 + attention, multi- Xgi}éﬁ " Infrared palm- i 93.89
task loss (2022) [21] multi- tasi< loss vein datasets ’
Modal correlation fusion Hvbrid Multimodal 0.0173
(purification + PLS + ha};l derafied palmprint + — -
weighted sum) (2024) [22] palm vein 0.0008
ResNet50 FT (2020) [23] CNN TL VERA, PolyU 0.6 98.4
LaKNet + StarMix (2023) Large-kernel
[24], [29] CNN + Aug PUT, TJU-PV 0.42 99
Swin Transformer (2023) ViT UC3M, PolyU 0.38 99 1
[25] ’ ’ ’
PVTree + ViT (2024) [30] | SYnthetic CASIA, PUT 0.36 99.3
pretrain + ViT ’ ' '
Dual-WL +PAD CNN Liveness CNN | Custom 0.5 98.7

3. Dataset

To evaluate palm vein recognition under real-world variability, a new dataset using a
custom-built NIR device was developed. The dataset details and setup are given in [33], with

attention to acquisition protocol, subject diversity, and environmental conditions.

3.1 Acquisition Protocol

Each subject participated in an acquisition session conducted on different days to
capture both short-term and medium-term variability. During each session, the subject’s palm
was imaged under five distinct conditions:

1. Normal — Standard room temperature, clean palm.

2. Cold — Palm cooled by contact with cold water for ~1 minute.

3. Hot — Palm warmed with a heating pad or hot water exposure for ~1 minute.

4. Dusty — Fine dust particles applied to simulate environmental contamination.

5. Lotion applied — A thin layer of moisturizer applied to simulate oily or sweaty palms.
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The acquisition environment was a controlled laboratory room at 24-26 °C with low
ambient light. The custom enclosure minimized external light and maintained a palm-sensor
distance of 22 cm. Subjects placed their palms on a guide surface to reduce motion blur during
capture. Each palm was imaged once per condition, with 5 images per subject.

3.2 Subject Diversity

The dataset included 100 participants, consisting of 49 males and 51 females. All
subjects were within the age range of 18 to 20 years. In terms of skin tone distribution,
approximately 35% had light skin, 45% had medium skin, and 20% had dark skin. The
participants were drawn entirely from the student population. Each condition includes 100
samples, providing a balanced evaluation of algorithms under environmental variations.
Collected in a single session, the dataset captures short-term physiological dynamics and
external perturbations (temperature shifts, surface contamination) critical for robustness
analysis. A binomial estimate confirms that 100 samples per condition achieve >80% statistical
power for detecting moderate TAR differences at FAR=1073. However, when specifically
evaluating the ability to detect a 2-percentage-point TAR improvement at FAR = 107* with 95%
confidence, the power is much lower. With only 100 samples per condition, the calculated
statistical power remains below 10% across all five conditions (Normal, Hot, Cold, Dusty,
Lotion). This indicates that while the dataset is sufficient to capture moderate differences, it is
underpowered for detecting very small (<2 pp) TAR shifts. This limitation highlights the need
for larger-scale datasets in future work. Limitations include the narrow age range (18-20 years)
and absence of long-term variations (aging, sensor drift). Future work will incorporate cross-
dataset validation with public benchmarks (PolyU, VERA) to assess generalization. Images
follow the format userno_conditionno.jpg (e.g., 2_1.jpg). Example samples are shown in Fig.
1. The dataset will be released for non-commercial research upon request.

(a) (b) (©
(d)

(e)

Figure 1. Palm Vein Images under Different Conditions: (a) Normal, (b) Cold Palm,
(c) Hot Palm, (d) Dusty Palm and (e) Palm with Lotion
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4. Methodology

The PLUS OpenVein Toolkit is used to analyze the palm vein dataset [37]. It is an
open-source MATLAB based implementation of various algorithms for examining blood
vessel patterns. Additionally, an SVM classifier with a handcrafted multi-feature ensemble is
proposed and employed. Three different methods, each with a unique matching technique, to
identify features are employed.

4.1 Preprocessing and Region of Interest Localization (ROI)

The preprocessing pipeline features Otsu-based segmentation, adaptive-valley-point
ROI detection, reflection correction, and Contrast Limited Adaptive Histogram Equalization
(CLAHE).

