vag,
v,
)

Journal of Innovative Image Processing (ISSN: 2582-4252) 2
www.irojournals.com/iroiip/ v‘

Distant Iris Recognition Through Machine
Learning Models with Deep Features
Transfer for Human Identification

Md. Azizur Rahman'®, Lasker Ershad Ali2, Saikat Kumar
Mistry®, Arnab Mukherjee*, Md. Zahidul Islam’

Mathematics Discipline, Khulna University, Khulna, Bangladesh

* Department of Quantitative Sciences (Mathematics), International University of Business Agriculture
and Technology, Dhaka, Bangladesh.

3School of Engineering, Design and Built Environment, Western Sydney University, Australia.

E-mail: “'mdazizur@math.ku.ac.bd

Abstract

Human identification through biometrics has become increasingly popular due to its
reliable authentication in automated high-security surveillance systems. Several biometric
models based on fingerprint, face detection, and iris recognition have been designed and
developed for human identification. Among these biometrics, iris recognition, especially
distance-based recognition, remains a significant challenge due to its small imaging target. In
this paper, we propose a distant iris-based human identification framework employing a deep
extracted feature transfer with machine learning (ML) models. In the first stage, we customized
the traditional convolutional neural network (CNN) model and utilized three pre-trained models
VGG16, VGGI19, and ResNet50 for the extraction of deep features from normalized iris
images. Later, we fed these deep features extraction into nine ML models for iris image
classification. The proposed framework is validated via several experiments using the CASIA-
V4 iris dataset. Experimental results show that the softmax classifier with our customized CNN
model outperforms the considered pre-trained deep learning models, achieving top scores in
accuracy (93.40%), precision (94.31%), recall (93.40%), F1-score (93.25%), and Cohen’s
kappa (93.34%). This customized CNN model with a softmax also demonstrates competitive
performance when compared with other distance-based iris recognition models.

Keywords: Biometrics Recognition, Iris Features, Transfer Learning, Convolutional Neural
Networks, Machine Learning Models, ROC Curves.

1. Introduction

The biometric technique is very important to ensure the safety of the public, law
enforcement, and healthcare systems. Conventional biometrics are limited to knowledge, token,
SMS, and password-based authentication. These authentication systems are laborious, time-
consuming, inaccurate, and subject to human biases [1-3]. Due to technological advancements,
the biometric technique has overcome these limitations by enabling fingerprint, eye
recognition, face detection, and iris recognition [4-6]. Among these biometric techniques, iris
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recognition is the most reliable. It is an internal organ of a human and has a unique feature. The
other biometrics are replaceable, but the iris is irreplaceable because the irises of the two eyes
of a human are not the same [7]. So, no one can share their iris with others.

Iris patterns exhibit a remarkable level of uniqueness and complexity, retaining their
distinctiveness from around age three throughout a person’s lifetime, as supported by clinical
findings. As a result, research on iris biometrics is gaining great interest in the scientific
community day by day. However, the collection of a quality iris image can be challenging
because it may be affected by lighting, illumination, and the distance between a camera and an
object. The distance is a critical factor for capturing an iris image from a human face. Long-
distance iris images under less-controlled conditions may affect the performance metric of any
machine learning (ML) as well as deep learning models, compared to short-distance iris images.
Therefore, this study proposes a distant iris recognition framework through deep extracted
features transfer with ML models in the case of class-imbalanced data. In class-imbalanced
datasets, instances belonging to minority classes are typically sparse and unevenly distributed,
while the majority classes tend to dominate the feature space. It is crucial to identify a
classification model that will be capable of handling the class imbalance problems, minimizing
the impact of various noise sources, and improving overall classification accuracy.

This study aims to reliably address current limitations and develop a supervised deep
learning algorithm capable of performing distant iris recognition for human identification. To
account for the textural complexity of the iris, this paper introduces deep transfer learning,
which is designed to strategically capture robust and hierarchical features directly from
normalized iris images. The VGG16, VGG19, ResNet50, and a 32-layer customized CNN
model are employed to extract deep features from multiple layers of the architecture. After that,
these deep extracted features are transferred to several ML techniques to search for an effective
classification model. Specifically, random forest (RF), linear discriminant analysis (LDA), K-
nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), Naive Bayes,
multi-layer perceptron (MLP), extra tree (ET), and softmax classifiers are adopted to analyze
classification performance using various benchmark statistical measures. Finally, we perform
an optimal search to combine deep transfer features with ML models to improve recognition
performance for human identification from distantly acquired iris images. The major
contributions are summarized as follows:

e This paper integrates deep feature extraction and transfer techniques with ML models for
distant iris recognition. The combinations exhibit acceptable performance in iris
recognition for human identification.

e A customized 32-layer CNN model, along with VGG16, VGG19, and ResNet50 deep
learning models, is implemented to extract deep features from multiple layers of the
architecture. These feature extraction frameworks transfer the extracted deep features to
different conventional ML models to find an effective classification model.

e The study investigates the classification performance by employing different
combinations of each deep feature model together with nine ML algorithms, such as RF,
LDA, KNN, SVM, Naive Bayes, DT, MLP, ET, and softmax for iris image classification.
Among these combinations, our customized CNN with a softmax framework generates
the highest accuracy, precision, recall, F1-Score, and Cohen’s Kappa.

e Finally, the proposed iris recognition approach achieves comparable recognition
performance to existing distant iris recognition approaches.
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The structure of the remaining sections of this paper is as follows: a brief overview of
recent works related to iris classification is given in Section 2. The methodology of the iris
classification framework is described in detail in Section 3. The experimental setup with
evaluation protocols and results analysis through visual representations are presented in Section
4. The conclusions are presented in Section 5.

