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Abstract   

Human identification through biometrics has become increasingly popular due to its 

reliable authentication in automated high-security surveillance systems. Several biometric 

models based on fingerprint, face detection, and iris recognition have been designed and 

developed for human identification. Among these biometrics, iris recognition, especially 

distance-based recognition, remains a significant challenge due to its small imaging target. In 

this paper, we propose a distant iris-based human identification framework employing a deep 

extracted feature transfer with machine learning (ML) models. In the first stage, we customized 

the traditional convolutional neural network (CNN) model and utilized three pre-trained models 

VGG16, VGG19, and ResNet50 for the extraction of deep features from normalized iris 

images. Later, we fed these deep features extraction into nine ML models for iris image 

classification. The proposed framework is validated via several experiments using the CASIA-

V4 iris dataset.  Experimental results show that the softmax classifier with our customized CNN 

model outperforms the considered pre-trained deep learning models, achieving top scores in 

accuracy (93.40%), precision (94.31%), recall (93.40%), F1-score (93.25%), and Cohen’s 

kappa (93.34%). This customized CNN model with a softmax also demonstrates competitive 

performance when compared with other distance-based iris recognition models. 

Keywords: Biometrics Recognition, Iris Features, Transfer Learning, Convolutional Neural 

Networks, Machine Learning Models, ROC Curves. 

 Introduction 

The biometric technique is very important to ensure the safety of the public, law 

enforcement, and healthcare systems. Conventional biometrics are limited to knowledge, token, 

SMS, and password-based authentication. These authentication systems are laborious, time-

consuming, inaccurate, and subject to human biases [1-3]. Due to technological advancements, 

the biometric technique has overcome these limitations by enabling fingerprint, eye 

recognition, face detection, and iris recognition [4-6]. Among these biometric techniques, iris 
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recognition is the most reliable. It is an internal organ of a human and has a unique feature. The 

other biometrics are replaceable, but the iris is irreplaceable because the irises of the two eyes 

of a human are not the same [7]. So, no one can share their iris with others. 

Iris patterns exhibit a remarkable level of uniqueness and complexity, retaining their 

distinctiveness from around age three throughout a person’s lifetime, as supported by clinical 

findings. As a result, research on iris biometrics is gaining great interest in the scientific 

community day by day. However, the collection of a quality iris image can be challenging 

because it may be affected by lighting, illumination, and the distance between a camera and an 

object. The distance is a critical factor for capturing an iris image from a human face. Long-

distance iris images under less-controlled conditions may affect the performance metric of any 

machine learning (ML) as well as deep learning models, compared to short-distance iris images. 

Therefore, this study proposes a distant iris recognition framework through deep extracted 

features transfer with ML models in the case of class-imbalanced data. In class-imbalanced 

datasets, instances belonging to minority classes are typically sparse and unevenly distributed, 

while the majority classes tend to dominate the feature space. It is crucial to identify a 

classification model that will be capable of handling the class imbalance problems, minimizing 

the impact of various noise sources, and improving overall classification accuracy.  

This study aims to reliably address current limitations and develop a supervised deep 

learning algorithm capable of performing distant iris recognition for human identification. To 

account for the textural complexity of the iris, this paper introduces deep transfer learning, 

which is designed to strategically capture robust and hierarchical features directly from 

normalized iris images. The VGG16, VGG19, ResNet50, and a 32-layer customized CNN 

model are employed to extract deep features from multiple layers of the architecture. After that, 

these deep extracted features are transferred to several ML techniques to search for an effective 

classification model. Specifically, random forest (RF), linear discriminant analysis (LDA), K-

nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), Naïve Bayes, 

multi-layer perceptron (MLP), extra tree (ET), and softmax classifiers are adopted to analyze 

classification performance using various benchmark statistical measures. Finally, we perform 

an optimal search to combine deep transfer features with ML models to improve recognition 

performance for human identification from distantly acquired iris images. The major 

contributions are summarized as follows: 

• This paper integrates deep feature extraction and transfer techniques with ML models for 

distant iris recognition. The combinations exhibit acceptable performance in iris 

recognition for human identification. 

• A customized 32-layer CNN model, along with VGG16, VGG19, and ResNet50 deep 

learning models, is implemented to extract deep features from multiple layers of the 

architecture. These feature extraction frameworks transfer the extracted deep features to 

different conventional ML models to find an effective classification model. 

• The study investigates the classification performance by employing different 

combinations of each deep feature model together with nine ML algorithms, such as RF, 

LDA, KNN, SVM, Naive Bayes, DT, MLP, ET, and softmax for iris image classification. 

Among these combinations, our customized CNN with a softmax framework generates 

the highest accuracy, precision, recall, F1-Score, and Cohen’s Kappa. 

• Finally, the proposed iris recognition approach achieves comparable recognition 

performance to existing distant iris recognition approaches. 
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The structure of the remaining sections of this paper is as follows: a brief overview of 

recent works related to iris classification is given in Section 2. The methodology of the iris 

classification framework is described in detail in Section 3. The experimental setup with 

evaluation protocols and results analysis through visual representations are presented in Section 

4. The conclusions are presented in Section 5. 

 Related Works 

Recent years have seen substantial progress in iris recognition systems, driven by 

innovations in ML algorithms and deep neural network architectures. This section highlights 

recent advancements in iris recognition systems. 

In [7], Daugman presented the prototype system for automatic human identification. 

Since then, this biometric has drawn attention from researchers across academia and industry 

due to its wide-ranging applications. Apart from Daugman, most authors have used wavelet-

based filters and distance-based similarity matching to improve biometric systems, with the 

most notable contributions made by Suvarchala et al. [8], Ahmadi et al. [9], Kaewphaluk et al. 