Palm Vein Hand Feature Extraction
Image 5| Segmentation and |—»| Pre-processing |—» (Kumar Gabor, TUWT,
Acquisition ROI Extraction Maximum Curvature, SVM
Classifier)
v
Template Feature Verification/Rec
Database Comparison ognition Result

¥

Evaluation: FAR,
FRR, EER, TAR

Figure 2. Overall Process Flow of the Proposed Palm Vein Recognition System

Preprocessing remained constant across all feature extractors (Gabor-NCC, [UWT-
SAD, MC, and ensemble SVM) to minimize variability bias. Comparing CLAHE against raw
normalization and standard Histogram Equalization (HE) showed that CLAHE maintained
subtle vasculature and increased local contrast while avoiding noise issues during
environmental changes. This work focused on system robustness under realistic physiological
and environmental variability, without conducting complete ablation studies of individual
preprocessing steps. Future work will analyze the contribution of each preprocessing stage to
recognition accuracy. The overall workflow is summarized in Figure 2. Accurately identifying
the palm's main vein-rich area is crucial, as it makes it easier to omit the fingers, wrist, and
background. In this study, the region of interest (ROI) is identified using a technique based on
the PalmNet framework [38].

4.1.1 Hand Segmentation

The input which is 2D image I(x, y) is converted to grayscale (if needed) and binarized
via Otsu thresholding to produce a binary mask Ty¢g, (X, y) of the hand region:

1) I(x;y) 2 TOtsu (x’y)
0, otherwise

MOtsu(x'y) = { (H
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Figure 3 shows the thresholding process as given in equation (1).

(a) (b) (c) (d)

Figure 3. Palm Vein Image (a) Original (b) Threshold Image (c) Edge (d) Combined
Image

A gradient-based edge map E, ;z4(x,y) (Canny/Sobel) is computed. This detects
missing boundary segments, particularly around finger edges where illumination or skin
contrast is low. This is combined with the Otsu mask:

M; = Mo¢su U Eqaa (2)
Figure 3 (c), (d) show the output of equation (2).

A second edge map E,..p, (x,y) is generated. This helps identify spurious edges in the
background or within the palm area (e.g., caused by noise or background objects). This is
subtracted from the mask:

M, = M; — Erem (3)

Figure 4 shows the output of equation (3) where the edge map is subtracted from the
binary image produced earlier. Morphological opening and closing refine M,. this by reducing
small objects and smoothing edges. High-intensity reflections in NIR images caused by skin
specular highlights are identified via intensity thresholding:

1' I(x' y) = Trefl
0, otherwise

RG,y) = | )

(a) (b) (©) (d)

Figure 4. Palm Vein Image (a) Spurious Edge (b) Binary Palm (c) Reflection Regions (d)
Final Binary Palm with Contour in Red Line

These reflection regions are re-added to the binary mask to restore missing fingertip or
palm-edge pixels:
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Mfinal =M, UR (5
Figure 4 (c), and (d) show the output of equation (4) and (5).

The result Mginq; is a noise-free, reflection-corrected hand mask. It accurately
represents the palm boundary for subsequent ROI localization.

4.1.2 Adaptive Valley-Based ROI Localization

Valley point detection identifies two anatomical landmarks between the fingers. The
Euclidean distance d,, between these points defines the ROI scale:

d, = \/(xvl - xvz)z + (yvl - 3’v2)2 (6)

[ Original coordinates
> After local search
OSeIected coordinates

(a) (b) ©)
Figure 5. Palm Vein Image (a) Valley Points Detected (b) Rotated Image (c)
Extracted ROI

ROI dimensions (Wgg;, hror) are set proportionally to d,,. The hand mask is rotated so
its principal axis is vertically aligned:

I, =R(,—6),8 = %tan-l(ﬁ) (7)

The term py,, refers to a central moment of order p + q of the binary hand mask (or
grayscale image). p and q are the moment orders in x and y directions. p;; mixed second-order
central moment, captures the correlation between x and y coordinates. p, and p, are second-
order central moments along x and y axes respectively, representing spread in those directions.
A square ROI centered at the palm centroid (x., y,) is then extracted from I,.. Figure 5 shows
the identified valley and reference points, the rotated palm with centroid and ROI mapped, and
the final cropped ROL.

4.2 Preprocessing: Contrast Limited Adaptive Histogram Equalization (CLAHE)

CLAHE improves the visibility of low-contrast vein patterns in palm vein imaging by
addressing the problem of uneven NIR lighting brought on by the palm's curvature and
variations in skin scattering. A uniform distribution is used for CLAHE.
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4.3 Feature Extraction

Three different methods are used to analyse palm vein images. Each method comes
from a different type of image analysis. A new algorithm is presented and tested with the
dataset.

