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Abstract   

Cardiovascular diseases (CVDs) continue to be the number one cause of mortality 

across the globe, illustrating the need for trustworthy and automated diagnostic methods. 

Electrocardiogram (ECG) analysis is a traditional method to identify cardiac abnormalities but 

the existing methods based on single convolutional neural networks (CNNs) or traditional 

machine learning (ML) classifiers suffer from overfitting, generalizing across different 

datasets, and addressing class imbalance, which in turn presents a barrier to developing robust 

systems with clinical deployment intent. This research addresses these issues by using a hybrid 

ensemble framework for multi-class ECG image classification. Our hybrid ensemble 

framework follows the approach of using transfer learning from CNNs (VGG16, VGG19, 

ResNet50, and InceptionV3) for deep feature extraction, applying dimensionality reduction (via 

Principal Components Analysis) on the reduced features, and then classifying them using a 

stacking ensemble of Random Forest, XGBoost, LightGBM, Multilayer Perceptron (MLP), and 

Support Vector Machine (SVM), with Logistic Regression serving as the meta-learner. We 

augmented the classes by applying the Synthetic Minority Over-sampling Technique (SMOTE) 

to handle imbalanced datasets. Our trials on datasets from Pakistan, Mendeley, and Bangladesh 

verified the effectiveness of our model, as it scored 97.6% on accuracy, 97.59% on the F1 score, 

and 0.9992 on the macro-AUC score, continuously performing better than both traditional ML 

classifiers and individual CNNs. The findings indicate that CNN-derived features combined 

with different ML classifiers improve the robustness of the model, its scalability, and its ability 

to generalize across clinical datasets. They underscore the role of the proposed model in 

performing disease diagnosis in real-time from an ECG and act as part of the advanced clinical 

decision support. 

Keywords: Electrocardiogram (ECG) Classification, Deep Convolutional Neural Networks 

(CNNs), Stacking Ensemble Learning, Transfer Learning, Cardiovascular Disease Diagnosis, 

Feature Fusion. 

 Introduction 

Cardiovascular diseases (CVDs) continue to be the leading cause of death around the 

world; according to the World Health Organization, CVDs are responsible for an estimated 
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17.9 million deaths each year. ECG is one of the methods clinicians can use to evaluate the 

electrical activity of the heart, and even with newer techniques and strategies, it is still very 

much utilized and remains the quickest and most non-invasive option. ECG signals contain the 

rhythm and morphology of the heart resulting in the identification of conditions such as MI, 

arrhythmias, and structural abnormalities. Despite this, accurate interpretation and 

understanding of ECGs is complex, given its inter-patient variability, noise in the signal, class 

imbalance, and interpretation by an expert in the field. 

The last few years have seen significant accomplishments in the field of ML and DL, 

which have made it possible for ECG-based disease classification to produce workflow and 

accuracy improvements. Traditionally, most proposed methods utilized either raw 1D signals 

processed as-is, or designed features by hand. Meanwhile, newer methods involve taking the 

ECG signal and converting it to a 2D image, which helps CNNs exploit the spatial aspect of 

the representation in order to extract features. Despite their promise, CFR ECG models are still 

commonly characterized by parsimony, as models are often limited to binary classification, rely 

on limited training datasets (thus causing overfitting), or perform poorly across datasets 

acquired under differing conditions. Additionally, single-model classifiers tend to perform 

significantly worse than a multi-classifier architecture, while classification and detection 

performance are generally most robust for shallow architectures. Many methods also are not 

built with real-time performance in mind. 

While shallow ML architectures are computationally efficient, they are unable to 

capture the rich and complex spatial relationships contained in ECG images. CNNs circumvent 

some of these issues by extracting hierarchical feature representations of the image, but 

individually trained CNNs are dataset-dependent and can also overfit. We combine CNN-based 

features in an ensemble stacking approach in order to leverage both their representational 

power, while applying the stability of a group of diverse learners, addressing the weaknesses 

of both shallow learners and single models. 

To resolve these limitations, recent research has turned to hybrid and ensemble learning 

methods. These methods utilize Transfer Learning (TL) with pre-trained CNNs for feature 

extraction and different classifiers for improved decision. However, there are still problems to 

be solved such as class imbalance, lack of diversity in datasets, failure to employ dimensionality 

reduction, and inefficiencies when deploying models. 

As a solution to these problems, this article presents a systematic and scalable ensemble 

learning framework for enhancing multi-class ECG image classification. The proposed 

approach uses TL and employs 4 pre-trained CNNs: VGG16, VGG19, ResNet50, and 

InceptionV3 for deep feature extraction using PCA for dimensionality reduction and ensemble 

classifiers to classify the neural embeddings. The ensemble classifiers use Random Forest, 

XGBoost, LightGBM, MLP, and SVM, with Logistic Regression as a meta-learner. Class 

imbalance is handled with SMOTE. 

The framework is evaluated across three publicly available, clinically annotated 

datasets from Bangladesh, Pakistan, and Mendeley. This multi-source validation ensures cross-

population generalizability and demonstrates the practical potential of integrating such models 

into lightweight, real-time clinical decision support systems. 

While previous ECG classification works have either implemented a single CNN 

method or used traditional ML classifiers, our framework incorporates the novelty of using 

both deep CNN feature extraction and a stacking ensemble; by using a stacking ensemble, we 

can satisfy the benefit of using different feature representations in a complementary manner 

ultimately increasing robustness and generalization across different datasets, thereby 
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facilitating an important contribution to the field. No such hybrid utilization has been 

previously explored systematically in ECG image classification, thus establishing the novelty 

of this approach. 

 Literature Review 

The progress made in ML and DL has transformed ECG-based cardiovascular 

diagnoses. Various investigations into 1D signals, 2D images, or both hybrid models have been 

performed. However, challenges regarding generalizability, class imbalance, interpretability, 

and the possibility of real time use remain. 

