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Abstract   

The dermatological macro-images are colour images. The majority of the available 

image segmentation and feature extraction algorithms are designed for grayscale images. 

Hence, the conversion of dermatological images to grayscale is an important step in their 

automated analysis. Customized algorithms for decolourizing dermatological images are not 

available. The existing decolourization algorithms for natural-scene images focus only on the 

preservation of local contrast. Such algorithms may not ensure good accuracy of lesion 

segmentation on macroscopic images when intensity-based schemes are adopted. 

Decolourization algorithms that enable effective preservation of both gradient and intensity 

information are more desirable. This approach in especially, resulted in a 6–8% average DSC 

improvement over baselines, a 12% increase in the contrast index, and a 9% increase in the 

perceptual similarity score. 
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 Introduction 

Photo-macrography or macro-photography provides a close-up view of skin lesions. 

The term ‘macroscopic image’ or ‘micro-image’ refers to a highly zoomed view of the lesions 

captured with the help of a microscope, as done in dermoscopy. [1] Because of the simplicity, 

flexibility, and availability of high-resolution digital cameras, dermatological photo-

macrography is widely used in dermatology. Recently, [2,3] studies have proven the potential 

of wide-field dermatological photo-macrographs as tools for identifying the type of suspicious 

skin lesions at the pre-screening level. The potential of dermatological photo-macrography to 

detect melanoma has already been evidenced by many researchers [4]. They have demonstrated 

that an SVM classifier, which uses textural, intensity, and shape features of the lesion as input, 

can distinguish melanoma and nevus lesions with higher accuracy on dermatological photo-

macrographs (98.06%) than on dermoscopy images (93.95%). Usually, the aggressiveness of a 

skin lesion, especially the possibility of it being malignant, is characterized by features such as 

the sharpness of the boundary (well-defined or ill-defined), continuity of the border, and 
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geometric/shape features like area, solidity, eccentricity, etc. The type and amount of texture 

and distinct structures present in the lesion area, along with intensity features within the lesion, 

are also often used. Consequently, the diagnosis of skin lesions greatly depends on the accurate 

segmentation of the lesions. Manual delineation of any lesion is highly subjective. A 

disagreement of 10-20% in the area of skin lesions delineated from dermoscopy images has 

been reported among expert dermatologists. In a similar study, an average disagreement of 

15.28% in the area of skin lesions was found. In 10% of the dermoscopy images, the 

disagreement was reported to be above 28%. Reproducibility is lower in manual contouring, 

and automated methods have lower pixel misclassification compared to manual contouring. 

Automated segmentation algorithms are necessary to eliminate the inter-operator variability 

inherent in the subjective contouring of skin lesions. The segmentation process is inevitable in 

deep learning models used to characterize skin lesions from images. [5] Deep learning models 

can improve performance when localized lesions are used for training. InceptionResNetV2 

improves the accuracy of detecting melanoma by 2.18% when segmented lesions are used for 

training instead of raw input images. In addition to the improvement in accuracy, the use of 

segmented lesions as input substantially reduces the time taken for training and inference. Even 

in deep learning models, the preprocessing and segmentation of lesions play a significant role 

in the accurate detection of melanoma (Adegun & Viriri 2021). The majority of available image 

segmentation and feature extraction algorithms are designed for grayscale images. However, 

dermatological macro-images are color images. Hence, converting dermatological images to 

grayscale is an important step in their automated analysis [6]. For example, the Local Binary 

Pattern-based Clustering (LBPC) operates on grayscale images. Color dermoscopy images are 

converted to grayscale before applying the LBPC. Similarly, the detection of edges of skin 

lesions is an intermediate step in the Delaunay Triangulation-based segmentation of skin 

lesions. [6] In this scheme, dermoscopy images are converted to grayscale before applying the 

Canny edge detection algorithm. In the fuzzy-based framework for detecting disease-induced 

color pigment networks, [7] dermoscopy images are converted to grayscale for extracting 

textural features. Our method adaptively optimizes weights based on both intensity and gradient 

preservation, which differs from previous fixed-weight or heuristic methods. This ensures that 

performance is consistent across different dermatological images. 