4.3.1 Gabor Filtering

Gabor filters are spatial-frequency filters that achieve optimal joint localization in both
spatial and frequency domains. These filters are extensively used in palm vein recognition to
enhance oriented texture patterns, especially the vein ridges, by convolving the image with
bandpass kernels that are specific to orientation and scale. The 2D Gabor filter is described as:

12 2 12 !
9(x,¥;4,0,9,0,Y) = exp (— %) cos (Zn% + 7!’) (8)
Where x’ = xcos0 + ysinf,y' = —xsinf + ycos, .. = wavelength of the sinusoidal

factor (related to scale), 6 = filter orientation, y = phase offset, c = Gaussian envelope’s
standard deviation, y = spatial aspect ratio.

Kumar et al. [39] presented an improved multi-orientation Gabor filter design for hand
vein imaging that can also be used for palm vein patterns.

Rmax(6) = 1pax [+ g5"")2 + (1 » g5y? ©)

This method suppresses isotropic noise while improving linear vein structures.
Background variations are suppressed by the Gaussian envelope. Regardless of hand posture,
vessels are captured by the multi-orientation design. Vein continuity detection is improved by
the phase congruency approach. The results of the Kumar Gabor approach's processing are
displayed in Figure 6.

(a) (b) (©) (d)

Figure 6. Palm Vein Processed ROI with Kumar Gabor Approach: (a) Normalized
Image, (b) Accumulated Gabor Response, (c) Threshold Image and (d) Final Extracted Vein
Pattern
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4.3.2 Isotropic Undecimated Wavelet Transform (IUWT) for Palm Vein Feature

Extraction

The Isotropic Undecimated Wavelet Transform (IUWT) is a type of wavelet transform.
It works well for finding faint, line-like patterns, like palm veins. Unlike regular wavelet
transforms, [IUWT does not reduce the image size, so the image quality remains the same at all
levels. Given an input image I(x,y), the IUWT decomposes it into a set of detail sub-bands
w;(x, y) at different scales j, and a coarse residual ¢;(x, y) at the coarsest scale J:

1(x,y) = ¢;(x,y) + T, wi(x,¥) (10)

IUWT is applied to NIR palm images to produce multi-scale vein feature maps: Fine
scales w; , w, capture thin veins. Medium scales w5 , w, enhance main vascular trunks. The
weighted reconstruction method reduces background texture but retains vein patterns. A binary
vein map was created by setting a threshold on the sum of chosen detail coefficients.

S(xﬂy)ZZje]Wj (x,y) (11)

1, S(x,y) =T
0, otherwise

Vnap (6 3) = | (12)

where S is the set of relevant scales and T is an empirically chosen threshold. It avoids
problems with aliasing and phase distortion because it does not reduce data. It keeps small
details important for low-intensity veins. It can handle changes in rotation and position in
contactless palm imaging. Figure 7 shows the result of the IWUT method.

(a) (b)

Figure 7. Palm Vein Processed ROI Applied with IUWT Approach: (a) [UWT
Response (0 rotation), (b) Extracted Vein Pattern

4.3.3 Maximum Curvature (MC) Method

The Maximum Curvature (MC) method is a tool for finding the centreline of blood
vessels. The MC method finds these lines by checking the curvature along different directions.
If I(x,y) denote the preprocessed NIR palm image. For each scan line (row or column), the
image intensity can be treated as a one-dimensional profile /(s) where s represents the position
along the scan direction. The curvature is defined as.
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111(s)

K = G ®
Where I'(s) is the first order partial derivative and I"(s) is second order partial
derivative. First zero-crossings of I'(s) where the slope changes from negative to positive
(local minima) are identified (valley point). At each candidate valley point, k(s) is computed.
Points with k(s) = T, are considered as part of a vein centreline, where T, is an empirically
determined curvature threshold. The method is applied in both horizontal and vertical directions

to capture veins running in multiple orientations.

VMC (x: y) = Vhorizontal (x’ y) U Vvertical (x' y) (14)

1 ¥ "
T ¥ 3 2
y
L

(a) (b) (©) (d) (e)

Figure 8. Palm Vein Processed ROI Applied with Maximum Curvature (a) Z-
Normalized (b) Max Fused Response (c) Hybrid Threshold (d) Binary Vein Map (e) Palm
Vein Overlapped on Original ROI

Figure 8 shows output of Maximum Curvature method.

4.3.4 Handcrafted Multi-Feature Ensemble with SVM Classification

It begins with feature extraction using custom methods, followed by Support Vector
Machine (SVM) classification. To capture palm vein characteristics like texture, edges, and
frequency, this method combines various techniques. Images are resized for uniformity.
CLAHE increases contrast to address lighting issues without increasing noise. Gaussian
smoothing reduces high-frequency noise, while the Sobel operator highlights vein structures.
Z-score normalization standardizes feature vectors before classification. Three handcrafted
features are calculated per image. Histograms of Oriented Gradients (HOG) captures edge
directions through gradient histograms in small areas. For a pre-processed ROI, horizontal and
vertical gradients are computed using discrete derivative masks (Sobel operator).