2. Related Works

Recent years have seen substantial progress in iris recognition systems, driven by
innovations in ML algorithms and deep neural network architectures. This section highlights
recent advancements in iris recognition systems.

In [7], Daugman presented the prototype system for automatic human identification.
Since then, this biometric has drawn attention from researchers across academia and industry
due to its wide-ranging applications. Apart from Daugman, most authors have used wavelet-
based filters and distance-based similarity matching to improve biometric systems, with the
most notable contributions made by Suvarchala et al. [8], Ahmadi et al. [9], Kaewphaluk et al.
[10], Chirchi et al. [11], and Arnab et al. [12]. The limitation of their studies is the reliance on
high-resolution cameras for iris image capture. Their accuracy significantly decreases in less
controlled environments due to various challenges such as low resolution, off-axis capture
angles, blur caused by motion, occlusion, and specular reflections. These issues commonly
occur in real-time settings and degrade further processing. To overcome these challenges, the
studies emphasize deep transfer learning, which can extract robust, hierarchical features from
raw iris images, enabling effective handling of noise, occlusions, and varying imaging
conditions. Traditional ML methods struggle with complex, noisy iris patterns due to their
reliance on handcrafted features.

Al-Waisy et al. developed the IrisConvNet framework using a CNN architecture that
integrates features from both irises to enhance recognition accuracy [4]. Tianming et al.
proposed an iris recognition method leveraging Capsule Networks to better capture spatial
hierarchies and part-whole relationships in iris textures [13]. Arsalan et al. proposed a deep
learning framework for iris segmentation specifically designed for visible light conditions,
aiming to improve accuracy in challenging environments characterized by noise and reflections
[14]. Ren et al. proposed a multiscale dynamic graph-based method that enhances biometric
recognition performance in the presence of occlusions [15]. They employed CNNs to extract
deep features, which are subsequently reorganized into a feature graph based on specific
subregions. In the feature graph, each node represents a distinct local area of the given iris
image, while the edges capture the correlation relationships among non-occluded areas.

Ali et al. developed a hybrid feature extraction method combining Log-Gabor wavelets
and Contourlet transform, achieving up to 95.93% accuracy on the CASIA-v4 dataset when
fused with CNN and GLAC features [16]. Later, the same authors demonstrated high
recognition accuracy by integrating diverse feature descriptors and classifiers, effectively
addressing challenges posed by distant iris imaging [17]. However, a specific drawback is the
system’s sensitivity to variations in lighting conditions and image quality, which can adversely
affect performance in uncontrolled environments. Kaur et al. addressed iris recognition under
unconstrained environmental conditions by employing polar harmonic transform and Zernike
Moments to effectively manage variations caused by rotation, noise, and illumination changes
[18, 19]. In [20], Meryem et al. developed a framework that integrates dual CNNs with texture-
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based features through decision-level fusion to enhance performance. However, their method
involves concatenating face and iris images to improve recognition accuracy.

In 2022, El-Latif et al. integrated an edge-detection strategy with the Hough transform
to identify iris boundaries, edges, and semicircular structures, while employing CNNs to
capture spatial hierarchies and localized feature patterns [21]. Recently, El-Sofany et al.
reported a slight enhancement over the prior hybrid model by El-Latif et al. in [21] with similar
settings [22]. Notably, the approach omits iris normalization entirely, which poses challenges
for maintaining consistent performance. Both hybrid systems exhibit sensitivity to noise, low
contrast, and partial occlusions from eyelashes or eyelids, and they fail to accurately segment
iris textures in cases of non-circular iris shapes. Lee et al. were the first to introduce a cGAN
approach for augmenting iris datasets, aiming to enhance recognition accuracy and mitigate
overfitting caused by training on limited data [23]. However, the technique’s effectiveness
diminishes when incorporating the periocular region, and challenges such as training instability
and mode collapse inherent to GANs may affect the diversity and reliability of the generated
data.

Ribeiro et al. conducted a study on CNN-based techniques for iris recognition
performance. Their method seeks to reconstruct fine-grained texture details by generating
photo-realistic images, leveraging optimization processes guided by both the CNN architecture
and its training strategy [24]. The study finds that while CNNs enhance visual quality, improved
photo-realism does not inherently lead to superior recognition outcomes. A key drawback is
the potential introduction of artifacts that may distort critical iris features, negatively affecting
recognition reliability.

As discussed above, distant iris classification remains challenging due to factors such
as image processing, appropriate feature extraction, and reliable classifier performance. To
address these issues, this paper emphasizes a transfer learning-based iris recognition system
that specifically extends the CNN with a softmax-based deep learning classifier. This work is
motivated by the ability of CNNs to autonomously learn and retrieve hierarchical patterns
directly from low-quality images, enabling effective recognition of complex patterns with
minimal manual feature engineering.