[10], Chirchi et al. [11], and Arnab et al. [12]. The limitation of their studies is the reliance on 

high-resolution cameras for iris image capture. Their accuracy significantly decreases in less 

controlled environments due to various challenges such as low resolution, off-axis capture 

angles, blur caused by motion, occlusion, and specular reflections. These issues commonly 

occur in real-time settings and degrade further processing. To overcome these challenges, the 

studies emphasize deep transfer learning, which can extract robust, hierarchical features from 

raw iris images, enabling effective handling of noise, occlusions, and varying imaging 

conditions. Traditional ML methods struggle with complex, noisy iris patterns due to their 

reliance on handcrafted features. 

Al-Waisy et al. developed the IrisConvNet framework using a CNN architecture that 

integrates features from both irises to enhance recognition accuracy [4]. Tianming et al. 

proposed an iris recognition method leveraging Capsule Networks to better capture spatial 

hierarchies and part-whole relationships in iris textures [13]. Arsalan et al. proposed a deep 

learning framework for iris segmentation specifically designed for visible light conditions, 

aiming to improve accuracy in challenging environments characterized by noise and reflections 

[14]. Ren et al. proposed a multiscale dynamic graph-based method that enhances biometric 

recognition performance in the presence of occlusions [15]. They employed CNNs to extract 

deep features, which are subsequently reorganized into a feature graph based on specific 

subregions. In the feature graph, each node represents a distinct local area of the given iris 

image, while the edges capture the correlation relationships among non-occluded areas. 

Ali et al. developed a hybrid feature extraction method combining Log-Gabor wavelets 

and Contourlet transform, achieving up to 95.93% accuracy on the CASIA-v4 dataset when 

fused with CNN and GLAC features [16]. Later, the same authors demonstrated high 

recognition accuracy by integrating diverse feature descriptors and classifiers, effectively 

addressing challenges posed by distant iris imaging [17]. However, a specific drawback is the 

system’s sensitivity to variations in lighting conditions and image quality, which can adversely 

affect performance in uncontrolled environments. Kaur et al. addressed iris recognition under 

unconstrained environmental conditions by employing polar harmonic transform and Zernike 

Moments to effectively manage variations caused by rotation, noise, and illumination changes 

[18, 19]. In [20], Meryem et al. developed a framework that integrates dual CNNs with texture-
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based features through decision-level fusion to enhance performance. However, their method 

involves concatenating face and iris images to improve recognition accuracy.  

In 2022, El-Latif et al. integrated an edge-detection strategy with the Hough transform 

to identify iris boundaries, edges, and semicircular structures, while employing CNNs to 

capture spatial hierarchies and localized feature patterns [21]. Recently, El-Sofany et al. 

reported a slight enhancement over the prior hybrid model by El-Latif et al. in [21] with similar 

settings [22]. Notably, the approach omits iris normalization entirely, which poses challenges 

for maintaining consistent performance. Both hybrid systems exhibit sensitivity to noise, low 

contrast, and partial occlusions from eyelashes or eyelids, and they fail to accurately segment 

iris textures in cases of non-circular iris shapes. Lee et al. were the first to introduce a cGAN 

approach for augmenting iris datasets, aiming to enhance recognition accuracy and mitigate 

overfitting caused by training on limited data [23]. However, the technique’s effectiveness 

diminishes when incorporating the periocular region, and challenges such as training instability 

and mode collapse inherent to GANs may affect the diversity and reliability of the generated 

data. 

Ribeiro et al. conducted a study on CNN-based techniques for iris recognition 

performance. Their method seeks to reconstruct fine-grained texture details by generating 

photo-realistic images, leveraging optimization processes guided by both the CNN architecture 

and its training strategy [24]. The study finds that while CNNs enhance visual quality, improved 

photo-realism does not inherently lead to superior recognition outcomes. A key drawback is 

the potential introduction of artifacts that may distort critical iris features, negatively affecting 

recognition reliability.  

As discussed above, distant iris classification remains challenging due to factors such 

as image processing, appropriate feature extraction, and reliable classifier performance. To 

address these issues, this paper emphasizes a transfer learning-based iris recognition system 

that specifically extends the CNN with a softmax-based deep learning classifier. This work is 

motivated by the ability of CNNs to autonomously learn and retrieve hierarchical patterns 

directly from low-quality images, enabling effective recognition of complex patterns with 

minimal manual feature engineering. 

 Methodology 

This section presents the deep transfer learning-based iris recognition framework, 

which adapts the CNN architecture and integrates a machine learning ML classifier within the 

fully connected layer. This iris recognition framework comprises a training phase and a testing 

phase. In the training phase, the collected iris images undergo preprocessing, including contrast 

enhancement, iris segmentation, and iris normalization. Following normalization, the iris 

textures are passed through several deep learning models to automatically capture the local iris 

patterns and encode them into feature vectors. Finally, the extracted features are divided into 

training and validation subsets, which are then used to train nine machine learning (ML) 

classifiers for building the classification models. Using the training subset, we train the ML 

classifiers and evaluate model performance based on an independent testing subset during the 

testing phase. To provide a clearer understanding, a schematic diagram of our proposed 

recognition framework is displayed in Fig. 1.  
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Figure 1. The Schematic Diagram of the Iris Recognition Framework 

Actually, in the proposed iris recognition framework, we employ four pre-trained deep 

feature extraction techniques- CNN, VGG16, VGG19, and ResNet50. Among these, the CNN 

model is customized before the fully connected layer (FC), and key hyperparameters are tuned 

to minimize the validation loss. The deep extracted feature spaces are then transferred to nine 

classical machine learning models (RF, LDA, KNN, SVM, DT, Naïve Bayes, MLP, ET, and 

softmax) for model training. The complete system workflow, from input acquisition to final 

classification using the customized CNN features, is illustrated in Fig. 2. The diagram 

highlights all major components and their interactions, including data preprocessing, CNN 

feature extraction, train–test data split, optimal hyperparameter selection, model training, and 

classification. Each of these stages is briefly described in the following subsections. 