The earliest work transposed 1D ECGs to 2D binary or vectorized forms to take 

advantage of CNNs. These efforts within the works of Naz et al., and Ashtaiwi et al., created 

errors from segmentation and limitations of the dataset [1], [2], while Fatema et al. conducted 

hybrid model classifications using InceptionV3–ResNet50 focused on ECG images but 

experienced input variability issues, along with class imbalance [3]. Other work, including that 

of Mhamdi et al. and Aversano et al., used CNNs and introduced ensemble strategies, limited 

to datasets that constrained generalization [4], [5]. 

Other works by Kayam et al. and Sattar et al., employed temporal models of both Bi-

LSTM and CNN–LSTM, albeit limited to binary classification and small dataset applications 

[6], [7]. Examples from Narotam et al., and Ayano et al. indicated that the works were difficult 

to consolidate as multimodal, nor offered interpretable evaluations [8], [9]; while Khan et al., 

and Nawaz et al. used ECG data that weren’t images, in ensemble or traditional ML models, 

ultimately limiting use [10], [11]. 

Transfer learning has previously been utilized to mitigate data sparsity issues, such as 

in studies by Gajendran et al. and Sinha et al. However, the reliance on 12-lead ECGs and lack 

of ECG-specific fine-tuning, limits adaptability towards wearable platforms [12], [13]. Huang 

et al.’s large scale CNN model derived strong AUCs but was critiqued for its clinical validity 

due to the absence of angiographically-verified ground truth [14]. 

Ensemble approaches have often shown improved performance. Karthik et al. combined 

DBN and XGBoost; however, spatial feature depth was lacking [15]. Mishra et al.’s MATLAB 

pipeline produced strong accuracy, but was poorly compatible with real-time applications [16]. 

Yoon and Kang’s stacking ensemble showed promise, but it was limited to a single-CNN 

approach and was also constrained by imbalance in the dataset [17]. Mahmud et al.’s model 

fused 1D and 2D CNNs with transfer learning, but struggled with scalability [18]. 

Alsekait et al.’s multimodal method shows future improved robustness, when using 

MRI and ECG as modality input, although their attention modelling and generalization capacity 

were limited [19]. Dhara et al.’s wavelet-CNN model produced strong accuracy alone, but 

performed poorly and inconsistently under high variability conditions [20]. Lightweight, real-

time classifiers such as Mamba-RAYOLO [21] and Akter et al.’s embedded multimodal model 

[22] were effective, but diagnostic capabilities were limited; therefore, they were often 

restricted to a single-lead ECG basis while also being subject to environmental noise 

sensitivities. Alsayat et al. [23] proposed a deep learning ensemble for ECG classification, 

where the best combination of Inception, MobileNet, and NASNetLarge achieved an F1 score 

of 0.9651 and a balanced accuracy of 0.9640. However, their study was restricted to a single-

source dataset and faced challenges of interpretability and computational efficiency, without 

incorporating resampling techniques or dimensionality reduction approaches. These gaps 
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motivate the integration of PCA and SMOTE within a hybrid ML–DL ensemble to enhance 

robustness and clinical applicability. 

To consolidate these findings, Table 1 provides a comparative summary of recent works 

on ECG-based heart disease prediction, highlighting datasets, methodologies, optimization 

strategies, performance, and limitations. As seen in Table 1, while prior work demonstrates 

credible performance, it is scattered across datasets and pays little attention to the key aspects 

of dealing with class imbalance and dimensionality reduction. Overall, prior work has shown 

the expectant portion of deep learning and ensemble for ECG classification, but the critical 

shortfalls consist of using single datasets, a lack of dimensionality reduction, poor treatment of 

imbalance, and limited viability for real-world applications. These shortcomings suggest a 

necessary need for a unified, strong, and generalizable ensemble framework for subsequent 

study and developments across various clinical contexts. 

In contrast to recent research studies (2023-2025) on ensemble ECG classification that 

typically utilized only one dataset, and limited ensemble configurations (e.g. one CNN 

backbone, and no balancing or resampling techniques), the hybrid approach proposed in this 

paper introduces a two-phase hybrid approach. First, deep features from several   transfer 

learning models (VGG16, VGG19, ResNet50, InceptionV3) are fused to extract 

complementary ECG representations. Second, the fused features were modeled using a stacking 

ensemble of heterogeneous machine learning classifiers with Logistic Regression, as meta-

learner. Unlike the work of Alsayat et al. (2025) [23] which also achieved excellent accuracy 

without using   PCA or SMOTE, and whose experimentation was limited to one dataset, the 

methodological framework proposed integrates dimensionality reduction and imbalance 

handling across three independent datasets for testing and comparison. The proposed approach, 

verified in three regions (Bangladesh, Pakistan, Mendeley), demonstrates greater robustness 

and generalizability than published collective research approaches. 

Table 1. Comparative Summary of Related Works on ECG-Based Heart Disease 

Prediction 

Ref Dataset 

Used 

Model / 

Approach 

Feature 

Extraction 

Imbalance 

Optimization 

Performance 

Acc / F1) 
Limitations 

Sinha et al., 

2023 [13] 

PTB-XL 

(public 

ECG 

dataset) 

DASMcC 

(SMOTE-

augmented 

multi-class 

classifier) 

Handcrafted 

features 

 

SMOTE 

 

Acc ∼91% 
Not image-

based, limited 

scalability 

Yoon & 

Kang, 2023 

[17] 

Chapman 

Univ. & 

Shaoxing 

Hospital 
datasets 

Multi-modal 

stacking 

ensemble 

 

CNN 

features 

 

None 

 

Acc ∼94% 
Single dataset, 

imbalance 

issues 

Akter et al., 

2024 [22] 

PTB-XL 

(21,799 

ECGs, 

18,869 
patients) 

Embedded real-

time 

system (CNN+ 

VGG16+BiLST

M) 

Raw 

ECG+ DL 

SMOTE 

applied 

Acc 94.07%, 

F1 0.94 

Limited to 

atrial 

fibrillation only 

 

Ma & 

Zhang, 2024 

[21] 

ECG 

images (271 

patients, 

1,231 images, 

Deep CNN 

for real-

time 

 

CNN 

 

None 

 