Gy=Ix+1Ly)—I(x—1y) (15)
Gy =1(x,y+1)—I(x,y—1) (16)

The magnitude and orientation of each pixel’s gradient are then:
m(x,y) = \/W , 0(x,y) = arctan2(G,, G,) (17)

The ROI is divided into cells where gradient orientation histograms are computed with
bins for evenly spaced angles (0°-180°). Each gradient contributes weighted by magnitude.
Multi-scale HOG features are extracted using cell sizes of 8, 16x16, and 32%32 pixels to encode
vascular structures. Local Binary Patterns (LBP) encode texture by thresholding pixel
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intensities against the neighborhood mean, providing a rotation- and illumination-robust
representation of vein structures. For a given pixel at (x., y.) with intensity I, and P neighbours
on a circle of radius R, the LBP code is

LBPp p(xc,yc) = 25:05(119 - Ic)-zp (18)
where [, is the intensity of the p-th neighbour and

1,z=0
0,z<0

s(2) = { (19)

In uniform patterns with up to two bitwise transitions, the histogram effectively
differentiates features. Gabor filters (A=4,8 pixels; 6=0°,45°,90°,135°) extract orientation-
specific frequency data. Each filter's mean and standard deviation statistically represent
vascular patterns. The hybrid vector merges HOG, LBP, and Gabor features. Training images
undergo random rotations (+5°), translations (+3 pixels), and contrast adjustments, applied to
training samples only. Linear SVMs are trained for each descriptor, combining predictions via
majority voting. For 0% recognition rates, a fallback nearest-neighbour match in hybrid space
is triggered. Figure 9 shows classifier steps.

(a) (b) (c)
Figure 9. Palm Vein Processed ROI Applied with (a) HOG (b) Gabor (c) LBP

Classification performance is measured by overall accuracy and confusion matrices.
Using multiple SVMs together improves accuracy and reliability in biometric systems,
especially when there are changes in light, angle, and noise [40]. The majority voting method
helps reduce errors and keeps results stable even when using different types of data. For palm
vein recognition, using multiple SVMs aligns with past research on combining different
biometric methods. This approach improves performance by using classifiers trained on
different but related data of the same biometric feature. This is part of the proposed feature
pipeline. Each descriptor f;, € R% where k € {HOG,LBP,Gabor} captures distinct
discriminatory cues: HOG encodes macro-structural vein flow orientation. LBP encodes fine-
grained texture and local contrast variations. Gabor encodes multi-scale, multi-directional
frequency information for vein edge enhancement. For each feature type, an independent multi-
class Support Vector Machine (SVM) classifier Cj, is trained. Using the one-vs-one ECOC
(Error-Correcting Output Codes) framework, the decision function for a test vector X, is:

Vie=Ci (X)) = argmax wl ¢ (Xy) + b (20)
where ¢ () is the linear kernel mapping, w, and b, are learned parameters, and y is the

set of enrolled user identities. At inference time, the predictions from the three classifiers are
fused using a majority voting scheme:
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¥y = mode({ynoa, YLBp, YGavor}) (21)

Where mode( ) returns the most frequent label among the three predictions. This
method combines different types of data to reduce errors. For example, if one type of data (like
LBP) is affected by light changes, other types (like HOG and Gabor) can still make the right
choice. If a user's test results are all wrong, a backup method called nearest neighbour (NN)
search is used with a mixed data feature.

fhybrid = [fHOGllfLBPllfGabor] (22)

The similarity between the query and training samples is computed using cosine
distance:

p.q
Aeos(Pr@) = 1 =150 1e, 23)
The label of the closest training sample is used as the final decision for that query. This
setup ensures: Classifier diversity - different features notice different vein traits. Robustness to
problems - if one feature does poorly, others make up for it. Fail-safe mechanism - backup NN
matching stops complete failure for any user. For verification, cosine similarity on
concatenated HOG, LBP and Gabor features was used; no classifier was trained. Images were
pre-processed with CLAHE (clip=0.025), Gaussian smoothing (6=0.5), resized to 300%300
(outer) and 150x150 (input). HOG used cell sizes {8,16,32} pixels, 9 bins; LBP radius=1, 8
neighbours, uniform, 32x32 cells; Gabor filters A={4,8}, 6={0°,45°,90°,135°}, summarised by
mean/std. Calibration for ECE/Brier used Platt-style logistic regression (IRLS, max 100 iters,
tol=1e-6); fallback = min—max. Metrics include EER, TAR@1073, AUC, with 95% Cls from
500 bootstraps. For the ensemble SVM, three linear SVMs (HOG, LBP, Gabor) were trained
and fused by majority vote with NN fallback. Hyperparameters: linear kernel, C= {0.1,1,10}
(final=1), kernel scale=auto, class weights balanced. Optimizer: SMO, maxlIter=1e5, tol=1e-4.
Model selection: 5-fold CV (normal condition) minimizing EER / maximizing TAR@107.
Training data were augmented with small rotations (+5°), translations (£3 pixels), and contrast
jitter.