 

Figure 2. The Complete Workflow of the Proposed Iris Recognition System 
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3.1 Image Pre-processing 

In the proposed approach, we have accomplished several image pre-processing tasks, 

namely, contrast enhancement, iris segmentation, and normalization, with the help of standard 

techniques. Indeed, the quality of the acquired eye image is degraded due to being captured 

from a long distance and under uncontrolled lighting conditions. Therefore, it is necessary to 

enhance the quality of degraded images for better segmentation of the iris from eye images. For 

this reason, we have used a well-known Single-Scale Retinex (SSR) algorithm for the contrast 

enhancement of eye images [25]. The SSR algorithm can be modeled by the following equation 

𝑅𝑙𝑚(𝑝, 𝑞) = log [
𝐼𝑚(𝑝,𝑞)

𝐺𝜏(𝑝,𝑞)∗𝐼𝑚(𝑝,𝑞)
]    (1) 

where 𝐼𝑚(𝑝, 𝑞) indicates a grayscale eye image, and 𝐺𝜏(𝑝, 𝑞) a Gaussian kernel 

expressed as 𝑒
−

(𝑝2+𝑞2)

𝜏2 . The convolution is represented by "*", with the standard deviation 

parameter 𝜏 = 1.5. 

3.2 Iris segmentation 

The enhanced eye images include eyelids, eye shadow, pupils, and sclera, which 

complicate the process of accurately identifying people through unique iris patterns. It is 

essential to segment the iris pattern from the enhanced eye images by removing those non-

unique patterns. Many image segmentation techniques are available in the literature. In this 

approach, we follow the best-performing graph-theoretical random walker technique for coarse 

iris segmentation mentioned in [26]. 

3.3 Iris normalization 

Variations in the scale of segmented iris images occur due to pupil dilation of the eye, 

variations in lighting, and image capture from a distance. In this paper, we consider Dogman’s 

rubber sheet model to eliminate the differences in the scale of the iris image and bring it within 

the same range [27].  This method normalizes segmented irises by converting Cartesian 

coordinates (𝑝, 𝑞) to polar coordinates (𝑟, 𝜃), where 𝑟 ∈ [0,1] and 𝜃 ∈ [0,2𝜋]. This 

transformation eliminates dimensional disparities and corrects texture distortions for accurate 

matching. The mapping from the original iris image to the normalized form can be expressed 

in Eq. (2) and Eq. (3). 

𝐼𝑚(𝑝(𝑟, 𝜃), 𝑞(𝑟, 𝜃))  →  𝐼𝑚(𝑟, 𝜃) 

𝑝(𝑟, 𝜃) =  (1 −  𝑟)𝑝𝑝𝑢(𝜃)𝑟𝑝𝑏𝑝(𝜃)    (2) 

𝑞(𝑟, 𝜃)  =  (1 −  𝑟)𝑞𝑝𝑢(𝜃)𝑟𝑞𝑏𝑝(𝜃)    (3) 

where 𝐼𝑚(𝑝, 𝑞) is the intensity at the original iris image coordinates (𝑝, 𝑞). Also, 

𝑝(𝑟, 𝜃) & 𝑞(𝑟, 𝜃) are the coordinates along 𝜃. The interpolation for normalization is usually 

linear between the pupil coordinates (𝑝𝑝𝑢(𝜃), 𝑞𝑝𝑢(𝜃)) and iris boundaries (𝑝𝑏𝑝(𝜃), 𝑞𝑏𝑝(𝜃)) 

for each 𝜃. Figure 3 sequentially illustrates the results of noise removal, iris segmentation, and 

normalization from the eye images. 
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Figure 3. The Framework Outlining the Image Preprocessing Schema [16] 

3.4 Customized CNN for Iris Feature Extraction 

In recent years, numerous deep learning architectures have been designed and 

developed to capture informative features from raw input data through multiple hidden layers 

and to generate class probabilities for accurate target prediction. Among these deep learning 

models, CNN-based methods have consistently demonstrated superior performance across 

diverse computer vision tasks [28–31]. 

In this study, we develop a customized CNN model for multi-class iris image 

classification (128 classes) aimed at human identification. The proposed CNN is designed to 

balance feature extraction, enabling hierarchical feature learning from low-level iris patterns. 

This customized architecture is chosen over deeper pre-trained models like VGG or ResNet to 

remain computationally feasible for the image dataset. The iris images are preprocessed by 

resizing them to 224×224 pixels, converting them to grayscale, normalizing the pixel values, 

and applying one-hot encoding to the labels. The customized model consists of 32 layers with 

three convolutional blocks (128, 64, and 32 filters).  The network is designed with an input 

layer, two convolutional layers, pooling layers, batch normalization layers, rectified linear unit 

(ReLU) layers, an FC layer, and a classification layer.  

The input layer receives preprocessed iris images, maintaining their original spatial 

dimensions and channel depth. The convolutional layers employ 16 learnable filters of size 3×3 

with a padding of 1, preserving the spatial hierarchies during feature extraction. Pooling layers 

reduce the spatial dimensions by selecting the maximum feature values, thereby lowering 

computational costs. Additionally, a batch normalization layer is applied after each 

convolutional layer to stabilize and accelerate training by normalizing the output activations. 

The network achieves non-linearity and enables the learning of complex patterns by 

incorporating the ReLU function, as defined in Eq. (4). 