Acc ∼94% 

Focused on 

real-time, 

limited 
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4 classes) classificati

on 

dataset 

 

Alsekait et 

al., 2024 

[19] 

HNET-

DSI, 

HNET-

DSII, 

HNET-

DSIII 

Heart-Net 

multimodal DL 

(ECG+MRI) 

 

CNN fusion 

 

None 

 

AUC ∼96% 

Generalization 

limited, weak 

attention 

modeling 

Mishra 

& 

Tiwari, 

2024 

[16] 

Heart 

Disease 

(UCI 

Repository) 

IoT-

enabled 

3-layer 

DL + 

meta-heuristic 

optimization 

 

Deep CNN 

 

None 

 

Acc ∼92% 

MATLAB-

based, not real-

time 

deployable 

 

Ayano et al., 

2024 [9] 

PTB-XL, 

CODE-

15%, 

Chapman 

Arrhythmia 

 

Interpretable 

hybrid 

multichannel DL 

 

1D + 2D 

ECG 

features 

 

None 

 

F1 ∼93% 

Complex, not 

suitable 

for lightweight 

deployment 

Kayam, 

2024 [6] 

MIT-BIH 

Arrhyth

mia 

Database 

DL-driven heart 

disease 

prediction 

 

Raw signal 

 

None 

 

Acc ∼90% 

Binary 

classificati

on 

only 

Ashtaiwi et 

al., 2024 [2] 

ECG 

Images 

Dataset of 

Cardiac 

Patients 

ECG image 

vectorization + 

classification 

 

Image 

vectors 

 

None 

 

Acc ∼88% 

Segmentati

on issues, 

dataset 

limited 

 

Alsayat et 

al., 2025 

[23] 

ECG Images 

Dataset of 

Cardiac 

Patients 

Deep 

ensemble 

(Inception, 

MobileNet, 

NASNetLarge) 

 

CNN 

features 

 

None 

 

F1 96.5% 

(Acc 

∼96.4%) 

High 

computatio

n, 

no 
PCA/SMOTE 

 

Proposed 

Work 

Bangladesh, 

Pakistan, 

Mendeley 

datasets 

Hybrid 

Ensemble 

(CNN+ PCA+ 

SMOTE+ 
Stacking 

ML classifiers) 

 

CNN fusion 

 

SMOTE+ 

PCA 

Acc 97.6%, 

F1 97.59%, 

AUC 0.9992 

Strong 

generalizati

on, real-

time 

deployable 
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Figure 1. System Architecture 

Moreover, while CNN-based models are proficient in extracting features, they are 

infrequently generalizable over datasets, and classical ML models are limited in reporting 

complex spatiotemporal ECG representations. Prior work has used PCA or SMOTE separately 

and typically with a single dataset, which makes them less relevant in real-world applications. 

However, in contrast, we used CNN-based feature extraction with PCA and SMOTE in a 

stacking ensemble model using three heterogeneous datasets, which addressed generalizability, 

class imbalance, and computational efficiency.  

 Methodology 

3.1 Motivation and Proposed Solution 

To address the limitations outlined above, we designed a novel hybrid ensemble 

learning framework that combines deep CNN based feature extraction, a stacking ensemble of 

diverse ML classifiers, and the LR meta-learner. In contrast to studies that study 1D signals 

and even a single model of CNNs [1], [4], [11], we proposed a multi-architecture feature fusion, 

as a method to capture richer spatial representation of ECG images. To account for class 

imbalance, we implemented SMOTE-based oversampling [3], [7], [17] and used PCA to reduce 

dimensionality and avoid overfitting [15], [20]. In contradistinction to other methods that were 

limited to MATLAB-only environments [16], [21], our framework is deployable on lightweight 

platforms enabling potential real world applications in real-time. The model is validated with 

three different and diverse clinical datasets to ensure generalizability, deployability, and 

reliability. 

3.2 System Framework 

The architecture of the proposed model (as shown in fig 1) follows a multi-stage 

pipeline. It begins with the acquisition of ECG datasets, followed by a consistent preprocessing 

pipeline that includes resizing images and applying SMOTE on the training data. Then the pre-
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trained CNNs are selected for deep feature extraction. Once features are extracted from these 

models, they are concatenated and projected into PCA. 

Three modeling approaches are investigated: (1) independent classification using 

individual CNN models with shallow classification heads; (2) deep learning ensemble 

modeling using an MLP classifier on the fused features; and (3) a hybrid ensemble learning 

model that combines diverse ML classifiers in a stacking ensemble model. 

The predictions from each of these models are assessed using various evaluation 

metrics. The model performing best from the above assessments is used to publish the final 

inference model using a lightweight Streamlit (or Flask) interface for real-time inference. The 

expected consistent output is to predict the cardiac condition – Normal, MI, HMI, or Abnormal 

Heartbeat and the inferred source system will be suitable for clinical decision support system 

requirements. 

3.3 Dataset Description 

3.3.1 Dataset 1 – National Heart Foundation of Bangladesh 

The first dataset collected from the National Heart Foundation of Bangladesh [24], 

began with 2898 ECG images, and was curated down to 1381 high-quality distinct images using 

perceptual hashing and manual curation to eliminate duplicates. All images were preprocessed 

at the same resolution, and the image files were labeled appropriately, following a defined 

folder structure. It consists of four classes, with 426 Normal, 358 Myocardial Infarction (MI), 

339 Abnormal Heartbeat (AH), and 258 History of MI (HMI) images (as shown in fig2). We 

used this dataset to benchmark performance both on its own, and alongside other datasets of 

interest. 

3.3.2 Dataset 2 – Chaudhry Pervaiz Elahi Institute of Cardiology, Pakistan 

The second dataset [25] was comprised of 929 ECG images collected from the 

Chaudhry Pervaiz Elahi Institute of Cardiology in Multan, Pakistan. All images have been 

clinically annotated across four diagnostic categories: 284 Normal, 240 MI, 233 AH, and 172 

HMI images (as shown in fig 2). Similar to the S1 dataset, this dataset includes clinically 

annotated images of various cardiac conditions, that represent more genuine hospital 

circumstances, and provide a valuable test scenario for evaluating models under resource 

constrained situations. 