3. Methodology

This section presents the deep transfer learning-based iris recognition framework,
which adapts the CNN architecture and integrates a machine learning ML classifier within the
fully connected layer. This iris recognition framework comprises a training phase and a testing
phase. In the training phase, the collected iris images undergo preprocessing, including contrast
enhancement, iris segmentation, and iris normalization. Following normalization, the iris
textures are passed through several deep learning models to automatically capture the local iris
patterns and encode them into feature vectors. Finally, the extracted features are divided into
training and validation subsets, which are then used to train nine machine learning (ML)
classifiers for building the classification models. Using the training subset, we train the ML
classifiers and evaluate model performance based on an independent testing subset during the
testing phase. To provide a clearer understanding, a schematic diagram of our proposed
recognition framework is displayed in Fig. 1.
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Figure 1. The Schematic Diagram of the Iris Recognition Framework

Actually, in the proposed iris recognition framework, we employ four pre-trained deep
feature extraction techniques- CNN, VGG16, VGG19, and ResNet50. Among these, the CNN
model is customized before the fully connected layer (FC), and key hyperparameters are tuned
to minimize the validation loss. The deep extracted feature spaces are then transferred to nine
classical machine learning models (RF, LDA, KNN, SVM, DT, Naive Bayes, MLP, ET, and
softmax) for model training. The complete system workflow, from input acquisition to final
classification using the customized CNN features, is illustrated in Fig. 2. The diagram
highlights all major components and their interactions, including data preprocessing, CNN
feature extraction, train—test data split, optimal hyperparameter selection, model training, and
classification. Each of these stages is briefly described in the following subsections.

Iris Image Pre-processing Scheme

! Feature Extraction
I
]

CNN

5
2
[7¢]
&

o ' | Recognition Rate (—‘ Classification
| SR
I

Machine Learning Classifier !

___________________________

I
1
_ L - \4
| Hyperparameters «—— Model Learning 1 Training Set .
: , D Data Split
| Y : 80:20
1

ISSN: 2582-4252

Figure 2. The Complete Workflow of the Proposed Iris Recognition System

844



Md. Azizur Rahman*, Lasker Ershad Ali, Saikat Kumar Mistry, Arnab Mukherjee, Md. Zahidul Islam

3.1 Image Pre-processing

In the proposed approach, we have accomplished several image pre-processing tasks,
namely, contrast enhancement, iris segmentation, and normalization, with the help of standard
techniques. Indeed, the quality of the acquired eye image is degraded due to being captured
from a long distance and under uncontrolled lighting conditions. Therefore, it is necessary to
enhance the quality of degraded images for better segmentation of the iris from eye images. For
this reason, we have used a well-known Single-Scale Retinex (SSR) algorithm for the contrast
enhancement of eye images [25]. The SSR algorithm can be modeled by the following equation

Rim(p, q) = log [P —

where Im(p,q) indicates a grayscale eye image, and G,(p,q) a Gaussian kernel
_(pz +q2)
expressed as e 2 . The convolution is represented by "*", with the standard deviation
parameter T = 1.5.

3.2 Iris segmentation

The enhanced eye images include eyelids, eye shadow, pupils, and sclera, which
complicate the process of accurately identifying people through unique iris patterns. It is
essential to segment the iris pattern from the enhanced eye images by removing those non-
unique patterns. Many image segmentation techniques are available in the literature. In this
approach, we follow the best-performing graph-theoretical random walker technique for coarse
iris segmentation mentioned in [26].

3.3 Iris normalization

Variations in the scale of segmented iris images occur due to pupil dilation of the eye,
variations in lighting, and image capture from a distance. In this paper, we consider Dogman’s
rubber sheet model to eliminate the differences in the scale of the iris image and bring it within
the same range [27]. This method normalizes segmented irises by converting Cartesian
coordinates (p,q) to polar coordinates (r,0), where r € [0,1] and 6 € [0,2w]. This
transformation eliminates dimensional disparities and corrects texture distortions for accurate
matching. The mapping from the original iris image to the normalized form can be expressed
in Eq. (2) and Eq. (3).

Im(p(r,0),q(r,0)) - Im(r,0)
p(r,0) = (1 — r)p,u(@)rp,p(6) )
q(r,0) = (1 — rqyu(@)rqyp(6) 3)

where Im(p, q) is the intensity at the original iris image coordinates (p,q). Also,
p(r,0) & q(r,0) are the coordinates along 8. The interpolation for normalization is usually
linear between the pupil coordinates (p,u(6), q,u(6)) and iris boundaries (p,p(6), qpp(0))
for each 6. Figure 3 sequentially illustrates the results of noise removal, iris segmentation, and
normalization from the eye images.
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Figure 3. The Framework Outlining the Image Preprocessing Schema [16]

3.4 Customized CNN for Iris Feature Extraction

In recent years, numerous deep learning architectures have been designed and
developed to capture informative features from raw input data through multiple hidden layers
and to generate class probabilities for accurate target prediction. Among these deep learning
models, CNN-based methods have consistently demonstrated superior performance across
diverse computer vision tasks [28-31].

In this study, we develop a customized CNN model for multi-class iris image
classification (128 classes) aimed at human identification. The proposed CNN is designed to
balance feature extraction, enabling hierarchical feature learning from low-level iris patterns.
This customized architecture is chosen over deeper pre-trained models like VGG or ResNet to
remain computationally feasible for the image dataset. The iris images are preprocessed by
resizing them to 224x224 pixels, converting them to grayscale, normalizing the pixel values,
and applying one-hot encoding to the labels. The customized model consists of 32 layers with
three convolutional blocks (128, 64, and 32 filters). The network is designed with an input
layer, two convolutional layers, pooling layers, batch normalization layers, rectified linear unit
(ReLU) layers, an FC layer, and a classification layer.