𝑓(𝑥) = {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

      (4) 

The flattened output is then passed through a fully connected (FC) layer, which 

generates a dense representation by connecting all neurons from the previous layers. A softmax 

activation function converts the FC outputs into class probabilities, producing positive values 

that sum to one and enabling clear classification. Finally, the classification layer uses these 

probabilities to predict the target class and compute the loss via cross-entropy. During 

backpropagation, the cross-entropy loss quantifies the deviation between the predicted outputs 

and the true classes.   
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The trainable multistage architectural customized CNN model starts with 128 filters, 

and then decreases to 32 filters in deeper layers. After flattening, the network transitions to 

fully connected layers with 256, 128, and 64 neurons before the final 128-neuron classification 

layer. The largest number of parameters is in the first dense layer (~6 million), while 

convolutional layers have significantly fewer parameters. The model contains a total of 

6,312,576 parameters, including 6,310,784 trainable and 1,792 non-trainable. The model is 

trained with a batch size of 32 over 64 epochs, using an 80:20 random split between training 

and validation data. The hyperparameters are optimized with the Adam optimizer, configured 

with a learning rate of 0.001, β₁=0.9 (first moment decay rate), β₂ = 0.999 (second moment 

decay rate), and ε = 10⁻⁷ (numerical stability term). 

3.5 Machine Learning Models 

In our framework for distant iris recognition, the extracted feature vectors, obtained 

from the deep learning models (customized CNN, VGG16, VGG19 and ResNet50), are 

transferred to train nine classical machine learning models: Softmax classifiers, K-nearest 

neighbor (KNN), support vector machine (SVM), multi-layer perceptron (MLP), Naïve Bayes, 

random forest (RF), decision tree (DT), extra trese (ET), and linear discriminant analysis 

(LDA). These classifiers are evaluated for their ability to achieve accurate and reliable 

recognition performance. The following subsections provide a brief overview of these ML 

models. 

3.5.1 Softmax Classifier 

The softmax classifier uses cross-entropy loss, derived from the softmax function, to 

optimize the training model. The function converts raw class scores into normalized 

probabilities, enabling effective loss computation. By mapping scores to positive probabilities, 

it ensures stable and interpretable outputs. Cross-entropy loss then measures prediction 

accuracy by comparing these probabilities against true labels, penalizing errors, and refining 

model confidence. The gradient of the loss function is symmetric with respect to indices (p,q) 

[32]: 

𝜕 

𝜕𝑗𝑞 
𝜆(𝑝, 𝑞 ) =  𝜆(𝑝, 𝑞) (𝜂𝑗𝑝 −  𝜆(𝑝, 𝑞))   (5) 

3.5.2 K-Nearest Neighbor (KNN) 

As a distance-based supervised algorithm, KNN predicts the class of a query instance 

by aggregating the majority class among its K nearest neighbors [1]. The performance of the 

KNN algorithm can be severely influenced by the choice of K neighbors and distance metric, 

which relies on feature properties. 

3.5.3 Support Vector Machine (SVM) 

SVM predicts class labels by finding the optimal separating hyperplane. For a linear 

case, the hyperplane is defined as follows: 
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𝑔(𝑋)  =  𝑊𝑇𝑋 +  𝐵     (6) 

where 𝑊 is the weight vector, 𝑋 represents the feature vector, and B denotes the 

hyperplane’s bias. The equation of a hyperplane is considered as 𝑊𝑇𝑋 + 𝐵 =  0, where  
𝑊

∥𝑊∥
   

is perpendicular to the extricating hyperplane and its distance is always unity. The margin width 

𝑑 =
2

∥W∥ 
 is maximized between parallel hyperplanes 𝑊𝑇𝑋 + 𝐵 = ±1. Support vectors are the 

samples closest to these boundaries that determine the optimal margin [34, 35]. 

3.5.4 Multi-Layer Perceptron (MLP) 

MLP is a neural network with hidden layers that learns nonlinear input-output mappings 

[35]. Node weights 𝑤𝑝𝑞 update via: 

∆𝑤𝑝𝑞(𝛼) =  −𝛼 
𝜕𝜙(𝛼)

𝜕𝑆𝑞(𝛼)
𝑥𝑝(𝛼)     (7) 

where 𝜙(𝛼)  =  
1

2
∑ 𝑑𝑞

2(𝛼)𝑞 , 𝑥𝑝(𝛼) is the output of the neuron p from the previous layer 

(input to the current connection) at iteration 𝛼 and 𝑆𝑞(𝛼) = ∑ 𝑤𝑝𝑞(𝛼) 𝑥𝑝(𝛼). The activation 

derivative links output-layer weights to hidden-layer weights. 

3.5.5 Naive Bayes Classifier (NB) 

Naive Bayes classifies data using Bayes’ theorem with a conditional independence 

assumption between features. Given features 𝑢1, 𝑢2, … , 𝑢𝑛 and class 𝑣, the posterior probability 

is computed by the following equations [35]: 

𝑃(𝑣|𝑢1, 𝑢2, . . . , 𝑢𝑛)  =  
𝑃(𝑣) ∏ 𝑃(𝑢𝑖|𝑣)𝑛

𝑖=1

𝑃(𝑢1,𝑢2,...,𝑢𝑛)
   (8) 

The predicted class 𝑦̂ is the maximum a posteriori (mAP) estimate: 

𝑦̂ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑣

𝑃(𝑣) ∏ 𝑃(𝑢𝑖|𝑣)𝑛
𝑖=1     (9) 

3.5.6 Decision Tree (DT) 

Decision Trees (DTs) are supervised models for classification and regression that build 

tree structures by recursively splitting data using optimal feature thresholds. For classification, 

splits minimize Gini impurity, 𝐺 = 1 − ∑ 𝑝𝑖
2𝐶

𝑖=1 , where, 𝑝𝑖
2 denotes the squared probability of 

class 𝑖 in a node with C total classes. Trees grow until meeting stopping conditions using max 

depth [35]. 