Only the traditional model so far been adopted in literature to decolourize the 

macroscopic images of skin lesions. For converting the colour image to grayscale, [6] adopted 

the model Y= 0.2989 R + 0.5870 G + 0.1140 B. For conversion, by [7] adopted the model (Y 

= (R + G + B)/3).  

 Literature Review  

In addition to the traditional models adopted in the literature to decolorize the 

macroscopic images of skin lesions, there are some decolorization algorithms in the literature. 

They are Correlation-based Decolorization (CD) (Nafchi et al. 2017), [8] Decolorization via 

Variance Maximization (DVM) (Jin et al. 2014), Fast Contrast Enhancing Decolorization 

(FCED) (Grundland & Dodgson, 2007), Semi-parametric Decolorization (SD) (Liu et al. 2017), 

Gradient Correlation Similarity-based Decolorization (GCSD) (Liu et al. 2015), and Log-

Euclidean-based Decolorization (LED) [9,10]. 

In the CD (Nafchi et al. 2017), a contrast image is derived first. The intensity value at a 

particular location in the contrast image is computed from the product of the mean intensity of 

three color channels and standard deviation at that location. The decolorized image is computed 
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from a linear combination of the red, green, and blue color channels. The global weights 

corresponding to each channel are set proportional to the correlation of that channel with the 

contrast image. 

In the DVM (Jin et al. 2014), an energy functional is used to determine the local values 

of the weights in the combination of red, green, and blue color channels. Minimizing the energy 

functional accounts for maximizing the variance with a constraint of minimum brightness error. 

To ensure piecewise smoothness and restrict noisiness by minimizing the differences among 

computed gray scale values in the decolorized image at nearby pixel locations, a total variation 

regularization term of the combination function is also included in the energy functional. 

In the FCED [10], for finding the color axis that predominantly accounts for the 

diminished chromatic contrast caused by the inclusion of the luminance channel in the mapping 

process pertaining to the decolorization, a custom dimensionality reduction technique named 

predominant component analysis was used. The values in the predominant chromatic channel 

are produced by projecting the chromatic channel values onto the predominant chromatic axis. 

After that, the main chromatic channel is combined with the luminance channel, and the 

dynamic range of the new luminance channel is changed so that noise doesn't get louder. Based 

on the content of the saturation channel, the lower and upper bounds of the local values within 

the luminance channel that offer the desired contrast are estimated. Finally, the local intensity 

in the decolorized image is the median of corresponding values in the range-adjusted enhanced 

luminosity channel and matrices of lower and upper bounds of the local values within the 

luminance channel computed as per the contrast enhancement criteria. 

In the SD (Liu et al. 2017), a second-degree polynomial given in (1.1) is used to 

compute the decolourized image ‘𝐼𝑜’ from the red ‘𝑅𝑖’, green ‘𝐺𝑖’, and blue ‘𝐵𝑖’ colour channels 

of the input colour image ‘𝐼𝑖’. 

𝐼𝑜 = [𝑊1𝑅𝑖 + 𝑊2𝐺𝑖 + 𝑊3𝐵𝑖] + [𝑊4𝑅𝑖𝐺𝑖 + 𝑊5𝑅𝑖𝐵𝑖 + 𝑊6𝐺𝑖𝐵𝑖] + [𝑊7(𝑅𝑖)
2 +𝑊8(𝐺𝑖)

2 + 

𝑊9(𝐵𝑖)
2]      (1) 

The SD is only semi-optimized because the weights ‘𝑊1’, ‘𝑊2’, and ‘𝑊3’ in (1) are 

set manually. Other weights ‘𝑊4’, ‘𝑊5’, ‘𝑊6’, ‘𝑊7’, ‘𝑊8’, and ‘𝑊9’ are computed iteratively 

by minimizing a bimodal objective function (the sum of two Gaussian terms) that accounts for 

contrast preservation. In the GCSD, the second degree polynomial used in the SD is also 

adopted to compute the decolourized image from the red, green, and blue colour channels. 