4.4 Feature Pipeline Comparison

Figure 10 compares the distribution of intra-class (genuine) and inter-class (impostor)
similarity among the five conditions of acquisition across all four feature-extraction pipelines.
The IUWT and Maximum Curvature methods demonstrate low levels of class separation, have
overlapping distributions of scores and low genuine-impostor margin, which results in
increased error rates. Gabor features are medium separable, intra-class scores show 0.70-0.75
clusters and inter-class scores show 0.80-0.85 clusters though there is still a significant overlap.
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Gabor — Intra vs Inter (all conditions) ’ Maximum Curvature — Intra vs Inter (all conditions)
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The proposed ensemble of HOG, LBP and Gabor on the contrary, produces the most
consistent and compact separation: intra-class scores are tightly clustered around 0.92-0.94,
whereas inter-class scores are clustered around 0.96-0.97 across all conditions. Despite certain
overlap that remains, the low variance and constant margins point to the enhanced strength of
the ensemble approach. These distributions affirm the statistical tendencies in the EER and
TAR measures and highlight the benefit of feature-level fusion to condition-robust palm vein
recognition.

5. Results

When comparing biometric verification, the FVC-type impostor protocol is a
standardized testing method initially adopted by the Fingerprint Verification Competitions and
thereafter used for other modalities such as palm vein authentication. If the dataset contains
subjects, each with samples. The actual scores were calculated by verifying all different pairs
of samples from the same person. The response of the verification system is evaluated using
False Acceptance Rate (FMR) and the False Rejection Rate (FRR specified as:

|fsesis=1)]

FAR(7) = 528

(24)
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{seSg:s<7}|

FRR(7) = . (25)
Ng

here §; and S, represent impostor and genuine score sets respectively, s is the similarity
score, and 7 is the decision threshold. The Equal Error Rate (EER) is the operating point where
FAR(1)=FRR(t). Palm vein features were obtained from ROI images, and similarity scores
were computed across the dataset. False acceptance rate (FAR) and false rejection rate (FRR)
decision thresholds were obtained from the score distribution without specifically referring to
subject-based pairs. Equal error rate (EER) and true acceptance rate (TAR) at a fixed FAR were
obtained from these distributions. While such an "all-scores plug-in" approach shows initial
separability, it can be deceptive as thresholds are dependent on the test set. In the final
evaluation, FVC-type pairing regimes was employed where actual scores were obtained from
within-subject tests and impostor scores from cross-subject tests. Every feature extraction
technique was optimized for minimum EER, and decision thresholds were determined by
scanning score values. EER was computed where FAR and FRR intersect, and TAR at target
FAR (e.g., 107%) was computed likewise. Bootstrapped resampling was applied to estimate Cls
for EER and TAR and provide more valid estimates than the all-scores method.

5.1 Normalized cross-correlation (NCC)

The Gabor magnitude response maps are normalized to reduce illumination bias and
enhance local vein texture salience. Feature matching is done using normalized cross-
correlation (NCC) between the probe and gallery corresponding Gabor magnitude maps [19].
The NCC score between two feature maps F, and F; is defined as:

Y,y Fpey)—pp)(Fgx,y)—ug) (26)
\/Zx,y(Fp (X.Y)—#p)z*\/Zx,y(Fg (xy)-png)?

NCC=

where p,, and p, are the mean values of the probe and gallery feature maps. The final

similarity score is computed as the average NCC value over all orientations:
2

Sfinal=NL921,l’=91 S(Knce (27)

A match is declared if Sf;pq; €xceeds a decision threshold 1, determined from training

or validation data. Figure 11 shows the FAR, and FRR against the threshold curve, as well as
the DET, ROC and conditions-wise curves.