The input layer receives preprocessed iris images, maintaining their original spatial
dimensions and channel depth. The convolutional layers employ 16 learnable filters of size 3%3
with a padding of 1, preserving the spatial hierarchies during feature extraction. Pooling layers
reduce the spatial dimensions by selecting the maximum feature values, thereby lowering
computational costs. Additionally, a batch normalization layer is applied after each
convolutional layer to stabilize and accelerate training by normalizing the output activations.
The network achieves non-linearity and enables the learning of complex patterns by
incorporating the ReLU function, as defined in Eq. (4).

x, x=0

=g 128 @

The flattened output is then passed through a fully connected (FC) layer, which
generates a dense representation by connecting all neurons from the previous layers. A softmax
activation function converts the FC outputs into class probabilities, producing positive values
that sum to one and enabling clear classification. Finally, the classification layer uses these
probabilities to predict the target class and compute the loss via cross-entropy. During
backpropagation, the cross-entropy loss quantifies the deviation between the predicted outputs
and the true classes.
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The trainable multistage architectural customized CNN model starts with 128 filters,
and then decreases to 32 filters in deeper layers. After flattening, the network transitions to
fully connected layers with 256, 128, and 64 neurons before the final 128-neuron classification
layer. The largest number of parameters is in the first dense layer (~6 million), while
convolutional layers have significantly fewer parameters. The model contains a total of
6,312,576 parameters, including 6,310,784 trainable and 1,792 non-trainable. The model is
trained with a batch size of 32 over 64 epochs, using an 80:20 random split between training
and validation data. The hyperparameters are optimized with the Adam optimizer, configured
with a learning rate of 0.001, B:=0.9 (first moment decay rate), - = 0.999 (second moment
decay rate), and € = 10”7 (numerical stability term).

3.5 Machine Learning Models

In our framework for distant iris recognition, the extracted feature vectors, obtained
from the deep learning models (customized CNN, VGG16, VGGI19 and ResNet50), are
transferred to train nine classical machine learning models: Softmax classifiers, K-nearest
neighbor (KNN), support vector machine (SVM), multi-layer perceptron (MLP), Naive Bayes,
random forest (RF), decision tree (DT), extra trese (ET), and linear discriminant analysis
(LDA). These classifiers are evaluated for their ability to achieve accurate and reliable
recognition performance. The following subsections provide a brief overview of these ML
models.

3.5.1 Softmax Classifier

The softmax classifier uses cross-entropy loss, derived from the softmax function, to
optimize the training model. The function converts raw class scores into normalized
probabilities, enabling effective loss computation. By mapping scores to positive probabilities,
it ensures stable and interpretable outputs. Cross-entropy loss then measures prediction
accuracy by comparing these probabilities against true labels, penalizing errors, and refining
model confidence. The gradient of the loss function is symmetric with respect to indices (p,q)
[32]:

qu/l(p,q) = Ap.q) (njp - 2p.0) Q)

3.5.2 K-Nearest Neighbor (KNN)

As a distance-based supervised algorithm, KNN predicts the class of a query instance
by aggregating the majority class among its K nearest neighbors [1]. The performance of the
KNN algorithm can be severely influenced by the choice of K neighbors and distance metric,
which relies on feature properties.

3.5.3 Support Vector Machine (SVM)

SVM predicts class labels by finding the optimal separating hyperplane. For a linear
case, the hyperplane is defined as follows:
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gxX) = WTX + B (6)

where W is the weight vector, X represents the feature vector, and B denotes the

hyperplane’s bias. The equation of a hyperplane is considered as WTX + B = 0, where %

is perpendicular to the extricating hyperplane and its distance is always unity. The margin width
d =

[T'Wil
samples closest to these boundaries that determine the optimal margin [34, 35].

is maximized between parallel hyperplanes WTX + B = +1. Support vectors are the

3.5.4 Multi-Layer Perceptron (MLP)

MLP is a neural network with hidden layers that learns nonlinear input-output mappings
[35]. Node weights wy,, update via:

Awyy(a) = —a 0 (a) xp(a) (7)

where ¢p(a) = %Zq dz (@), x,(a) is the output of the neuron p from the previous layer

(input to the current connection) at iteration a and S, (a) = Y wy,(a) x,(a). The activation
derivative links output-layer weights to hidden-layer weights.

3.5.5 Naive Bayes Classifier (NB)

Naive Bayes classifies data using Bayes’ theorem with a conditional independence
assumption between features. Given features uq, u,, ..., U, and class v, the posterior probability
is computed by the following equations [35]:

P T, P(Ui[V)

P(v|ug,uy, ..., uy) = Pty i) (8)
The predicted class ¥ is the maximum a posteriori (mAP) estimate:
y=arg max P) [T, P(u;lv) 9)

3.5.6 Decision Tree (DT)

Decision Trees (DTs) are supervised models for classification and regression that build
tree structures by recursively splitting data using optimal feature thresholds. For classification,
splits minimize Gini impurity, G = 1 — ¥.5_, p?, where, p? denotes the squared probability of
class i in a node with C total classes. Trees grow until meeting stopping conditions using max
depth [35].