Weights of the polynomial model are estimated through iterative minimization of a loss 

function named gradient correlation similarity measure with the help of a combination of 

alternating direction and augmented Lagrangian methods. The loss function reflects the 

cumulative similarity between the gradient magnitudes in the decolourized image and those in 

the individual colour channels in a pixel-wise sense. [11,12] 

In the LED (Liu et al. 2017), [13,14] the weights of the first-degree polynomial 

decolourization model that decide the relative significance of individual colour channels are 

considered as those values at which a log-Euclidean metric between gradients of the channels 

of input colour image and decolourized image is at its minimum. A limited number of candidate 

weight values within the interval [0 1] are considered and the candidate values at which the 

penalty function is minimum are identified. 

Most of the decolourization algorithms in literature are designed and validated on 

natural-scene images. Customized algorithms for decolourizing dermatological images are not 
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available. There are extensive studies that evaluate the performance of decolourization 

algorithms in contexts like document binarization (Hedjam et al. 2015) and face recognition 

(Kanan & Cottrell 2012). Similar studies on dermatological images are not available. The 

existing decolourization algorithms CD, DVM, FCED, SD, GCSD, and LED (Liu et al. 2017) 

focus only on the preservation of local contrast or gradient magnitude. Such algorithms may 

not ensure good accuracy of lesion segmentation on macroscopic images when intensity-based 

schemes are adopted. Hence, a decolourization algorithm that enables effective preservation of 

both gradient and intensity information is more desirable. 

To address these issues, a novel decolourization algorithm named Adaptive Linear 

Combination-based Contrast-preserving Decolourization (ALCCD) that preserves the contrast 

between the lesion and background skin regions when mapped from colour space to greyscale 

space and ensures accurate segmentation is proposed. 

 Materials and Methods 

To fill these gaps, a decolourization algorithm named Adaptive Linear Combination-

based Contrast-preserving Decolourization (ALCCD) that preserves the contrast between the 

background skin regions, and the lesion when mapped from colour space to grey scale space 

and ensures accurate segmentation is proposed. Test Dataset: The dermatological photographs 

used in this thesis are downloaded from the ‘DermQuest [7] data repository. The DermQuest 

database is owned by the Vision and Image Processing Laboratory, University of Waterloo, 

Canada. A total of 137 images are used in this thesis. Among the 137 macroscopic images 61 

images are nevus and 76 images are melanoma cases. 

The Flow of the work is termed as such follows 1. Preprocessing, 2. Adaptive weight 

optimization, 3. Grayscale conversion, and 4. Segmentation evaluation steps. 

 Proposed Work 

In the ALCCD, the RGB vector ‘𝑋(𝑚, 𝑛) = {𝑋𝑅(𝑚, 𝑛), 𝑋𝐺(𝑚, 𝑛), 𝑋𝐵(𝑚, 𝑛)}’ in the 

colour image ‘𝑋’ at an arbitrary location ‘(𝑚, 𝑛), 𝑚 = 1,2, … … , 𝑀 & 𝑛 = 1,2, … … , 𝑁’ is 

converted to grey scale value ‘𝑌(𝑚, 𝑛)’ via a simple linear combination as shown in (2).  