3.3.3 Dataset 3 – Mendeley ECG Dataset 

The third dataset [26] consists of a total of 707 ECG images using a custom IoT-based 

ECG device that acquires real-time signals through electrodes placed on the chest. The dataset 

is well balanced over three classes: 295 Normal, 241 AH, and 171 HMI images (as shown in 

fig 2). The data itself highlights a real-time monitoring application and was used to evaluate 

model performance in wearable and IoT-based healthcare system scenarios. A notable 

difference was that Datasets 1 and 2 were labeled with 4 classes while Dataset 3 was labeled 

with only 3. To remedy this in our method of stacking ensemble while training and testing we 

performed class-specific probability normalization. In doing so we could still ensure the 

classifier learned label spaces appropriate to the dataset without deformation while maintaining 

some generalizability across datasets. 
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        (a) Dataset 1 Sample                (b) Dataset 2 Sample                    (c) Dataset 3 Sample 

Figure 2. Representative ECG Images from Each Dataset 

3.4 Data Preprocessing 

Proper preprocessing is important for improving model performance as well as possible 

data consistency across different datasets.  The proposed pipeline consists of steps related to 

traditional and deep learning-preprocessing necessary for preparing ECG images for 

classification. 

3.4.1 Image Loading and Normalization 

All ECG images were read in grayscale, and squeezed to the same dimension of 64×64 

across the dataset for the preprocessing phase. We adjusted pixel values by dividing them by 

the maximum pixel intensity of ’255’, to a uniform range of [0, 1], which should help the neural 

networks with faster convergence rates during training and result in fewer penalties for 

differences in input scales. Resizing to 64x64 maximizes computational efficiency while 

preserving clinically-meaningful morphological patterns like QRS complexes and arrhythmias. 

A grayscale conversion eliminates redundancy and overlap from color channels without 

compromising diagnostic information, as ECG tracing is monochromatic by nature in clinical 

settings. 

3.4.2 Train–Validation–Test Splitting 

The whole dataset was split into training (70%), validation (15%), sets and testing 

(15%) and was stratified during the splits. Maintaining sections with class distributions was 

important because although the classes were set up to be balanced, there may be slight 

imbalances in the numbers of each class. For both types of ML and ensemble modelling, the 

images were flattened as image vectors after being transformed into a one-dimensional form. 

3.4.3 Handling Class Imbalance with SMOTE 

The training set was also re-sampled up from the imbalance that existed by using 

SMOTE. All images were flattened externally into 1D vectors, the minority classes were 

oversampled, and once the classes were resized the feature vectors were re-transformed back 

into image tensors for downstream processes. Both before and after the completion of SMOTE, 

we described the class distribution using grouped bar charts (as shown in fig 3) to visually 

justify the entire balancing. SMOTE was used the same way in all three datasets before training 
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to ensure class balance in all datasets. Not only did we receive increased recall for 

underrepresented classes like HMI, but we eliminated the false negatives seen in the baseline 

models, thus, maintaining consistency with the study’s objective to reduce class imbalance. 

3.4.4 Preprocessing for Deep Learning Models 

As part of CNN-based feature extraction via transfer learning, the images were resized 

to the input size to each of the individual pre-trained models: 

• VGG16, VGG19, ResNet50: 224 x 224 

• InceptionV3: 299 x 299 

The shielded color images were altered to RGB by duplicating the single grayscale 

channel for each of the three color channels. The images were also pre-processed with the 

frontend processing functions of each model (such as vgg16_preprocess or 

inception_preprocess) to batch the input images for the feature extraction portion of fine-tuning 

the CNN with transfer learning. 

3.5 Feature Extraction and Dimensionality Reduction 

3.5.1 CNN-Based Deep Feature Extraction 

To obtain high-level and rich spatial features from our ECG images we employed an 

ensemble of four pre-trained convolutional neural network (CNN) models; VGG16, VGG19, 

ResNet50, and InceptionV3, all with ImageNet weights and all shown to successfully classify 

medical images, which will be further demonstrated in the experimental section of this study. 

All models were chosen because they each have complementary architectures based on medical 

image classification. 

For each model, we used the final convolutional layers, which included global average 

pooling to extract a fixed-length feature vector. We omitted the head (i.e., fully connected 

layers) of each model by specifying include top=false, allowing only spatial features to be 

extracted. Each CNN model has limitations, such as VGG's depth allowing for fewer features, 

ResNet capturing edge patterns with its residual learning, and Inception capturing multi-scale 

features. However, their combination will alleviate these issues because the ensemble will 

preserve their complementary representations producing more robust and generalization across 

varying ECG patterns. 

3.5.2 Feature Fusion and Ensemble Representation 

The fused feature vector for each image contains varied representations gleaned from 

different CNNs architectures and thus enriching the model with greater generalization 

capabilities over datasets. These features were computed respectively for the training, 

validation and testing sets. The ensemble method was crucial in utilizing the complementarity 

of each base model while significantly improving classification performance compared to just 

one of the individual models 
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3.5.3 Dimensionality Reduction using PCA 

The combined feature vectors represented high-dimensional feature spaces, and thus 

required caution against computational expense and overfitting. To control for these concerns, 

we performed a principal component analysis (PCA), also called eigendecomposition, to 

diminish the dimensionality while keeping most of the variance in the feature space. PCA was 

fitted on the training set and then applied to the validation and test sets. We also generated 2D 

visualizations using PCA projections to assess sample distribution (as shown in fig 3) and to 

visualize sample class separability before and after the application of SMOTE. 

To assess a suitable dimensionality cut-off, we analyzed PCA components that ranged 

between 100 and 250. The model performance remained stable beyond ∼ 140 components as 

accuracy and AUC differed by little (<0.2%). At 150 components, we retained >97% of the 

variance; thus, we balanced redundancy reduction with enough discriminative information. 