3.5.7 Extra Trees Classifier (ET)

Extra Trees (ET) is an ensemble method using uncorrelated decision trees, similar to
Random Forest but with randomized splits. For each node, subsets K;ef t(a) (features <

ISSN: 2582-4252 848



Md. Azizur Rahman*, Lasker Ershad Ali, Saikat Kumar Mistry, Arnab Mukherjee, Md. Zahidul Islam

threshold T;,) and K; tght (a) (remaining features) are created from training vectors u; and
labels v, the parameter o minimizes the impurity [35].

3.5.8 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) maximizes class separation by optimizing the ratio
of between-class scatter (Sg) to within-class scatter (S,,). For two classes Y; and Y,, Fisher’s
TSBW

criterion finds the projection w that maximizes w = LA L

E— where sg = (m; - m,)(m, -

my)" and s, = Yi=1 X,er, (v - m)(y - my) " quantify the scatter both between and within classes
with projection means m,

3.5.9 Random Forest (RF)

Random Forest (RF) is an ensemble of decision trees trained on random data subsets.
For prediction, each tree votes for class n, and the majority wins. The vote is counted by Eq.
(10).

Up = X [(Ze = 1) (10)

where X; denotes the t-th prediction of trees for a certain instance, and I(+) is 1 if the
t-th tree predicts class n [35]. The final output is X = arg max u,,.
n

4. Results and Discussion

The effectiveness of deep transfer learning is evaluated and discussed in this section
with respect to distant iris recognition for human identification. Quantitative metrics derived
from confusion matrices and ROC curves are used to compare pre-trained deep learning models
with fine-tuning on iris datasets. The analysis reveals how transfer learning mitigates data
scarcity by leveraging learned features from large-scale datasets, reducing computational costs
while maintaining high precision. The following subsections depict the overall results and
discussion of the proposed method for this iris recognition framework for human identification.

4.1 Database and Experimental Protocol

For experimental evaluation, we have employed the CASIA-v4 distance database, a
large dataset of distantly acquired facial images provided by CASIA [36]. The facial images
were captured using a near-infrared camera positioned approximately 3 meters from the subject
in less controlled environments. The CASIA-v4 database contains a total of 2,567 facial images
collected from 142 subjects. Both eyes were separated from the full-face images, yielding 5,134
eye images used for subject identification in the experimentation. Only regular images are
available for the first 14 subjects in this database. To ensure reliable performance, we exclude
these 14 subjects from our experiments. From the remaining 128 subjects, we randomly select
80% of the iris images to train the classification models. Similarly, the remaining 20% were
designated for model testing.
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Google Colab, a cloud-hosted Jupyter Notebook platform that provides free
computational resources, was used for all experiments. By choosing the NVIDIA Tesla T4
GPU from the runtime settings, a GPU runtime was enabled to speed up model training and
evaluation. The TensorFlow and Keras frameworks, as well as NumPy, Matplotlib, Pandas,
Seaborn, and Scikit-learn, were used to implement deep learning models.

Large numeric range features may disproportionately affect learning without
normalization, leading to biased or unstable model performance. According to the following
formula, min-max normalization thus resolves this problem without causing the deep features
V to distort notable feature differences:

V = (19j = Imin)/ Omax — Imin) (11)
where 9; represents the jth feature value between 9,4, and 9,,,. These low-
dimensional, labeled, and scaled features facilitate effective training of the ML classifiers.

In order to achieve optimal performance, different hyperparameter settings for
classification models are tested during experimentation. We use the Adam optimizer to
optimize the important hyperparameters for nine machine learning classification models from
the various settings; the ideal hyperparameter values are shown in Table 1.

Table 1. Machine Learning Models and Key Optimal Hyperparameters

ML Model Key Optimal Hyperparameters

RF n_estimators value is 100, gini is set as the criterion, max_features is 'sqrt’
with 42 random_state

LDA The svd is used as the solver, where the tolerance level is 0.0001

KNN K=5, 'uniform' weights, 'minkowski' as the distance metric

SVM Kernel function is 'linear', C=1.0, gamma='scale', random_state value=42
Naive Bayes var_smoothing=1e-9

DT The 'gini' is used as the criterion, splitter='best', and the value of

random_state is 42

MLP hidden layer sizes=256, max_iter=500, random_state=42,
activation='relu', solver="adam'

ET n_estimators=100, criterion='gini', max_features='sqrt', random_state=42

Softmax activation='softmax', input_units=128, output_units=128

4.2 Evaluation Metrics

In the experimental evaluation, multiple metrics are used to measure the accuracy and
reliability of the classifiers. Since overall accuracy alone may be insufficient, particularly in
cases of class imbalance, the evaluation framework also incorporates additional measures
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derived from the confusion matrix to assess recognition performance for each class. The
confusion matrix is presented in Table 2.

Table 2. The Confusion Matrix

Predicted positive (p)

Predicted negative (n)

Actual positive (p)

True positives (tp)

False negatives (fn)

Actual negative (n)

False positives (fp)

True negatives(tn)

From the confusion matrix, the average precision, recall, F_1-score, and Cohen’s Kappa
(x) for this multi-class iris classification system are defined by the following equations:

ision= L3¢

Average Precision= - ¥_; oy (12)
Average Recall—— P (13)

J 1 tpj+fn;
F1 — measure—= 2 X RecallXPre.c'ision (14)

Recall + Precision

2(t t

Cohen’s KappaK =%Z ( pjxtnj— fp]anJ) (15)

j= 1(tpj+fpj) (fpj+tnj)+(tpj+fnp)x(fnj+tn;)

where C is the total number of classes, indexed by j. The confusion matrix provides the
basis for performance measures by comparing predicted and actual classifications for each class

[39].