𝑌(𝑚, 𝑛) = 𝜑(𝑋(𝑚, 𝑛)) = 𝑊𝑅(𝑚, 𝑛)𝑋𝑅(𝑚, 𝑛) +  𝑊𝐺(𝑚, 𝑛)𝑋𝐺(𝑚, 𝑛) +

                                            𝑊𝐵(𝑚, 𝑛)𝑋𝐵(𝑚, 𝑛)                                                                              (2)       

 The algebraic form of the mapping function ‘𝜑’ that describe the decolourization 

process is, 

𝑌(𝑚, 𝑛) = 𝜑(𝑋(𝑚, 𝑛)) = 𝑊(𝑚, 𝑛)𝑋(𝑚, 𝑛) 𝑔𝑖𝑣𝑒𝑛 𝑊(𝑚, 𝑛) 

                                           = [𝑊𝑅(𝑚, 𝑛) 𝑊𝐺(𝑚, 𝑛) 𝑊𝐵(𝑚, 𝑛)]𝑇  𝑎𝑛𝑑 𝑋(𝑚, 𝑛)         (3) 

=  {𝑋𝑅(𝑚, 𝑛), 𝑋𝐺(𝑚, 𝑛), 𝑋𝐵(𝑚, 𝑛)} 

In (2) and (3), ‘𝑋𝑅’, ‘𝑋𝐺’, and ‘𝑋𝐵’ represent pixel intensity matrices of the red, green, 

and blue color channels of the input color image ‘𝑋’. The notion ‘(𝑚, 𝑛)’ represents the vector 

of weight values used in the linear combination in (2). The values in the weight matrices 
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‘𝑊𝑅(𝑚, 𝑛)’, ‘𝑊𝐺(𝑚, 𝑛)’, and ‘𝑊𝐵(𝑚, 𝑛)’ at each pixel location are selected such that the 

intensity information and gradient information in the input color image are efficiently 

transferred to the output grayscale image ‘𝑌’ without significant loss during the decolorization 

process. In the context of the decolorization of macroscopic skin images, both intensity and 

edge information are highly relevant to ensure accurate segmentation of the lesions. It is 

hypothesized that upon efficient transfer of intensity information [17] from color space 

representation to grayscale space, the squared error between the Lightness (𝐿) component of 

L*a*b* color space representation of the input image and the output grayscale image ‘𝑌’ will 

be minimized. Thus, the local value of the squared intensity error is, 

𝐸𝐿 = [(𝑚, 𝑛) − (𝑚, 𝑛)]2     (4) 

Another hypothecation is adopted such that upon efficient transfer of edge information 

from colour space representation to grey scale space, the squared error between the resultant 

local gradient computed from the L*a*b* colour space representation of the input image ‘∇𝑋(m, 

n)’ and the gradient ‘∇𝑌(𝑚, 𝑛)’ of the output grayscale image ‘𝑌’ will be minimum. Local value 

of the squared gradient error is, [8] 

𝐸∇(𝑚, 𝑛) = [∇𝑋(m, n) − ∇𝑌(𝑚, 𝑛)]2     (5) 

The gradients computed from the lightness component ‘𝐿’ and two colour dimensions 

(a and b) are used to compute the resultant gradient of the input colour image ‘∇𝑋’ in (5). Thus 

the local value of the resultant gradient at an arbitrary pixel location ‘(m, n)’ in the input colour 

image ‘𝑋’ is, 

𝛻𝑋(𝑚, 𝑛) =  √𝛻𝐿(𝑚, 𝑛) +  𝛻𝑎(𝑚, 𝑛) +  𝛻𝑏(𝑚, 𝑛) 
3

  (6) 

In (6), the terms ‘∇𝐿(m, n)’, ‘∇𝑎(m, n)’, and ‘∇𝑏(m, n)’ are the local gradient values in 

the L, a and b components of the L*a*b* colour space. 