3.5.7 Extra Trees Classifier (ET) 

Extra Trees (ET) is an ensemble method using uncorrelated decision trees, similar to 

Random Forest but with randomized splits. For each node, subsets 𝐾𝑝
𝑙𝑒𝑓𝑡

(𝛼) (features ≤ 
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threshold 𝑇𝑝) and 𝐾𝑝
𝑟𝑖𝑔ℎ𝑡

 (𝛼) (remaining features) are created from training vectors 𝑢ℎ and 

labels 𝑣, the parameter α minimizes the impurity [35]. 

3.5.8 Linear Discriminant Analysis (LDA) 

Linear Discriminant Analysis (LDA) maximizes class separation by optimizing the ratio 

of between-class scatter (𝑆𝐵) to within-class scatter (𝑆𝑤). For two classes 𝑌1 and 𝑌2, Fisher’s 

criterion finds the projection w that maximizes 𝑤 =
𝑤𝑇𝑠𝐵𝑤

𝑤𝑇𝑠𝑤𝑤
, where 𝑠𝐵 =  (𝑚1 −  𝑚2)(𝑚1 −

 𝑚2)𝑇 and 𝑠𝑤 = ∑ ∑ (𝑦 −  𝑚i)(𝑦 −  𝑚i) 
𝑇

𝑦∈𝑌𝑖𝑖=1  quantify the scatter both between and within classes 

with projection means 𝑚i 

3.5.9 Random Forest (RF) 

Random Forest (RF) is an ensemble of decision trees trained on random data subsets. 

For prediction, each tree votes for class n, and the majority wins. The vote is counted by Eq. 

(10). 

𝑢𝑛 = ∑ 𝐼(𝑥̂𝑡 = 𝑛)𝑛
𝑡=1      (10) 

where  𝑥̂𝑡 denotes the 𝑡-th prediction of trees for a certain instance, and 𝐼(∙) is 1 if the 

𝑡-th tree predicts class n [35]. The final output is 𝑥̂ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑛

𝑢𝑛. 

 Results and Discussion 

The effectiveness of deep transfer learning is evaluated and discussed in this section 

with respect to distant iris recognition for human identification. Quantitative metrics derived 

from confusion matrices and ROC curves are used to compare pre-trained deep learning models 

with fine-tuning on iris datasets. The analysis reveals how transfer learning mitigates data 

scarcity by leveraging learned features from large-scale datasets, reducing computational costs 

while maintaining high precision. The following subsections depict the overall results and 

discussion of the proposed method for this iris recognition framework for human identification. 

4.1 Database and Experimental Protocol 

For experimental evaluation, we have employed the CASIA-v4 distance database, a 

large dataset of distantly acquired facial images provided by CASIA [36]. The facial images 

were captured using a near-infrared camera positioned approximately 3 meters from the subject 

in less controlled environments. The CASIA-v4 database contains a total of 2,567 facial images 

collected from 142 subjects. Both eyes were separated from the full-face images, yielding 5,134 

eye images used for subject identification in the experimentation. Only regular images are 

available for the first 14 subjects in this database. To ensure reliable performance, we exclude 

these 14 subjects from our experiments. From the remaining 128 subjects, we randomly select 

80% of the iris images to train the classification models. Similarly, the remaining 20% were 

designated for model testing. 
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Google Colab, a cloud-hosted Jupyter Notebook platform that provides free 

computational resources, was used for all experiments.  By choosing the NVIDIA Tesla T4 

GPU from the runtime settings, a GPU runtime was enabled to speed up model training and 

evaluation.  The TensorFlow and Keras frameworks, as well as NumPy, Matplotlib, Pandas, 

Seaborn, and Scikit-learn, were used to implement deep learning models. 

Large numeric range features may disproportionately affect learning without 

normalization, leading to biased or unstable model performance.  According to the following 

formula, min-max normalization thus resolves this problem without causing the deep features 

V to distort notable feature differences: 

𝑉 =  (𝜗𝑗  −  𝜗𝑚𝑖𝑛)/(𝜗𝑚𝑎𝑥  −  𝜗𝑚𝑖𝑛)      (11) 

where 𝜗𝑗 represents the 𝑗th feature value between 𝜗𝑚𝑎𝑥 and  𝜗𝑚𝑖𝑛. These low-

dimensional, labeled, and scaled features facilitate effective training of the ML classifiers.  

In order to achieve optimal performance, different hyperparameter settings for 

classification models are tested during experimentation.  We use the Adam optimizer to 

optimize the important hyperparameters for nine machine learning classification models from 

the various settings; the ideal hyperparameter values are shown in Table 1. 

Table 1. Machine Learning Models and Key Optimal Hyperparameters 

ML Model Key Optimal Hyperparameters 

RF n_estimators value is 100, gini is set as the criterion, max_features is 'sqrt' 

with 42 random_state 

LDA The svd is used as the solver, where the tolerance level is 0.0001 

KNN K=5, 'uniform' weights, 'minkowski' as the distance metric 

SVM Kernel function is 'linear', C=1.0, gamma='scale', random_state value=42 

Naïve Bayes var_smoothing=1e-9 

DT The 'gini' is used as the criterion, splitter='best', and the value of 

random_state is 42 

MLP hidden_layer_sizes=256, max_iter=500, random_state=42, 

activation='relu', solver='adam'  

ET n_estimators=100, criterion='gini', max_features='sqrt', random_state=42 

Softmax  activation='softmax', input_units=128, output_units=128 

4.2 Evaluation Metrics 

In the experimental evaluation, multiple metrics are used to measure the accuracy and 

reliability of the classifiers. Since overall accuracy alone may be insufficient, particularly in 

cases of class imbalance, the evaluation framework also incorporates additional measures 
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derived from the confusion matrix to assess recognition performance for each class. The 

confusion matrix is presented in Table 2. 