4.3 Experimental Results and Performance Analysis

In this subsection, the obtained results from the various deep extracted features-based
ML models are summarized and analyzed sequentially. The results of the VGG19 feature
descriptor with nine classification models are presented in Table 3.

Table 3. The Performance of Classification using the VGG19 Feature Descriptor

Classifiers Accuracy | Precision Recall | F;-Score | Cohen’s Kappa
Random Forest 0.6812 0.7156 0.6812 0.6592 0.6783
LDA 0.7388 0.7854 0.7388 0.7288 0.7364
KNN 0.3764 0.6028 0.3764 0.4062 0.3708
SVM 0.8118 0.8452 0.8118 0.8083 0.8101
Decision Tree 0.2121 0.2111 0.2111 0.2030 0.2053
Naive Bayes 0.4424 0.4957 0.4424 0.4370 0.4375
MLP 0.7669 0.7938 0.7669 0.7605 0.7648
Extra Trees 0.6938 0.7160 0.6938 0.6756 0.6911
Softmax 0.9213 0.9325 0.9213 0.9197 0.9207
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With the highest accuracy (0.9213), precision (0.9325), recall (0.9213), F 1-score
(0.9197), and Cohen's Kappa (0.9207), softmax outperforms the others, as shown by the ML
classified results in Table 3. It can also be demonstrated that the SVM, MLP, and LDA perform
exceptionally well regarding balanced precision, recall, and AUC scores. On the other hand,
overfitting and data distribution sensitivity cause Decision Tree (DT) and KNN to perform
poorly, with low accuracy and agreement scores, respectively. Despite being straightforward,
Naive Bayes (NB) performs poorly because of its high independence assumptions, whereas
Random Forest and Extra Trees are effective because they utilize ensemble techniques. These
findings indicate that the VGG19 descriptor is able to extract intricate features, and the softmax
classifier will be superior to conventional classifiers.

Table 4. The Classification Results of the VGG16 Feature Descriptor

Classifiers Accuracy | Precision Recall F{-Score | Cohen’s Kappa
Random Forest 0.6713 0.6858 0.6713 0.6510 0.6685
LDA 0.7753 0.8199 0.7753 0.7691 0.7733
KNN 0.4368 0.6270 0.4368 0.4587 0.4317
SVM 0.8146 0.8384 0.8146 0.8074 0.8130
Decision Tree 0.2051 0.2355 0.2051 0.2047 0.1984
Naive Bayes 0.4565 0.5497 0.4565 0.4595 0.4517
MLP 0.7837 0.8226 0.7837 0.7854 0.7818
Extra Trees 0.6826 0.6956 0.6826 0.6606 0.6798
Softmax 0.9266 0.9277 0.9266 0.9221 0.9262

Table 4 displays the comparative results of different classifiers in the VGG16 scenario.
This table shows that softmax has the highest precision (0.9277), recall (0.9266), F_1-score
(00.9221), Cohen's Kappa (0.9262), and accuracy (0.9266) when compared to other classifiers.
Furthermore, considering the precision value (0.8384), SVM handles the complexity of data
using VGG16 quite well. With an accuracy of 78.37%, the MLP model performs moderately.
While LDA (0.7733), Random Forest (0.6685), and Extra Trees (0.6798) offer comparable
agreement based on Cohen's kappa, their lower precision and recall compared to softmax
suggest that they are more likely to generate classification errors. Perhaps as a result of their
poor performance metrics, KNN and Naive Bayes fall behind. Because it either overfits or
underfits the Iris dataset's rich features, Decision Trees perform poorly on it. Softmax is the
best classifier, according to Table 5's comparative analysis, with the highest accuracy (0.8441),
precision (0.8623), recall (0.8441), F_1-score (0.8337), and Cohen's Kappa (0.8427).

According to the classifier comparison in Table 5, softmax performs better than the
others with the highest accuracy (0.8441), precision (0.8623), recall (0.8441), F_1-score
(0.8337), and Cohen's Kappa (0.8427). These findings demonstrate softmax's high predictive
ability and dependability in the case of ResNet50. With a robust accuracy of 0.8160, SVM also
performs well. Softmax, which exhibits balanced metrics, comes in second. Additionally, the
LDA attains an accuracy of 0.7542, closely trailed by MLP and Extra Trees. Cohen's Kappa
indicates less successful classification, and Decision Tree and KNN perform worse with
noticeably low accuracy.
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Table 5. The ML Classified Results for the Resnet50 Feature Descriptor

Classifiers Accuracy Precision Recall F{-Score | Cohen’s Kappa
Random Forest 0.6671 0.6975 0.6671 0.6463 0.6642
LDA 0.7542 0.8007 0.7542 0.7458 0.7520
KNN 0.4621 0.6420 0.4621 0.4742 0.4573
SVM 0.8160 0.8456 0.8160 0.8101 0.8144
Decision Tree 0.1924 0.2115 0.1924 0.1870 0.1856
Naive Bayes 0.5323 0.5937 0.5323 0.5187 0.5282
MLP 0.7093 0.7593 0.7093 0.7059 0.7067
Extra Trees 0.6868 0.7198 0.6868 0.6685 0.6841
Softmax 0.8441 0.8623 0.8441 0.8337 0.8427