A cost function that collectively accounts for the efficiency of transferring the intensity 

and gradient information in the input colour image to the output grayscale. Space is constructed 

by combining the squared intensity error in (4) and squared gradient error in (6) as 

𝐸(𝑚, 𝑛) = 𝛼𝐸𝐿 + (1 − 𝛼)𝐸𝛻 , 0 ≤ 𝛼 ≤ 1   (7) 

In (7), the local value of the cost function ‘(𝑚, 𝑛)’ is a linear combination of local values 

of the squared intensity error [13,14]‘𝐸𝐿(𝑚, 𝑛)’ and squared gradient error ‘𝐸∇(𝑚, 𝑛)’. The 

variable ‘𝛼’ is a user-defined parameter that decides the relative importance of the constraints 

incorporated in the cost function in (7). As the cost function is in the form of a linear 

combination, the parameter ‘𝛼’ is termed as Linear Combination Coefficient (LCC). As per (2) 

to (7), the local value of the cost function ‘𝐸(𝑚, 𝑛)’ is a function of the local pixel value in 

output grayscale image ‘𝑌(𝑚, 𝑛)’ and the local pixel value in the decolourized image is a 

function of the weights ‘𝑊𝑅(𝑚, 𝑛)’, ‘𝑊𝐺(𝑚, 𝑛)’ and ‘𝑊𝐵(𝑚, 𝑛)’. The combination of the 

weights that minimizes the local value of the cost function is optimal [15] as given in (8). 

𝑊𝑂𝑝𝑡(𝑚, 𝑛) =  𝑎𝑟𝑔𝑚𝑖𝑛 {𝑊𝑅(𝑚, 𝑛), 𝑊𝐺(𝑚, 𝑛), 𝑊𝐵(𝑚, 𝑛)} [𝐸(𝑚, 𝑛)] (8) 

Optimum values of the local weights ‘(𝑚, 𝑛)’, ‘(𝑚, 𝑛)’ and ‘𝑊𝐵(𝑚, 𝑛)’ are computed 

via a recursive search procedure. The prior decolourized image is initialized as, 
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𝑌𝑡=0(𝑚, 𝑛) =  
1

3
[𝑋𝑅(𝑚, 𝑛) +  𝑋𝐺(𝑚, 𝑛) +  𝑋𝐵(𝑚, 𝑛)]  (9) 

The grey scale values in the prior are updated with those computed from the optimum 

combination of the weights that minimizes the cost function. The updating is repeated 

recursively until the error between the decolourized images at two consecutive recursions ‘𝑌𝑡’ 

and ‘𝑌𝑡−1’ is less than a user-defined threshold ‘𝜏’. The error between the decolorized images 

at two consecutive recursions is [12,16]. 

𝑒𝑡 =  ∑ ∑ |𝑌𝑡(𝑚, 𝑛) − 𝑌𝑡−1(𝑚, 𝑛)|𝑁
𝑛=1

𝑀
𝑚=1 , 𝑡 = 1,2, … … , 𝑇  (10) 

In (10), ‘𝑇’ is the maximum permitted number of recursions. In the present form of the 

ALCCD, the values of the threshold ‘𝜏’ and maximum permitted number of recursions ‘𝑇’ 

respectively are 1⁄𝑀𝑁 and 100. 

A SCHEMATIC FLOW DIAGRAM IS REPRESENTED AS BELOW 

Pseudo-code of ALCCD 

Step 1: Convert the input colour image ‘𝑋’ into the L*a*b* colour space 

Step 2:  Initialize the prior decolourized image ‘𝑌𝑡=0’ using (9) 

Step 3:  Select/input the values of the user-defined parameters ‘𝛼’, ‘𝜏’ and ‘𝑇’ 

Step 4: Calculate the cost function ‘(𝑚, 𝑛)’ at m=1 and n=1 using (4) to (7) 

Step 5: Identify the optimum weight vector ‘(𝑚, 𝑛)’ following the constraint in (8) 

Step 6: Replace the pixel value ‘𝑌𝑡=0(𝑚, 𝑛), at m = 1 and n = 1’ with updated grey scale 

value calculated from the optimum weight vector ‘𝑊𝑂𝑝𝑡(𝑚, 𝑛)’ using (2). 

Step 7:  Update the grey scale values ‘𝑌𝑡=0(𝑚, 𝑛), at m = 2,3 … … , M and n = 2,3 … 

… , N’ repeating step 4 to step 6. 