Table 2. The Confusion Matrix 

 Predicted positive (𝑝) Predicted negative (𝑛) 

Actual positive (𝑝) True positives (𝑡𝑝) False negatives (𝑓𝑛) 

Actual negative (𝑛) False positives (𝑓𝑝) True negatives(𝑡𝑛) 

From the confusion matrix, the average precision, recall, F_1-score, and Cohen’s Kappa 

(κ) for this multi-class iris classification system are defined by the following equations: 

Average Precision=
1

𝐶
∑

𝑡𝑝𝑗

𝑡𝑝𝑗+𝑓𝑝𝑗

𝐶
𝑗=1     (12) 

Average Recall=
1

𝐶
∑

𝑡𝑝𝑗

𝑡𝑝𝑗+𝑓𝑛𝑗

𝐶
𝑗=1     (13) 

𝐹1 −measure=
 2 × Recall×Precision

 Recall + Precision
     (14) 

Cohen’s Kappa 𝜅 =
1

𝐶
∑

2(𝑡𝑝𝑗×𝑡𝑛𝑗−𝑓𝑝𝑗×𝑓𝑛𝑗)

(𝑡𝑝𝑗+𝑓𝑝𝑗)×(𝑓𝑝𝑗+𝑡𝑛𝑗)+(𝑡𝑝𝑗+𝑓𝑛𝑗)×(𝑓𝑛𝑗+𝑡𝑛𝑗)

𝐶
𝑗=1   (15) 

where 𝐶 is the total number of classes, indexed by 𝑗. The confusion matrix provides the 

basis for performance measures by comparing predicted and actual classifications for each class 

[39]. 

4.3 Experimental Results and Performance Analysis 

In this subsection, the obtained results from the various deep extracted features-based 

ML models are summarized and analyzed sequentially. The results of the VGG19 feature 

descriptor with nine classification models are presented in Table 3. 

Table 3. The Performance of Classification using the VGG19 Feature Descriptor 

Classifiers Accuracy Precision Recall 𝑭𝟏-Score Cohen’s Kappa 

Random Forest 0.6812 0.7156 0.6812 0.6592 0.6783 

LDA 0.7388 0.7854 0.7388 0.7288 0.7364 

KNN 0.3764 0.6028 0.3764 0.4062 0.3708 

SVM 0.8118 0.8452 0.8118 0.8083 0.8101 

Decision Tree 0.2121 0.2111 0.2111 0.2030 0.2053 

Naïve Bayes 0.4424 0.4957 0.4424 0.4370 0.4375 

MLP 0.7669 0.7938 0.7669 0.7605 0.7648 

Extra Trees 0.6938 0.7160 0.6938 0.6756 0.6911 

Softmax 0.9213 0.9325 0.9213 0.9197 0.9207 
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With the highest accuracy (0.9213), precision (0.9325), recall (0.9213), F_1-score 

(0.9197), and Cohen's Kappa (0.9207), softmax outperforms the others, as shown by the ML 

classified results in Table 3. It can also be demonstrated that the SVM, MLP, and LDA perform 

exceptionally well regarding balanced precision, recall, and AUC scores. On the other hand, 

overfitting and data distribution sensitivity cause Decision Tree (DT) and KNN to perform 

poorly, with low accuracy and agreement scores, respectively. Despite being straightforward, 

Naive Bayes (NB) performs poorly because of its high independence assumptions, whereas 

Random Forest and Extra Trees are effective because they utilize ensemble techniques. These 

findings indicate that the VGG19 descriptor is able to extract intricate features, and the softmax 

classifier will be superior to conventional classifiers. 

Table 4. The Classification Results of the VGG16 Feature Descriptor 

Classifiers Accuracy Precision Recall 𝑭𝟏-Score Cohen’s Kappa 

Random Forest 0.6713 0.6858 0.6713 0.6510 0.6685 

LDA 0.7753 0.8199 0.7753 0.7691 0.7733 

KNN 0.4368 0.6270 0.4368 0.4587 0.4317 

SVM 0.8146 0.8384 0.8146 0.8074 0.8130 

Decision Tree 0.2051 0.2355 0.2051 0.2047 0.1984 

Naive Bayes 0.4565 0.5497 0.4565 0.4595 0.4517 

MLP 0.7837 0.8226 0.7837 0.7854 0.7818 

Extra Trees 0.6826 0.6956 0.6826 0.6606 0.6798 

Softmax 0.9266 0.9277 0.9266 0.9221 0.9262 

Table 4 displays the comparative results of different classifiers in the VGG16 scenario. 

This table shows that softmax has the highest precision (0.9277), recall (0.9266), F_1-score 

(00.9221), Cohen's Kappa (0.9262), and accuracy (0.9266) when compared to other classifiers. 

Furthermore, considering the precision value (0.8384), SVM handles the complexity of data 

using VGG16 quite well. With an accuracy of 78.37%, the MLP model performs moderately. 

While LDA (0.7733), Random Forest (0.6685), and Extra Trees (0.6798) offer comparable 

agreement based on Cohen's kappa, their lower precision and recall compared to softmax 

suggest that they are more likely to generate classification errors. Perhaps as a result of their 

poor performance metrics, KNN and Naïve Bayes fall behind. Because it either overfits or 

underfits the Iris dataset's rich features, Decision Trees perform poorly on it. Softmax is the 

best classifier, according to Table 5's comparative analysis, with the highest accuracy (0.8441), 

precision (0.8623), recall (0.8441), F_1-score (0.8337), and Cohen's Kappa (0.8427).  