Table 6 displays the ML classified results for the customized CNN feature model. The
table demonstrates that, in contrast to the VGG16, VGG19, and ResNet50 models, all ML
models unexpectedly outperformed them using customized 32-layer CNN deep features. All
eight classifiers, with the exception of Naive Bayes, yield results that are almost identical for
every performance metric. As a result of its ability to fully utilize the deep hierarchical features
extracted by the CNN, the softmax classifier achieves the best accuracy (93.40%) in distant iris
recognition. Softmax, a probabilistic classifier, offers the best precision, recall, F_1-score, and
Cohen's Kappa, resulting in a distinct and accurately calibrated decision boundary.

Table 6. The ML Classified Results for the Customized CNN Feature Descriptor

Classifier Accuracy | Precision Recall F{-Score | Cohen’s Kappa
Random Forest 0.9059 0.9364 0.9058 0.9095 0.9050
LDA 0.8932 0.9280 0.8932 0.8993 0.8923
KNN 0.8960 0.9433 0.8960 0.9068 0.8951
SVM 0.9017 0.9285 0.9017 0.9039 0.9008
Decision Tree 0.8904 0.9181 0.8904 0.8921 0.8894
Naive Bayes 0.7275 0.8470 0.7275 0.7429 0.7252
MLP 0.9157 0.9300 0.9157 0.9149 0.9150
Extra Trees 0.9227 0.9354 0.9227 0.9215 0.9220
Softmax 0.9340 0.9431 0.9340 0.9325 0.9334

The aforementioned statistical analysis indicates that for distant iris recognition, the
customized CNN-based features converted with a softmax classification model perform better
than alternative deep feature-based machine learning models. Transfer learning's capacity to
efficiently extract iris features through multi-layer feature representation is what gives it its
discriminative power. Additionally, we use ROC curves to analyze performance in order to
assess the efficacy of ML-based transfer learning as well as the discriminative power of the
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feature descriptors. Performance is shown by proximity to the top-left corner of ROC curves,
which are plotted using the false positive and true positive rates across various classification
thresholds. Figures 4 and 5 show the ROC curves for the four deep feature-based and nine
machine learning classifiers.

Receiver Operating Characteristic (ROC) Curve Receiver Operating Characteristic (ROC) Curve
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Figure 4. The ROC Curves of ML Models with (a) VGG19 (Left) and (b) VGG16
(Right)

Multiple classifiers with VGG19 are compared in Fig. 4(a) according to their AUC
scores, which show how well they can differentiate between classes. With an AUC of 0.9977,
the softmax model performs better than any other model, whereas SVM receives an AUC score
0f 0.9819. Furthermore, with an AUC of 0.96, the MLP, LDA, Extra Trees, and Random Forest
models come in close succession. Across the threshold range, these models exhibit strong
classification capabilities with low false positive rates and high true positive rates. Although it
performs fairly well, the KNN is marginally less efficient than the best-performing models,
with an AUC of 0.8182. However, with AUCs of 0.7187 and 0.6027, respectively, the Naive
Bayes and Decision Tree classifiers perform noticeably worse, suggesting that their
discriminatory power is limited.

The ROC curves based on AUC scores of different competitive ML models with
VGG16 are displayed in Fig. 4(b). This figure shows that the softmax provides excellent
discrimination capability between classes with an AUC score of 0.9983. The next best
performers are SVM (AUC=0.9869), MLP and LDA (AUC=0.97), and Extra Trees and
Random Forest (AUC=0.96), all demonstrating strong, reliable classification performance. In
contrast, KNN demonstrates significantly reduced effectiveness with an AUC of 0.8263,
suggesting moderate performance that may be sensitive to dataset characteristics or feature
scaling. Naive Bayes performs even less effectively (AUC=0.7259), showing limited predictive
capability. Decision Trees prove least effective with an AUC of 0.5992, offering only marginal
improvement over random chance. Overall, ensemble and linear models deliver the strongest
and most reliable performance, while KNN, Naive Bayes, and Decision Trees show
substantially lower classification accuracy on this dataset.

The ROC curve shown in Fig. 5(a) compares the classification performance of multiple
ML models for Resnet50. In this figure, softmax and SVM show nearly identical ROC curves
with AUC scores approaching 0.99. LDA (AUC=0.9769), MLP (0.9653), Random Forest, and
Extra Trees (both 0.9635) also demonstrate excellent performance, as evidenced by their curves
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tightly following the top-left boundary characteristic of models with near-perfect classification
accuracy. In contrast, the Decision Tree performs poorly (AUC=0.5928), with its curve
approaching the diagonal line of random chance (AUC=0.5). While KNN (AUC=0.8504) and
Naive Bayes (AUC=0.7641) show moderate performance, both indicate substantial room for

improvement.
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Figure 5. The ROC Curves of ML Models with (a) Resnet50 (Left) and (b) Customized
CNN (Right)

Fig. 5(b) shows the ROC curve of the ML classifiers with customized CNN models.
The ROC curve analysis reveals a softmax classifier achieving near-perfect discrimination
(AUC=0.9983), with its curve showing an immediate steep rise to a 1.0 true positive rate. MLP
(AUC=0.9964) and SVM (AUC=0.9881) exhibit similarly sharp initial curve ascents. Extra
Trees (AUC=0.9850) and Random Forest (AUC=0.9744) maintain strong top-left curve
positioning. Moderately performing models like KNN (AUC=0.9610) show gradual curve
progression, while LDA (AUC=0.9502) and Decision Trees (AUC=0.9447) display flatter
trajectories, indicating weaker early true positive capture. Naive Bayes (AUC=0.8743) proves
least effective, its curve approaching the diagonal random-guessing line. Such performance
reflects balanced model accuracy, though it may also suggest possible overfitting if evaluated

on training data.