While we could have used more components (200 - 250), no measurable benefit was seen with 

downstream performance. The only likely effect of having more components would be to 

increase the training and inference time. On this basis, we regarded 150 components as the most 

economical and sound cut-off point. The reduced feature representations were used as inputs 

for both the deep ensemble classifier and the traditional ML-based stacking ensemble 

(described in Section 3.4) classifier. 

3.6 Classification Framework 

This section describes the approaches used for multi-class ECG image classification. 

We structure the approaches into three principal pipelines: (i) each for individual deep learning 

models for a baseline measure of performance, (ii) a deep feature fusion pipeline to improve 

learning, and (iii) a stacked set of classic machine learning models using reduced deep features. 

Each pipeline is assessed to understand its contribution towards developing reliable detection 

of cardiovascular disease. 

3.6.1 Individual Deep Learning Models 

In order to establish a baseline and evaluate the networks’ discrimination capabilities, 

several common pretrained models with reasonable popularity were used in isolation: VGG16, 

VGG19, ResNet50, InceptionV3, and EfficientNetB0. These models were selected because of 

their various architectural differences different depths, receptive fields and convolutional styles 

impacting their ability to target local and global ECG features. 

For all networks, the models were adapted to the grayscale ECG images. This included 

resizing the images and adjusting the single channel to the RGB inputs to interact with samples. 

Features were extracted from the penultimate layer after global average pooling with a shallow 

classification head. This shallow classification head contained only dense layers and dropout 

layers; having shallow classifiers helps retain a computationally efficient process and maintain 

appropriately learned representations from their pretrained model on ImageNet. 
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(a) Dataset 1-Class Distribution         (b) Dataset 1–PCA Before SMOTE      (c) Dataset 1–PCA After SMOTE 

     

  (d) Dataset 2 – Class Distribution       (e) Dataset 2–PCA Before SMOTE      (f)  Dataset 2–PCA After SMOTE 

     

   (g) Dataset 3 – Class Distribution        (h) Dataset 3–PCA Before SMOTE      (i) Dataset 3–PCA After SMOTE 

Figure 3. Comparison of Class Distribution and PCA Transformation Before and After 

SMOTE Across Three Datasets 

3.6.2 Deep Feature Fusion with CNN Ensemble 

To mitigate the architectural limitations of single CNNs, and leverage their 

complementary feature representations, deep feature fusion was considered. The features 

obtained from VGG16, VGG19, ResNet50, and InceptionV3 could then be concatenated to 

create a single high-dimensional representation for every ECG image. This was done by 

exploiting the smaller fine-grained local patterns and larger semantic representations or 

abstractions of the ECG image attributes that could not be fully encoded in one architecture 

individually. Once extracted, the features were pooled to aggregate all features using average 

pooling and then each image was concatenated along the feature dimension. 
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An ensemble DL classifier was trained with the PCA reduced features in the context of 

an MLP architecture. The model used two fully connected layers with dropout regularization, 

and a softmax classifier on top of the preceding layers. The model improved robustness and 

generalization compared to the individual CNNs since it used the complementary strengths of 

multiple architectures. 

3.6.3 Stacked Machine Learning Ensemble 

To further improve classification performance, we implemented a stacked ensemble 

[27] of machine learning classifiers on the PCA-constructed deep features. The base learners 

were: Random Forest [28], XGBoost [29], LightGBM, Multilayer Perceptron (MLP) [30] and 

Support Vector Machine (SVM) [31] – These classifiers used represented different model 

paradigms: bagging, boosting, kernel methods, and neural computation. Their very differences 

were why their combination was intended to address variance, bias, and overfitting in different 

data subsets. 

A Logistic Regression model [32][33] was utilized as the meta-learner to synthesize the 

predicted outcomes from the base classifiers. This was done to guarantee some interpretability 

at the final decision layer, and produce temporal stability in the outputs from the ensemble 

learner. The train-test method for appraising performance employs K-fold cross-validation and 

stratified 5-fold cross-validation to maintain integrity by avoiding data leakage in the training 

of the meta-model. 

The ensemble learner [27] resulted in improvements in classifier performance, which 

highlighted the enhanced performance with respect to class imbalance and more complex 

relationships, due to the diversity and complementarity among each model. 

The stacking classifier outperformed both individual CNNs, and the deep learning 

ensemble, producing the highest F1 score (97.59%), accuracy (97.60%), and macro AUC 

(0.9992) found on the curated dataset from Bangladesh. The results highlight the utility of 

hybrid learning that combines the best of deep neural representation with the interpretability 

and robustness of traditional ML. 

3.6.4 Training Configuration and Implementation Details 

For the DL ensemble model, we trained a feedforward network with two dense layers 

consisting of 512 and 256 units, using ReLU activation and dropout (0.5 and 0.3), using 

concatenated CNN features. The training utilized Adam, sparse categorical cross-entropy loss, 

a batch size of 32, and early stopping with a patience of 7, with a maximum of 100 epochs and 

a scheduled learning rate decay. 

We ultimately chose Adam because of its adaptive learning rate and strong empirical 

stability with some ECG classification tasks. Initial testing with RMSProp and stochastic 

gradient descent (SGD) with momentum produced slower convergence and had less empirical 

stability with validation accuracy (fluctuations were approximately ±2-3%). AdamW 

performed similarly to Adam but added latency due to the overhead of updating the weights 

with decay. Thus, Adam was retained because it provided the best trade-off between accuracy 

and empirical stability with our lightweight implementation. 
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The feature extractor part of the pre-trained CNN was not fine-tuned or trained; it was 

only used as a frozen feature extractor. Images were pre-processed, and features were extracted 

using global average pooling. 

The classical ensemble ML and DL models were trained by fitting a stacking classifier 

using the PCA-reduced CNN features and SMOTE balanced data, evaluated using 5-fold 

stratified cross validation. Also, we used the individual CNN features to train the shallow neural 

networks with similar training parameters but a ceiling of only 60 epochs and early stopping 

(patience = 5), using the shallow networks for comparative purposes as well as with the DL 

ensemble. 