Step 8: Calculate the error ‘𝑒𝑡’ between the decolourized images at two consecutive 

recursions ‘𝑌𝑡’ and ‘𝑌𝑡−1’ 

Step 9:  Repeat the step 4 to step 8 if 𝑒𝑡 ≤ 𝜏 

 Results and Discussion 

5.1 Subjective Evaluation of the Performance of the ALCCD and Comparison with 

Existing Decolourization Algorithms 

The perceptual quality of the grayscale images produced by the ALCCD is assessed 

here and compared against existing decolorization algorithms. Existing decolorization 

algorithms in the literature are CD (Nafchi etal. 2017), DVM (Jin etal. 2014), FCED 

(Grundland & Dodgson 2007), SD (Liu etal. 2017), GCSD (Liu etal. 2015), and LED (Liu etal. 

2017). Three test images (Figure 1.1(a), Figure 1.2(a), and Figure 1.3(a)) with completely 

diverse lesion and background colors are selected to justify the performance of the ALCCD. 

Three representative macroscopic images [16] (Figure 1.1(a), Figure 1.2(a), and Figure 1.3(a)) 
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of the skin lesions and corresponding decolorization outputs of CD, DVM, FCED, SD, GCSD, 

LED, and ALCCD are shown in Figures 1.1, 1.2, and 1.3. 

In Figure 1, for test image 1 (Figure 1(a)), the background region in the output images 

of CD (Figure 1.1(b)), DVM (Figure 1(c)), FCED (Figure 1(d)), SD (Figure 1(e)), GCSD 

(Figure 1(f)), and LED (Figure 1(g)) seems to be enhanced and relatively brighter. The over-

enhancement of the background region is dominantly visible in the output image of FCED in 

Figure 1(d). The surface of the output image of the FCED (Figure 1(d)) looks smooth, and 

textural information is lost. The over-enhancement of the background regions and loss of 

textural information are also evident in the output images of the FCED in Figure 2(d) and Figure 

3(d), for test image 2 (Figure 2(a)) and test image 3 (Figure 3(a)). In test image 2 (Figure 2(a)), 

the lesion looks uncontrollably blurred in the output image of the FCED, as seen in Figure 2(d). 

For test image 2 (Figure 2(a)), a mild blurring effect on the lesion can be observed in the output 

images of CD (Figure 2(b)), SD (Figure 2(e)), and LED (Figure 2(g)). In test images 2 (Figure 

2(a)) and 3 (Figure 3(a)), the DVM over-emphasizes the textural information, as seen in Figure 

2(c) and Figure 3(c). In test image 3, the background region of the grayscale images produced 

by GCSD (Figure 3(f)) and LED (Figure 3(g)) also seems to be enhanced and relatively 

brighter. In the decolorized images produced by the ALCCD (Figure 1(h), Figure 2(h), and 

Figure 3(h)), over-emphasized texture or over-enhanced background illumination are not 

visible. The ALCCD does not over-emphasize texture or over-enhance background 

illumination. In terms of the similarity of the perceptual information among the color images 

and grayscale images obtained via decolorization, the ALCCD is superior to CD, DVM, FCED, 

SD, GCSD, and LED. The performance of the ALCCD is verified and compared against CD, 

DVM, FCED, SD, GCSD, and LED on all 137 test images. 