FAR and FRR vs Threshold DET
T T e

™ g

FAR
FRR

Error Rate (%)
@
g

Threshold FMR
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Figure 11. Kumar Gabor Approach (a) FAR, FRR (b) DET (c) ROC, Condition
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Kumar Gabor method resulted in fair recognition performance. The FAR—FRR and
ROC curves show an EER of 8.8% with TAR of approximately 71% at FAR = 1073, which
demonstrates fair robustness against illumination change. The DET curve showed a balanced
but non-optimal trade-off at more stringent thresholds. Genuine—impostor score distributions
had partial overlap, but with reasonably discriminative clusters. Condition-wise distributions
demonstrated that temperature fluctuations (hot, cold) have little effect, whereas surface
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impurities (dust, lotion) decreased margins of separation more significantly. Calibration plots
were stable (low ECE and Brier), affirming uniform confidence estimates.

5.2 Sum of Absolute Differences (SAD)

The scale-specific detail coefficients from IUWT are normalized to reduce sensitivity
to illumination changes and combined into a unique feature vector.

DET (IUWT rollback)
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Figure 12. IUWT Approach (a) FAR, FRR (b) DET (c) ROC, Condition wise (d)
FAR, FRR, (e) DET (f) ROC (g) EER, TAR with 95% CI

Sum of absolute differences (SAD) is utilized for matching, an L1-norm distance metric
between the probe f,, and f; feature vectors:

dui(fo f) = 2t fpi = fol (28)

A lower d;; value indicates greater resemblance between the two feature vectors.
Verification decisions follow the rule Match if d;; < 7. 71 is decision threshold, empirically
determined from training or validation data. Figure 12 shows the FAR, FRR against threshold
curve, DET, ROC and conditions wise curves. The [IUWT-SAD procedure had the poorest
robustness. FAR-FRR and ROC plots yielded an EER of 16.4% with TAR as low as 62%,
suggesting low discrimination. DET plots were extremely unreliable, particularly at low values
of FAR. Genuine-impostor score distributions suggested heavy overlap under all
circumstances. Condition-by-condition analysis further emphasized this flaw: both temperature
changes and surface effects significantly reduce separability with lotion causing the largest
performance degradation. Despite this, calibration values were within reasonable limits,
meaning that decision scores are discriminative but not well-scaled.

5.3 Pointwise Correlation Matching

The MC algorithm detects vessel centrelines by computing curvature along intensity
cross-sections and picking the points of maximum negative curvature. The result is a binary
vein pattern map. Since hand placement can vary slightly, the probe and gallery templates are
shifted in x and y within a small search range (& ¢t,,,4,) pixels. Normalized Cross-Correlation
Matching computes, for each translation (u, v),

Yx,yVp(xy).Vgx+uy+v) (29)
JEryWpeen2 [Sayvgteruyo?

(wv)=

where Vj, is the probe vein map, V; is the gallery vein map, and the sums run over the

overlapping region after the shift. The maximum correlation over all translations is taken as the
similarity score.
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Stinar = MaxS(u, v) (30)
u,v

Verification decisions follow the rule Match if Sfinq; = 7. The Figure 13 shows the

FAR, FRR against threshold curve, DET, ROC and conditions wise curves.
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Figure 13. MC Approach (a) FAR, FRR (b) DET (¢) ROC, Condition wise (d) FAR,
FRR, (e) DET (f) ROC (g) EER, TAR with 95% CI

The Maximum Curvature algorithm performed midway between IUWT and Gabor.
FAR-FRR and ROC plots yielded an EER of 13.1% and a TAR of around 66%, exhibiting
partial robustness. DET curves showed increasing FRR at tighter operating points, confirming
sensitivity under tight impostor thresholds. Score distributions showed only modest separation,
with considerable overlap remaining. Condition-wise distributions indicated relative stability
under hot/cold variations but a drastic decline under dust and lotion conditions where
separability is less. Calibration errors were still low, indicating stable probability estimates even
as discrimination power declined.

5.4 Handcrafted Multi-Feature Ensemble with SVM Classification

Here, discriminative feature vectors are extracted from palm vein ROI images using a
combination of Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP), and
Gabor filter responses. These feature vectors were used to train a multi-class Support Vector
Machine (SVM) classifier in a one-vs-one scheme. During testing, the classifier produced
predicted labels for unseen samples, which were compared against the true class identities to
generate similarity scores. From these scores, genuine match distributions (comparisons
between samples of the same subject) were constructed and impostor match distributions
(comparisons across different subjects). The False Acceptance Rate (FAR) was computed as
the fraction of impostor comparisons incorrectly classified as genuine, while the False
Rejection Rate (FRR) was computed as the fraction of genuine comparisons incorrectly
classified as impostors.
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Figure 14. Ensemble SVM Approach a) FAR, FRR (b) DET (c¢) ROC, (d) Confusion
Matrix Condition wise (¢) FAR, FRR, (f) DET (g) ROC (h) EER, TAR with 95% CI

Figure 14 shows the FAR and FRR against the threshold curve, DET, ROC and
conditions wise curves. The ensemble SVM achieves the strongest results across analyses. The
FAR-FRR and ROC curves show the lowest EER of 4.0% and the highest TAR (72.3% at FAR
= 107%). DET curves confirm robustness across the operating range, unlike single-feature
methods. Genuine-impostor distributions show minimal overlap, demonstrating strong
discrimination. The condition-wise plots demonstrate stability under hot and cold conditions,
and while dust and lotion reduce margins, clusters remain well separated.