All experiments were conducted on a Windows 11 machine with an 11th Gen Intel Core 

i5-1135G7 CPU (2.40GHz 4 cores 8 threads), with 8 GB RAM and no GPU. The entire pipeline 

took approximately 2.5 to 3 hours across datasets. 

Following preprocessing (resizing and converting to grayscale), each image took less 

than 2 ms. The frozen CNN feature extraction across the four backbone models took around 

80-100 ms per image on CPU. PCA reduced the embeddings by nearly 70% (down to 150 

components), greatly reducing memory footprint and speeding up any downstream training or 

inference. The ensemble classification took only 5-7 ms per sample resulting in an end-to-end 

inference time of 100-120 ms per ECG image on CPU. The total memory footprint was below 

100 MB which supports that the framework is operating in near real-time value even in the 

absence of GPU acceleration. 

3.7 Evaluation Metrics 

To conduct a thorough evaluation of the classification performance of the proposed 

models, we will use a variety of established evaluation metrics commonly used in multi-class 

medical image classification, including Accuracy, Precision, Recall, F1 Score and Macro AUC. 

• Accuracy measures the proportion of correctly classified samples out of all predictions. 

• Precision measures the model’s ability to identify positive class instances correctly, 

while not misclassifying any negative samples as positives. 

• Recall reflects how well the model recognized all relevant instances for each class. 

• F1 Score computes the harmonic mean of Precision and Recall, which can be especially 

useful in imbalanced datasets. 

• Macro AUC (Area Under the ROC Curve) describes the model’s ability to discriminate 

multiple classes, by determining the average AUC for all one-vs-rest comparisons. 

The overall distribution ensures a balanced evaluation, and as stated above, Macro AUC 

is useful in depicting the model’s capacity to distinguish between a variety of subtle cardiac 

anomalies and also provides grounding for comparison when looking at imbalanced classes 

overall. 

The metrics applied to the proposed stacking ensemble and baseline models were done 

uniformly across all three datasets, enabling a like-for-like comparison with previous ECG 

classification studies. In addition, normalized confusion matrices (as shown in fig 6), provide 

comprehensive information on the per-class sensitivity, specificity and per-class error trends. 

Collectively these measures are exhaustive with respect to clinical reliability thus, requiring no 
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supplementary statistics (e.g., Cohen’s Kappa or MCC) which can be inferred from the 

provided results. 

 Results 

In this section, we present an extensive examination of the experimental results obtained 

by assessing individual deep learning (DL) models, classical machine learning (ML) classifiers, 

and our hybrid ensemble framework on three publicly available ECG datasets. The evaluation 

was performed based on four metrics: Accuracy, Precision, Recall, F1 Score, and Macro AUC. 

4.1 Performance of the Proposed Hybrid Ensemble Framework 

The proposed model consistently outperformed all other models across the datasets. The 

performance of the proposed model compared to previous models is shown in fig 4: 

• Dataset 1: Test Accuracy 97.60%; F1 score 97.59%. Macro AUC of 0.9992. 

• Dataset 2: Test Accuracy 92.14%; F1 score 92.12% Macro AUC of 0.9888. 

• Dataset 3: Test Accuracy 87.85%; F1 score 87.63%. Macro AUC of 0.9736. 

In order to evaluate overfitting, we compared the scores of the performance metrics 

between cross-validation (training) and held-out test sets across the three datasets as shown in 

fig 4. Overall, there is very little difference between training and test scores for all major metrics 

assessed. This consistency shows that the proposed ensemble can generalize well and has 

avoided substantial overfitting. 

 

Figure 4. Training vs Testing performance of the Ensemble Across Datasets, showing 

Stable Generalization with Minimal Overfitting 

To assess cross-dataset generalization, the ensemble was trained separately and 

evaluated on the Bangladesh, Pakistan, and Mendeley datasets. The consistency demonstrated 

shows robustness to changes in acquisition conditions and label quality. 

In addition to validating statistical reliability through 5-fold cross-validation repeated 

three times, the standard deviation of accuracy across folds was below 0.7% indicating stable 



 Multi-Class Heart Disease Detection using ECG Images via Deep CNN Feature Extraction and Ensemble Stacking 

ISSN: 2582-4252  890 

generalization. A paired t-test between the ensemble and the top performing single CNN 

(VGG16) indicated there was a statistically significant difference in accuracy (p < 0.01). The 

results show that the gains of the ensemble are not simply due to random variance but appear 

to be stable and replicable. 

4.2 Individual Machine Learning Model Results 

In sum, displayed in figure 5 (b, d, f) are the results for seven individual ML classifiers. 

Key points: 

• For dataset 1: MLP was the top performer with an F1 score of 97.09%, with XGBoost 

and LGBM also performing well. 

• For dataset 2: XGBoost had the highest individual F1 score of 89.08% with MLP 

(88.42%) and LGBM (88.46%) nearly in the same ballpark. 

• For dataset 3: RF and MLP were the highest performers with F1 scores of 88.56% and 

87.63%, respectively. 

In summary, while the individual models all had strong results, none were able to 

consistently replicate the model performance achieved with the ensemble over all datasets. The 

ensemble solution indicated higher predictive power and robustness of the model accuracies, 

suggesting that combining ML classifiers from varying groups yields stronger results than 

individuals alone. 

  

      (a) DL Performance – Dataset 1                     (b) ML Performance – Dataset 1 

  

              (c) DL Performance – Dataset 2                      (d) ML Performance – Dataset 2 
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                     (e) DL Performance – Dataset 3                (f) ML Performance – Dataset 3 

Figure 5. Comparison of DL and ML Models Across Datasets, Where the Ensemble 

Consistently Outperforms Individual Models 

4.3 Individual Deep Learning Model Results 

Figure 5 (a, c, e) shows the classification predictions for the individual DL models using 

transfer learning. On Dataset 1: 

• VGG16 performed the best of all DL models, with an 86.48% F1 score and a 96.55% 

AUC. 

• Models like InceptionV3 and EfficientNet failed to reach an F1 score of 75%, and were 

poor performers on Dataset 2 and Dataset 3. 