According to the classifier comparison in Table 5, softmax performs better than the 

others with the highest accuracy (0.8441), precision (0.8623), recall (0.8441), F_1-score 

(0.8337), and Cohen's Kappa (0.8427).  These findings demonstrate softmax's high predictive 

ability and dependability in the case of ResNet50.  With a robust accuracy of 0.8160, SVM also 

performs well. Softmax, which exhibits balanced metrics, comes in second.  Additionally, the 

LDA attains an accuracy of 0.7542, closely trailed by MLP and Extra Trees.  Cohen's Kappa 

indicates less successful classification, and Decision Tree and KNN perform worse with 

noticeably low accuracy. 
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Table 5. The ML Classified Results for the Resnet50 Feature Descriptor 

Classifiers Accuracy Precision Recall 𝑭𝟏-Score Cohen’s Kappa 

Random Forest 0.6671 0.6975 0.6671 0.6463 0.6642 

LDA 0.7542 0.8007 0.7542 0.7458 0.7520 

KNN 0.4621 0.6420 0.4621 0.4742 0.4573 

SVM 0.8160 0.8456 0.8160 0.8101 0.8144 

Decision Tree 0.1924 0.2115 0.1924 0.1870 0.1856 

Naïve Bayes 0.5323 0.5937 0.5323 0.5187 0.5282 

MLP 0.7093 0.7593 0.7093 0.7059 0.7067 

Extra Trees 0.6868 0.7198 0.6868 0.6685 0.6841 

Softmax  0.8441 0.8623 0.8441 0.8337 0.8427 

Table 6 displays the ML classified results for the customized CNN feature model.   The 

table demonstrates that, in contrast to the VGG16, VGG19, and ResNet50 models, all ML 

models unexpectedly outperformed them using customized 32-layer CNN deep features.  All 

eight classifiers, with the exception of Naïve Bayes, yield results that are almost identical for 

every performance metric.  As a result of its ability to fully utilize the deep hierarchical features 

extracted by the CNN, the softmax classifier achieves the best accuracy (93.40%) in distant iris 

recognition.  Softmax, a probabilistic classifier, offers the best precision, recall, F_1-score, and 

Cohen's Kappa, resulting in a distinct and accurately calibrated decision boundary.  

Table 6. The ML Classified Results for the Customized CNN Feature Descriptor 

Classifier Accuracy Precision Recall 𝑭𝟏-Score Cohen’s Kappa 

Random Forest 0.9059 0.9364 0.9058 0.9095 0.9050 

LDA 0.8932 0.9280 0.8932 0.8993 0.8923 

KNN 0.8960 0.9433 0.8960 0.9068 0.8951 

SVM 0.9017 0.9285 0.9017 0.9039 0.9008 

Decision Tree 0.8904 0.9181 0.8904 0.8921 0.8894 

Naïve Bayes 0.7275 0.8470 0.7275 0.7429 0.7252 

MLP 0.9157 0.9300 0.9157 0.9149 0.9150 

Extra Trees 0.9227 0.9354 0.9227 0.9215 0.9220 

Softmax 0.9340 0.9431 0.9340 0.9325 0.9334 

The aforementioned statistical analysis indicates that for distant iris recognition, the 

customized CNN-based features converted with a softmax classification model perform better 

than alternative deep feature-based machine learning models.  Transfer learning's capacity to 

efficiently extract iris features through multi-layer feature representation is what gives it its 

discriminative power.  Additionally, we use ROC curves to analyze performance in order to 

assess the efficacy of ML-based transfer learning as well as the discriminative power of the 
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feature descriptors.  Performance is shown by proximity to the top-left corner of ROC curves, 

which are plotted using the false positive and true positive rates across various classification 

thresholds.  Figures 4 and 5 show the ROC curves for the four deep feature-based and nine 

machine learning classifiers. 

   

Figure 4. The ROC Curves of ML Models with (a) VGG19 (Left) and (b) VGG16 

(Right) 

Multiple classifiers with VGG19 are compared in Fig. 4(a) according to their AUC 

scores, which show how well they can differentiate between classes.  With an AUC of 0.9977, 

the softmax model performs better than any other model, whereas SVM receives an AUC score 

of 0.9819.  Furthermore, with an AUC of 0.96, the MLP, LDA, Extra Trees, and Random Forest 

models come in close succession.  Across the threshold range, these models exhibit strong 

classification capabilities with low false positive rates and high true positive rates.  Although it 

performs fairly well, the KNN is marginally less efficient than the best-performing models, 

with an AUC of 0.8182.  However, with AUCs of 0.7187 and 0.6027, respectively, the Naive 

Bayes and Decision Tree classifiers perform noticeably worse, suggesting that their 

discriminatory power is limited.  

The ROC curves based on AUC scores of different competitive ML models with 

VGG16 are displayed in Fig. 4(b). This figure shows that the softmax provides excellent 

discrimination capability between classes with an AUC score of 0.9983. The next best 

performers are SVM (AUC=0.9869), MLP and LDA (AUC≈0.97), and Extra Trees and 

Random Forest (AUC≈0.96), all demonstrating strong, reliable classification performance. In 

contrast, KNN demonstrates significantly reduced effectiveness with an AUC of 0.8263, 

suggesting moderate performance that may be sensitive to dataset characteristics or feature 

scaling. Naive Bayes performs even less effectively (AUC=0.7259), showing limited predictive 

capability. Decision Trees prove least effective with an AUC of 0.5992, offering only marginal 

improvement over random chance. Overall, ensemble and linear models deliver the strongest 

and most reliable performance, while KNN, Naive Bayes, and Decision Trees show 

substantially lower classification accuracy on this dataset. 

The ROC curve shown in Fig. 5(a) compares the classification performance of multiple 

ML models for Resnet50. In this figure, softmax and SVM show nearly identical ROC curves 

with AUC scores approaching 0.99. LDA (AUC=0.9769), MLP (0.9653), Random Forest, and 

Extra Trees (both 0.9635) also demonstrate excellent performance, as evidenced by their curves 
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tightly following the top-left boundary characteristic of models with near-perfect classification 

accuracy. In contrast, the Decision Tree performs poorly (AUC=0.5928), with its curve 

approaching the diagonal line of random chance (AUC=0.5). While KNN (AUC=0.8504) and 

Naive Bayes (AUC=0.7641) show moderate performance, both indicate substantial room for 

improvement. 