      

        (a) Test image 1                    (b)CD                           (c)DVM                   (d) FCED 

    

          (e) SD                        (f) GCSD                         (g) LED                  (h) ALCCD 

Figure 1. Decolourization Outputs of Various Algorithms on Test Image 1 (a) Test Image 1 

(b) CD (c) DVM (d) FCED (e) SD (f) GCSD (g) LED (h) ALCCD 
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    (a) Test image 2                   (b)CD                       (c)DVM                       (d) FCED 

    

                (e)SD                          (f) GCSD                       (g) LED                      (h) ALCCD  

Figure 2. Decolourization Outputs of Various Algorithms on Test Image 2 (a) Test Image 2 

(b) CD (c) DVM (d) FCED (e) SD (f) GCSD (g) LED (h) ALCCD 

    

     (a) Test image 3                    (b) CD                         (c) DVM                    (d) FCED 

              

                         (e) SD                       (f) GCSD                   (g) LED                      (h) ALCCD 

 

Figure 3. Decolourization Outputs of Various Algorithms on Test Image 3 (a) Test Image 

2 (b) CD (c) DVM (d) FCED (e) SD (f) GCSD (g) LED (h) ALCCD 
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5.2 Task-based Performance Assessment of the ALCCD and Comparison with Existing 

Decolourization Algorithms 

The existing decolorization algorithms CD, DVM, FCED, SD, GCSD, and LED focus 

only on the preservation of local contrast or gradient magnitude. Such algorithms may not 

ensure good accuracy of lesion segmentation on macroscopic images when intensity-based 

schemes are adopted. The segmentation results of Otsu’s thresholding on the output images of 

CD, DVM, FCED, SD, GCSD, LED, and ALCCD produced from three test images (Figure 

1(a), Figure 2(a), and Figure 3(a)) are shown in Figures 4, 5, and 6. Compared to the manual 

gold standard segmentations in Figures 4(a), 5(a), and 6(a), Otsu’s thresholding has falsely 

segmented a significant portion of the background in the output images of CD (Figures 4(b), 

5(b), and 6(b)), FCED (Figures 4(d), 5(d), and 6(d)), SD (Figures 4(e), 5(e), and 6(e)), GCSD 

(Figures 4(f), 5(f), and 6(f)), and LED (Figures 4(g), 5(g), and 6(g)). Otsu’s thresholding 

produces segmentation results on the output images of ALCCD (Figures 4(h), 5(h), and 6(h)) 

that match the manual gold standard segmentations in Figures 4(a), 5(a), and 6(a) better than 

the segmentation results on the output images of CD, DVM, FCED, SD, GCSD, and LED. The 

ALCCD facilitates accurate segmentation of lesions on macroscopic images. 

    

                   (a)                                  (b)                               (c)                                (d) 

    

                (e)                                     (f)                                 (g)                               (h) 

Figure 4. Segmentation Results of Otsu’s Thresholding on the Output Images of Various 

Decolourization Algorithms Produced from the Test Image 1 (a) Manual Gold Standard 

Segmentation (b) CD (c) DVM (d) FCED (e) SD (f) GCSD (g) LED (h) ALCCD 
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                   (a)                                       (b)                                (c)                            (d) 

    

                       (e)                              (f)                                     (g)                            (h) 

Figure 5. Segmentation Results of Otsu’s Thresholding on the Output Images of 

Various Decolourization Algorithms Produced from the Test Image 2 (a) Manual Gold 

Standard Segmentation (b) CD (c) DVM (d) FCED (e) SD (f) GCSD (g) LED (h) ALCCD 

    

               (a)                                     (b)                                  (c)                                (d) 

    

                    (e)                                (f)                              (g)                                  (h) 

Figure 6. Segmentation Results of Otsu’s Thresholding on the Output Images of Various 

Decolourization Algorithms Produced from the Test Image 3 (a) Manual Gold Standard 

Segmentation (b) CD (c) DVM (d) FCED (e) SD (f) GCSD (g) LED (h) ALCCD 
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The DSC values obtained from Otsu’s segmentation on the output images CD, DVM, 

FCED, SD, GCSD, LED, and ALCCD are shown in Table 1. A bar graph of the average DSC 

obtained from the segmentation results of Otsu’s thresholding on the output images of these 

decolourization algorithms on the entire dataset is shown in Figure 7. From Table 1, and Figure 

7, it can be noted that Otsu’s thresholding yields higher values of DSC on the output images of 

the ALCCD than on the CD, DVM, FCED, SD, GCSD, and LED. 