 The DL ensemble was able to achieve slight improvements, but, again, the ML 

ensemble still performed best. For example, on Dataset 3, DL ensemble models achieved an 

82.11% F1 score and a 94.71% AUC. 

4.4 Confusion Matrix Analysis 

The normalized confusion matrices for the training and testing phases over all three 

datasets are shown in fig 6. The ensemble model demonstrates excellent class separation, 

especially in Dataset 1, where the model exhibits predictions with near perfection across all 

four classes. In the more challenging Dataset 3, the model shows over 85% diagonal percentage 

which reflects both strong class discrimination and reliable classification of the minority 

classes, such as HMI. 

   

       (a) Train – Dataset 1                      (b) Train – Dataset 2                 (c) Train – Dataset 3 
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            (d) Test – Dataset 1                   (e) Test – Dataset 2                (f) Test – Dataset 3 

Figure 6. Normalized Confusion Matrices Showing High Class-Wise Accuracy with 

Few Misclassifications Across Datasets 

4.5 ROC Curve Analysis 

Figures 7, 8 and 9 show the 12 models’ Receiver Operating Characteristic (ROC) curves 

on Datasets 1, 2, and 3, respectively. The proposed ensemble again provided better area under 

the curve (AUC) values for each of the classes consistently and had only weakly discriminative 

class prediction with the individual models (SVM, LR, and NB). Although XGBoost, MLP, 

and VGG16 produced ROC plot performance levels that were comparable to the ensemble in 

certain class-wise ROC plot results, they did not provide performance levels that were 

consistent across datasets. 

 Discussion 

The experimental results from our three real-life ECG datasets validated the efficiency 

of the proposed hybrid ensemble learning framework. In this section, we will describe key 

takeaways, performance trends, and implications. 

     

          (a) EfficientNet ROC              (b) InceptionV3 ROC                 (c) ResNet50 ROC 
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             (d) VGG19 ROC                      (e) VGG16 ROC           (f) Ensemble DL Model ROC 

     

   (g) Logistic Regression ROC                 (h) SVM ROC                           (i) MLP ROC 

     

             (j) LightGBM ROC                 (k) XGBoost ROC                (l) Random Forest ROC 

Figure 7. ROC Curves of 12 Models on Dataset 1, Where the Ensemble Achieves the 

Highest AUC 

5.1 Superiority of the Proposed Ensemble Framework 

The ensemble model which takes the CNN-based features and meta-learners over 

diverse ML classifiers was superior across all metrics to both DL techniques and individual 

ML models. For instance, in Dataset 1 the test F1 score was 97.59% which is both high in 

discriminatory power and robustness. Even for Dataset 3 with its limited number of samples 

and ambiguous signals, the ensemble model exhibited an F1 score of 87.63% and an AUC score 

of 0.9736, which speaks to its generalizability to other distributions of data. We believe its 

superior performance is attributable to: 

• The CNN-based features are inherently richer in patterns being spatial in their extraction 

of the ECG signals 
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• PCA dimensionality reduction was achieved to minimize overfitting and clean the 

classification signal dimension. 

• The stacking classifier was based on diversity with ML models e.g., RF, XGBoost, 

SVM thereby reducing the risk of overfitting and improving robustness. 

     

       (a) InceptionV3 ROC                (b) ResNet50 ROC                          (c) VGG19 ROC 

     

          (d) VGG16 ROC            (e) Ensemble DL Model ROC      (f) Logistic Regression ROC 

     

            (g) SVM ROC                             (h) MLP ROC                         (i) LightGBM ROC 
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         (j) XGBoost ROC                   (k) Random Forest ROC              (l) Naive Bayes ROC 

Figure 8. ROC Curves of 12 Models on Dataset 2, Confirming the Ensemble’s Superior 

Classification Performance 

Although you can often achieve slight improvements to a single CNN via deep fine-

tuning or hyperparameter tuning, these models are still susceptible to overfitting and biases 

associated with the particular dataset. Stacking ensembles, on the other hand, are able to use 

multiple forms of a learner (tree based (RF, XGB, LGBM), kernel based (SVM), neural (MLP)) 

and can reduce both variance and bias by introducing this heterogeneity. This means stacking 

ensembles can achieve comparatively, more balanced and generalizable performance 

regardless of the dataset, a singular optimized CNN lacks the efficiency or protective ability of 

a stacking ensemble. 

     

       (a) InceptionV3 ROC                  (b) ResNet50 ROC                     (c) VGG19 ROC 

     

               (d) VGG16 ROC         (e) Ensemble DL Model ROC    (f) Logistic Regression ROC 
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                (g) SVM ROC                          (h) MLP ROC                       (i) LightGBM ROC 

     

            (j) XGBoost ROC                  (k) Random Forest ROC          (l) Naive Bayes ROC 

Figure 9. ROC Curves of 12 Models on Dataset 3, Showing Strong Results Though with 

Slightly Reduced Separability Between Classes 

5.2 Performance Trends Across Datasets 

The results obtained from Dataset 1, across all models, were consistently the best, most 

probably as a result of the size of Dataset 1 and possibly its better labels. This may explain 

Dataset 2’s reasonable performance, while Dataset 3’s substantial challenges were likely the 

result of issues associated with class clarity and the lower representation of classes. 

• The ensemble was stable with little deterioration of performance across datasets and 

showed robustness. 

• DL models, on the other hand, lost substantial performance, especially EfficientNet, 

that consistently under-performed across all datasets. 

Overall, the ensemble provided similar predictions across datasets regardless of the size 

or quality of the labels. It is important to note that Dataset 3 (Mendeley) presented more 

challenges given the lower number of samples with labeling that was somewhat overlapping 

with class patterns. However, its performed well in Dataset 3, confirming the ensemble’s 

resilience to dataset scale and labeling differences. 