  

Figure 5. The ROC Curves of ML Models with (a) Resnet50 (Left) and (b) Customized 

CNN (Right) 

Fig. 5(b) shows the ROC curve of the ML classifiers with customized CNN models. 

The ROC curve analysis reveals a softmax classifier achieving near-perfect discrimination 

(AUC=0.9983), with its curve showing an immediate steep rise to a 1.0 true positive rate. MLP 

(AUC=0.9964) and SVM (AUC=0.9881) exhibit similarly sharp initial curve ascents. Extra 

Trees (AUC=0.9850) and Random Forest (AUC=0.9744) maintain strong top-left curve 

positioning. Moderately performing models like KNN (AUC=0.9610) show gradual curve 

progression, while LDA (AUC=0.9502) and Decision Trees (AUC=0.9447) display flatter 

trajectories, indicating weaker early true positive capture. Naive Bayes (AUC=0.8743) proves 

least effective, its curve approaching the diagonal random-guessing line. Such performance 

reflects balanced model accuracy, though it may also suggest possible overfitting if evaluated 

on training data. 

 

Figure 6. (a) Model Accuracy (Left); (b) Model Loss (Right) of the Softmax 

Classification with a Customized CNN 
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In this paper, model validation was conducted through accuracy and loss measurements 

for both training and validation datasets, as shown in Fig. 6. Specifically, Fig. 6(a) demonstrates 

the evolution of model accuracy over training epochs for both datasets, while Fig. 6(b) displays 

the corresponding training loss. The model achieves rapid convergence to near-perfect training 

accuracy, indicating strong pattern recognition capability. This is supported by the training loss 

that quickly approaches zero. However, validation loss decreases more gradually before 

stabilizing at a higher value. The persistent gap between training and validation metrics in both 

plots suggests the model has high learning capacity, though it may be fitting the training data 

too closely. 

During testing, the CNN shows satisfactory accuracy but also notable limitations. 

Misclassifications occur mainly among classes with similar textures or intensity patterns, a 

challenge amplified by the use of grayscale images lacking color cues. Minority classes suffer 

from lower precision, recall, and F1-score, reflecting bias toward majority classes. Signs of 

overfitting are evident from the gap between training and validation accuracy in later epochs. 

Fixed input resizing (224×224) likely causes loss of fine details, reducing performance on subtle 

variations. Additionally, the deep model demands significant training time and GPU memory, 

limiting scalability. These issues suggest the need for data augmentation and class rebalancing 

to improve generalization. 

4.4 Performance Comparison 

To evaluate the performance of our proposed method, we conduct extensive 

experiments and compare the results against several baseline approaches, which are presented 

in Table 7. The table presents classification accuracies achieved using different feature 

extraction descriptors and classification techniques. Some of these techniques evaluated 

classification performance across different databases using varying amounts of training and 

testing images. For example, Tan and Kumar used only the first eight left or right eye images 

from the CASIA-v4 iris dataset [26], achieving 93.90% accuracy when training on the first 10 

subjects and testing on subjects 11–141. Kumar’s method obtained 90.43% recognition using 

79 training and 961 test images [37]. 

Table 7. Performance Comparison of the Proposed Approach with the Competitive 

Approaches 

Competitive Approaches Accuracy 

Discrete Fast Fourier transform and softmax, Szymkowski et al. [39] 78.70% 

Histogram of Oriented Gradients and Canberra distance, Mukherjee et al. [1] 90.55% 

Gradient Local Auto-correlation and Correlation distance, Mukherjee et al. [2] 91.84% 

Convolutional Neural Network and KELM, Ali et al. [16] 92.00% 

Log-Gabor and Hamming Distance, Tan et al. [38] 92.90% 

Customized CNN with softmax Classifier (Proposed) 93.40% 

 

Moreover, Tan and Kumar used geometric key-based iris encoding using Hamming 

distance and obtained 92.90% recognition accuracy on the same database [38]. In 2021, 
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Szymkowski developed a distant iris recognition framework using discrete fast Fourier 

transform (DFT) with machine learning algorithms, where the recognition rate was 78.70% on 

the CASIA-v4 database [39]. It is noteworthy that the authors in [17] reported significant 

advantages in using multi-feature descriptors. Although the accuracy of 98.17% is the highest 

among the results, their performance cannot be directly compared to ours. This is because the 

authors incorporated both iris images and surrounding eye regions such as the pupil, eyelash, 

eyelid, and sclera. Therefore, directly comparing our findings with those reported by others is 

not possible. We employ a total of 3,975 images, using 80% for training and the other 20% for 

testing, while excluding the first 14 subjects with regular eye images. As illustrated in Fig. 3, 

the images within our investigated dataset exhibit greater complexity and non-linearity 

compared to those in existing datasets. The top accuracy of 93.40% is achieved from the 

proposed deep transfer CNN-based softmax model in this domain. 

 Conclusion and Future Work 

 This study introduces a reliable biometric recognition system that leverages a deep 

learning architecture to perform bilateral iris analysis for accurate human identification. The 

proposed customized CNN architecture includes a softmax layer and incorporate diverse 

training strategies aimed at preventing overfitting and enhancing the neural network’s ability 

to generalize across unseen patterns. Despite achieving the highest possible average precision, 

recall, F_1-score, Cohen’s Kappa, and overall classification accuracy on this database with the 

lowest noise implications. The proposed transfer learning model continues to face challenges 

associated with class imbalance. In the future, we will focus on enhancing iris preprocessing to 

achieve more accurate segmentation by mitigating noise arising from uneven illumination, 

eyelashes, and eyelid occlusions. Additional enhancements may include implementing feature-

level fusion techniques and robust learning models to address class imbalance in the data. 
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