Table 1. DSC values Obtained from Otsu’s Segmentation on Output Images of 

Various Decolourization Techniques 

 

 

Figure 7. Bar Graph of the Average DSC Obtained from the Segmentation Results of 

Otsu’s Thresholding on the Output Images of Various Decolourization Algorithms on the 

Entire Dataset 

5.3 Selection of LCC 

The ALCCD has an operational parameter that significantly impacts the quality of the 

decolorized images and, consequently, the accuracy of segmentation of the lesions when 

automated algorithms are employed for the task. Hence, a judicious choice of the LCC is 

Method Test Image 1 Test Image 2 Test Image 3 
Summary on entire dataset 

(Mean ± Std) 

CD 0.9268 0.9535 0.9540 0.9455 ± 0.0162 

DVM 0.9634 0.9542 0.9572 0.9570 ± 0.0071 

FCED 0.7478 0.9493 0.9271 0.8752 ± 0.1110 

SD 0.9392 0.9541 0.9554 0.9479 ± 0.0077 

GCSD 0.8854 0.9508 0.9483 0.9321 ± 0.0405 

LED 0.8977 0.9525 0.9503 0.9364 ± 0.0336 

ALCCD 0.9647 0.9556 0.9583 0.9595 ± 0.0047 
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important to ensure good quality of the decolorized images produced by the ALCCD and better 

segmentation accuracy of the lesions. Considerations that drive the selection of the LCC are 

discussed here. The DSC versus LCC plots on three test images (Figure 1(a), Figure 2(a), and 

Figure 3(a)) are shown in Figure 8, Figure 9, and Figure 10. It can be seen that at an LCC value 

of 0.65, the DSC values are appreciably maximum. The LCC value of 0.65 is verified to be 

suitable for all 137 test images. 

 

Figure 8. DSC versus LCC Plot on Test Image 1 

 

                 Figure 9. DSC versus LCC Plot on Test Image 2 
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Figure 10. DSC versus LCC Plot on Test Image 3 

 Discussions 

A decolourization algorithm named Adaptive Linear Combination-based Contrast-

preserving Decolourization (ALCCD) preserves the contrast between the background skin 

regions and lesions when mapped from colour space to grayscale space and ensures accurate 

segmentation. Table 1.1 also shows 95% confidence intervals to indicate that the results are 

statistically strong. The value of the method is 0.9595 ± 0.0047 for the whole dataset. The 

ALCCD does not over-emphasize texture or over-enhance background illumination. In terms 

of the similarity of the perceptual information among the colour images and grayscale images 

obtained via decolourization, the ALCCD is superior to CD, DVM, FCED, SD, GCSD, and 

LED. Otsu’s thresholding produces segmentation results on the output images of the ALCCD 

that match the manual gold standard segmentations better than the segmentation results on the 

output images of CD, DVM, FCED, SD, GCSD, and LED. Otsu’s thresholding yields higher 

values of DSC on the output images of the ALCCD than on CD, DVM, FCED, SD, GCSD, and 

LED. The ALCCD facilitates accurate segmentation of lesions on macroscopic images. In its 

current form, the operational parameter LCC of the ALCCD is set manually. By using an image 

quality metric that measures the quality of decolourized images as a loss function, the selection 

of the LCC can be automated with the help of nature-inspired optimization algorithms as a 

future modification of the ALCCD.  

 Conclusion 

The ALCCD does not overemphasize texture or over-enhance background illumination. 

In terms of the similarity of the perceptual information among the color images and grayscale 

images obtained via decolorization, the ALCCD is superior to CD, DVM, FCED, SD, GCSD, 

and LED. Otsu’s thresholding produces segmentation results on the output images of the 

ALCCD that match the manual gold standard segmentations better than the segmentation 

results on the output images of CD, DVM, FCED, SD, GCSD, and LED. 
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