The performance on Dataset 3 was relatively lower likely not only because of its smaller 

size, but also because of higher class imbalance and less distinct levels of separability of the 

waveforms between the categories of classes. Notably, the SMOTE augmentation improved 

recall directly for the minority class. For example, in Dataset 3, the recall for HMI improved 

by nearly 6% compared to training in the absence of SMOTE. Thus, it would seem that the 
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SMOTE oversampling strategy was able to mitigate false negatives for clinically important but 

under-represented classes. Instead of having 4 classes in Datasets 1 and 2, where there was 

adequate variety of each of the representations, Dataset 3 contained 3 classes and was much 

smaller. There may have also been inconsistent labeling quality over the recordings, suggesting 

that future studies with noise-robust training and data augmentation should implement 

strategies for smaller or under-represented datasets. Upon closer examination of the confusion 

matrices, we see that the AH and HMI classes show weaker separability, mainly due to 

overlapping ECG morphologies and slight differences in the waveforms. Therefore, there is a 

need for richer feature representations or domain-specific augmentation to better separate 

classes. 

5.3 Deep Learning vs Machine Learning Models 

CNN-based models like VGG16 and VGG19 produced competitive results with models 

from Dataset 1, when used individually, they were less effective than traditional ML classifiers. 

We can state the following observations: DL models are simply better when they have large 

and diverse datasets for training whereas ML models, specifically tree-based methods and MLP 

showed adaptability to a total data volume lower than DL, and were substantially benefited 

from features that were reduced by PCA. 

The following points summarize current observations regardless of perceived 

expectations, 

• MLP and XGBoost were consistently the best performers across datasets. 

• The DL ensembles yielded limited improvement over the performance of individual DL 

models, which reinforces the simplicity of MAX based ML decision making 

frameworks, with a suitable and edges-oriented DL featureing process. 

5.4 Confusion Matrix and ROC Observations 

The confusion matrices (Figure 6) showed that the proposed ensemble resulted in 

considerably fewer misclassifications, especially for the more critical classes: Myocardial 

Infarction (MI), and for the sake of argument, Abnormal Heartbeats (AH). This is particularly 

important in clinical applications as false negatives could have negative ramifications. The 

ROC curves again instilled confidence in this approach, with ensemble models exhibiting 

steeper curve and higher AUC than single models, again providing evidence of better 

performance as a classifier. That is, we expect to see an improvement in specificity and 

sensitivity, which is critical to medical diagnostics. 

5.5 Practical Implications and Deployment Readiness 

The proposed system performed well with data collected from different sources and 

acquisition settings. The implications of this performance for future, real clinical 

implementation are strong. For example: 

• Noisy ECG data via preprocessing and PCA, 

• Class imbalance through SMOTE, 
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• Multi-class scenarios with stacked classification. 

Furthermore, the model we developed has a modular architecture that is well positioned 

to add new CNN for processes or sites, or to add features for the clinical environment, in order 

to build a better predictor, faster. 

Furthermore, the framework provides lightweight deployability as a consequence of its 

design: the ECG images are resized to a standard 64×64 greyscale to reduce the input size, PCA 

reduces the embeddings to 150 dimensions and therefore reduces the computational resource 

requirements and execution time, and the stacking ensemble only uses inexpensive learners 

with rapid inference. Such optimizations allow the entire framework to be deployable on mid-

range hardware to provide real-time clinical decision support without the need for high 

computing resources. 

Empirical runtime measurements provide further confidence in deployability. 

Preprocessing was less than 2 ms per image. Feature extraction took 80–100 per sample and 

the ensemble classifier supplied an additional 5 - 7 ms so rounding, the overall inference time 

was roughly 100 - 120 ms per ECG image on CPU with memory footprint of < 100 MB with 

PCA reducing dimensionality by about ∼ 70 % and subsequently memory and compute 

overhead. 

The measured values point to a sufficiently reasonable system for a clinical context to 

operate in real-time without the need for GPUs on non-GPUs systems. The framework also 

provides robustness against noise and inter-patient variability through a combination of 

numerous safeguards: grayscale normalization has been used to minimize illumination-related 

artifacts, PCA-based dimensionality reduction reduces redundancy that might rely on noise 

insensitive components, and decision fusion based on ensembles reduces the effect of outlier 

signals. Together these mechanisms can enforce reliability in real-world ECG data that has 

common recording discrepancies and physiological variation. 

5.6 Limitations 

Regardless of the positive findings this study has achieved, there are shortcomings: 

• The dataset sizes were relatively small, thus potentially underestimating the variability 

of ECG patterns within different populations. 

• This analysis omitted temporal dynamics, looking at only static snapshots containing 

ECG images rather than full waveform signals. 

5.7 Future Work 

Future potential improvements could focus on the following: 

• Expanding the framework to allow for larger and multiple lead ECG datasets to 

improve generalizability and clinical significance. 

• Examining time-series models (e.g., LSTM, transformers) for temporal ECG 

analysis. 

• Adding clinical metadata and patient history for context-aware clinical decision-

making. 
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• Investigating lightweight, edge-deployed models for on-device real-time inference 

on portable devices. 

 Conclusion 

The study demonstrates how CNN-based deep feature extraction alongside a stacking 

ensemble of various ML techniques, provides a more balanced and generalizable solution for 

ECG image classification than using a single deep learning model. The proposed method 

reduces overfitting, tackles class imbalance, and maintains performance across heterogeneous 

datasets. As important as the previous point is, the proposed method makes a leap not just in 

terms of accuracy, but also in terms of clinical relevance. The method is able to deliver 

inference in near real-time even on low-end devices; this is critical especially with a view to 

deploying the method in rural and low-resource healthcare settings. The proposed method 

further solidifies clinical reliance on AI-enabled cardiovascular diagnosis by improving 

robustness and scalability. In addition, there seems to be a gap left open for additional research. 

The proposed method could be enhanced by focusing on multi-lead ECG datasets that are larger 

in size, applying temporal signal analysis, and implementing edge device or wearable device 

deployments of lightweight system versions to improve dependability and ease of access. In 

the context of cardiovascular diseases, the hybrid ML-DL ensemble performs significantly 

better than the other methods and also emphasizes the importance of intelligent clinical decision 

support systems for early detection and better management. 
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