Calibration analysis (ECE < 0.02, Brier < 0.03) validated reliable confidence scores,
confirming the ensemble as the most robust pipeline. A more detailed per-condition calibration
analysis showed that errors remained consistently low across environmental shifts. Relative to
the normal baseline (ECE = 0.0054, Brier = 0.0187), the cold and hot conditions increased ECE
by +0.0086 and +0.0092 respectively, while slightly improving Brier (—0.0035 and —0.0048).
Under dusty and lotion conditions, ECE rose by +0.0145 and +0.0111, with Brier worsening
by +0.0051 and +0.0052. Importantly, all calibration errors stayed <0.025, confirming that even
under contaminants the model’s confidence estimates remained reliable. Analysis showed
stability under temperature variations, with TAR@107 reaching 78.3% in cold and 79.8% in
hot conditions, and EERs below 8%. Surface contamination posed challenges: TAR dropped
to 67.0% (EER 8.3%) under dust and 64.8% (EER 12.8%) under lotion. The normal baseline
achieved 71.8% TAR with 9.3% EER. AUC remained above 0.93 and calibration error (ECE
<0.02, Brier <0.03) stayed low, showing reliable decision confidence across conditions. Table
2 further compares the four feature-extraction pipelines. [IUWT-SAD showed the weakest
performance (EER 16.4%, TAR 62%), followed by Maximum Curvature (EER 13.1%, TAR
66%), while Kumar Gabor achieved moderate robustness (EER 8.8%, TAR 71%). The
proposed ensemble SVM provided the best trade-off, with an average EER 0f4.0%, TAR@1073
of 72.3%, and the highest AUC (0.963). In terms of efficiency, throughput ranged from 7.8 to
9.5 images/second, with the ensemble operating near the upper end. These findings demonstrate
that while single-feature pipelines degrade under challenging conditions, ensemble fusion
substantially improves robustness and achieves a validated balance of accuracy, calibration,
and computational feasibility.
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Table 2. Comparison of Feature-Extraction Pipelines across Accuracy, Calibration,
Efficiency, and Memory Metrics

Avera Averag Average | Featur | MATLA
o e Avera | Avera | Avera Throush o B Mem
Method & TAR®@ ge ge ge shp
EER Le? AUC | ECE | Brier ut Storag Used
(%) (%) (image/s) | e (MB) (MB)
(1]

Gabor-NCC 8.8 71 095 | 0.012 | 0.02 9.5 39 5183

IUWT-SAD 16.4 62 091 | 0.018 | 0.027 8 4 5183

Maximum: |5 43 | g0 0.93 | 0.016 | 0.024 7.8 42 5183
Curvature
Ensemble

SVM 4 72.3 0963 | 0.014 | 0.019 8.8 4.2 5183
(proposed)

Feature storage across all pipelines remained modest (3.9—4.2 MB), and MATLAB
runtime memory usage was consistent at ~5.2 GB, indicating that even the proposed ensemble
remains lightweight compared to typical deep learning models. This confirms that the method
is feasible for deployment in resource-constrained or embedded environments. To evaluate the
effect of individual preprocessing blocks on recognition performance, a controlled ablation
study across four pipelines (Ensemble SVM, Gabor, Maximum Curvature, and [UWT) was
conducted. Specifically, contrast enhancement (No CLAHE), denoising (No Gaussian
smoothing), and vein map extraction (using raw intensities or reduced feature sets) were
disabled while keeping the remaining pipeline unchanged. Table 3 evaluates the contribution
of individual preprocessing stages across the four pipelines. The results confirm that contrast
enhancement (CLAHE) is essential: removing it nearly doubled the EER for IUWT (12.1% —
26.5%) and tripled the error for Ensemble (13.7% — 39.3%). In contrast, denoising had only a
marginal influence (<1-2% change in EER for Gabor, MC, and IUWT), suggesting that
Gaussian filtering plays a secondary role compared to contrast normalization. The most severe
degradation was observed when vein map extraction was disabled, with EER increasing from
14.8% to 28.2% for MC and from 12.1% to 33.9% for IUWT. Even the Ensemble “raw-only”
variant reached 35.1% EER, highlighting the necessity of explicit vein enhancement and feature
fusion. Overall, the ablation study validates the design choices of the proposed pipeline:
CLAHE ensures robustness to condition-induced contrast changes, vein extraction provides
discriminative structure, and the combination of HOG, LBP, and Gabor features yields the most
reliable recognition performance.