Model Accuracy Model Loss
1.0{ — Tain — Train
validation s Validation
|

08 // 4

0.6
- [ 3
f
] @
g 3
4

0.4 2

0.2 H 1

0.0 o

0 10 20 30 a0 50 60 0 10 20 30 0 50 60
Epoch Epoch

Figure 6. (a) Model Accuracy (Left); (b) Model Loss (Right) of the Softmax
Classification with a Customized CNN
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In this paper, model validation was conducted through accuracy and loss measurements
for both training and validation datasets, as shown in Fig. 6. Specifically, Fig. 6(a) demonstrates
the evolution of model accuracy over training epochs for both datasets, while Fig. 6(b) displays
the corresponding training loss. The model achieves rapid convergence to near-perfect training
accuracy, indicating strong pattern recognition capability. This is supported by the training loss
that quickly approaches zero. However, validation loss decreases more gradually before
stabilizing at a higher value. The persistent gap between training and validation metrics in both
plots suggests the model has high learning capacity, though it may be fitting the training data
too closely.

During testing, the CNN shows satisfactory accuracy but also notable limitations.
Misclassifications occur mainly among classes with similar textures or intensity patterns, a
challenge amplified by the use of grayscale images lacking color cues. Minority classes suffer
from lower precision, recall, and F1-score, reflecting bias toward majority classes. Signs of
overfitting are evident from the gap between training and validation accuracy in later epochs.
Fixed input resizing (224x224) likely causes loss of fine details, reducing performance on subtle
variations. Additionally, the deep model demands significant training time and GPU memory,
limiting scalability. These issues suggest the need for data augmentation and class rebalancing
to improve generalization.

4.4 Performance Comparison

To evaluate the performance of our proposed method, we conduct extensive
experiments and compare the results against several baseline approaches, which are presented
in Table 7. The table presents classification accuracies achieved using different feature
extraction descriptors and classification techniques. Some of these techniques evaluated
classification performance across different databases using varying amounts of training and
testing images. For example, Tan and Kumar used only the first eight left or right eye images
from the CASIA-v4 iris dataset [26], achieving 93.90% accuracy when training on the first 10
subjects and testing on subjects 11-141. Kumar’s method obtained 90.43% recognition using
79 training and 961 test images [37].

Table 7. Performance Comparison of the Proposed Approach with the Competitive

Approaches
Competitive Approaches Accuracy
Discrete Fast Fourier transform and softmax, Szymkowski et al. [39] 78.70%
Histogram of Oriented Gradients and Canberra distance, Mukherjee et al. [1] 90.55%
Gradient Local Auto-correlation and Correlation distance, Mukherjee et al. [2] 91.84%
Convolutional Neural Network and KELM, Ali et al. [16] 92.00%
Log-Gabor and Hamming Distance, Tan et al. [38] 92.90%
Customized CNN with softmax Classifier (Proposed) 93.40%

Moreover, Tan and Kumar used geometric key-based iris encoding using Hamming
distance and obtained 92.90% recognition accuracy on the same database [38]. In 2021,
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Szymkowski developed a distant iris recognition framework using discrete fast Fourier
transform (DFT) with machine learning algorithms, where the recognition rate was 78.70% on
the CASIA-v4 database [39]. It is noteworthy that the authors in [17] reported significant
advantages in using multi-feature descriptors. Although the accuracy of 98.17% is the highest
among the results, their performance cannot be directly compared to ours. This is because the
authors incorporated both iris images and surrounding eye regions such as the pupil, eyelash,
eyelid, and sclera. Therefore, directly comparing our findings with those reported by others is
not possible. We employ a total of 3,975 images, using 80% for training and the other 20% for
testing, while excluding the first 14 subjects with regular eye images. As illustrated in Fig. 3,
the images within our investigated dataset exhibit greater complexity and non-linearity
compared to those in existing datasets. The top accuracy of 93.40% is achieved from the
proposed deep transfer CNN-based softmax model in this domain.

5. Conclusion and Future Work

This study introduces a reliable biometric recognition system that leverages a deep
learning architecture to perform bilateral iris analysis for accurate human identification. The
proposed customized CNN architecture includes a softmax layer and incorporate diverse
training strategies aimed at preventing overfitting and enhancing the neural network’s ability
to generalize across unseen patterns. Despite achieving the highest possible average precision,
recall, F_1-score, Cohen’s Kappa, and overall classification accuracy on this database with the
lowest noise implications. The proposed transfer learning model continues to face challenges
associated with class imbalance. In the future, we will focus on enhancing iris preprocessing to
achieve more accurate segmentation by mitigating noise arising from uneven illumination,
eyelashes, and eyelid occlusions. Additional enhancements may include implementing feature-
level fusion techniques and robust learning models to address class imbalance in the data.
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