Table 3. Ablation Study of Preprocessing Steps

Pipeline Variant EER (%) Threshold
Gabor Full Pipeline 7.72 0.758
No CLAHE 7.5 0.768
No Denoise 7.72 0.76
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No Vein Extract 13.42 0.576
MC Full Pipeline 14.8 0.357
No CLAHE 17.1 0.346
No Denoise 15 0.35
No Vein Extract 28.2 0.464
IUWT Full Pipeline 12.1 0.283
No CLAHE 26.5 0.236
No Denoise 12.3 0.283
No Vein Extract 33.9 0.791
Ensemble Full Pipeline 13.68 0.916
No CLAHE 39.28 0.9
No Denoise 25.31 0.951
No Vein Extract A (HOG+LBP only) | 13.68 0.916
No Vein Extract B (Gabor only) 30 0.992
No Vein Extract C (Raw only) 35.09 0.986

It is important to note that the absolute EER values in Table 3 are not directly
comparable to those in Table 2. The main results in Table 2 were obtained using the full
verification/classification pipeline with calibration and subject-level splits, whereas the
ablation study in Table 3 was performed under a simplified pairwise cosine verification setting
to isolate the effect of individual preprocessing blocks. This protocol change naturally yields
higher EERs in Table 3, particularly for the ensemble variant. However, the relative trends
remain consistent across both tables: contrast enhancement (CLAHE) and vein extraction are
indispensable, denoising has minimal impact, and ROI alignment is critical for reproducibility.

6. Conclusion

The work presented a condition-robust palm vein dataset consisting from 500 palm vein
images of 100 subjects, which were collected in five real-world environmental conditions
(normal, hot, cold, dusty and lotion-applied). Based on this dataset, a systematic comparison of
various existing feature extraction pipelines (Kumar Gabor, ITUWT-SAD, Maximum
Curvature) is made, along with a new proposed multi-feature ensemble SVM which integrates
HOG, LBP and Gabor descriptors. The suggested ensemble performed systematically better
than single pipelines, attaining the lowest EER (4.0%), the highest TAR (72.3% at FAR=10-
3), and the best calibration (AUC = 0.963, ECE < 0.02, Brier < 0.03). Notably, it was robust
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against environmental stress (temperature change, contamination of the surface). An ablation
study further highlighted the role of preprocessing. Removing contrast enhancement (CLAHE)
led to sharp performance drops across all pipelines (e.g., Ensemble: 13.7% — 39.3% EER;
IUWT: 12.1% — 26.5% EER), while removing vein map extraction caused the most severe
degradation (up to 34% EER for IUWT). In contrast, denoising had a negligible effect. These
findings confirm that CLAHE and explicit vein enhancement are indispensable for robust
recognition, while feature fusion in the ensemble maximizes discriminative power. The
efficiency analysis proved that the algorithm is computationally light, with a throughput of
approximately 9-12 images per second on commodity hardware, memory footprint of less than
5.2GB and feature storage of less than SMB. The method has been shown to be effective in
embedded biometric applications.

Besides the new dataset, this work demonstrates that manually constructed feature
collections are still highly useful for condition-robust biometric recognition, particularly in
cases where large-scale deep learning is inapplicable due to data or resource constraints. There
are still some limitations. The size of the dataset, while sufficient to accomplish the analysis of
controlled conditions, is limited to one demographic (students aged 18-20). Inter-dataset
validation over publicly available benchmarks (PolyU, VERA, etc.) and ablation of
preprocessing components (denoising, ROI alignment, contrast enhancement) were not
performed because of scope limitations. Nevertheless, they are both clearly labeled possible
future research directions, as well as expansion of the datasets and inclusion of more modern
deep learning frameworks to expand their generalization. In summary, the work has the
following contributions (i) a new reference dataset has been explicitly created to challenge
robustness in the presence of realistic acquisition variability, and (ii) a lightweight, tested
ensemble method has been explicitly developed that exhibits high recognition accuracy,
calibration and efficiency. The results provide a solid foundation for the further development
of condition-robust palm vein recognition and emphasize the potential for practical
implementation beyond laboratory conditions.
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