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Abstract   

Skin cancer, the leading type of cancer, poses a serious risk to public health, most 

notably melanoma, which is fatal if not treated. Early diagnosis is essential, but traditional 

diagnosis has low precision due to the poor image quality and the challenges of visual 

discrimination. Using the publicly available HAM10000 dataset, which is suitable for 

segmentation and multi-class classification, we propose a robust deep learning-based hybrid 

system for classification, segmentation, and severity analysis of skin cancer. The model begins 

with advanced preprocessing in the ELPWF module to pre-process the image and eliminate 

noise. Enhanced images are then processed with the TS-HCaps feature extraction algorithm to 

capture complex temporal and hidden features while reducing the dimensionality problem. The 

best features are selected using the TCWOA module to reduce computational complexity 

before segmentation by the PA-HRST model, achieving an HD analysis of 4%, and an ASSD 

of 0.008078, which is higher than existing schemes. The extracted features are then forwarded 

to the GA-MSKAD hybrid classification model, employing global attention to extract channel 

and spatial features and accurately classify skin cancer types including AKIEC, BCC, BKL, 

DF, MEL, NV, and VASC with a 99.18% accuracy, precision of 99.09%, recall of 99.13%, 

specificity of 99.03% and an F1-score of 99.11%. Finally, the severity is forecast by applying 

the RLLM regression model with residual and lasso analysis to achieve RMSE of 0.282, MAE 

of 0.08, and MSE of 0.08. This complete approach from image enhancement and feature 

extraction to hybrid classification and severity analysis is far superior to conventional 

diagnostic techniques. To enhance interpretability, stability, and clinical practical utility, future 

studies will prioritize the inclusion of Explainable Al (EAI), multiple datasets, and clinical data. 

Keywords: Skin Cancer, Capsule Network, Walrus Optimization, Swin Transformer, 

Segmentation, Deep Learning (DL). 

 Introduction 

The skin is the body's first organ for prevention against infections, heat, and ultraviolet 

radiation. Skin cancer is among the most frequent cancers in the world. Early detection is vital 

as it profoundly enhances patient prognosis and survival rates. Nevertheless, conventional 

diagnostic methods can lead to misinterpretation due to their tendency to be often subjective, 
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time-consuming, and reliant on expert interpretation. Consequently, techniques of deep 

learning and artificial intelligence in dermatological diagnosis have been extensively developed 

and implemented. To address the issue of skin lesion classification, a lightweight dynamic 

kernel-based convolutional neural network (CNN) was presented. This model decreased the 

computational complexity typically related to deep learning algorithms, yet showed effective 

multiclass skin cancer classification [1]. In order to enhance melanoma recognition and 

classification accuracy, the authors integrated CNNs with the Aquila Optimizer to improve 

feature extraction and feature reduction [2]. 

Presenting a new and improved Mixed-Order Relation-Aware Recurrent Neural 

Network (MoR-RNN) for enhanced skin cancer diagnosis is another instance of sophisticated 

network design [3]. Their CAD approach generated higher classification accuracy through 

capturing elaborate spatial and sequential relationships in the dermoscopic images. Through 

their consideration of existing and novel therapeutic strategies for non-melanoma skin cancer, 

this review supports such computational endeavors and highlights the value of accurate early 

diagnosis in selecting the optimal treatment strategy [4]. 

Strong multiclass classification with a deep CNN model demonstrates its effectiveness 

on large dermoscopic datasets. Lesion classification under varied conditions was enhanced, 

largely due to their approach [5]. Additionally, a deep learning multiclass model known as 

DSCC_Net was suggested. It uses dermoscopic images to deliver high-accuracy diagnoses, 

greatly aiding in automated clinical decision-making [6]. EOSA-Net, an enhanced CNN 

framework designed for multiclass skin cancer detection, considerably improves classification 

reliability. To improve feature learning, their method uses convolutional enhancements [7]. By 

providing more high-resolution visual information, this novel AI-based super-resolution image 

reconstruction method aims to improve the quality of input images and support the early 

detection of skin cancers [8]. Also, by enhancing the feature extraction and classification 

processes, an AI-based classification model known as SkinNet was developed that improved 

the accuracy of skin cancer diagnosis [9]. 

It also demonstrates how deep CNNs can be utilized in practice to classify skin disease, 

proving the growing reliability of AI for dermatological use [10]. A robust deep learning design 

was developed to enhance the accuracy of multiclass classification in different situations, such 

as noise and unbalanced samples [11]. For automatic classification, specialised melanoma deep 

CNNs were employed to demonstrate that CNN-based solutions are feasible in real-world 

clinical environments [12]. With the application of deep learning to optical coherence 

tomography (OCT) images, the scope of AI diagnostics can be expanded beyond dermoscopy. 

Their model showed the capability of deep learning in high-resolution cellular imaging 

by distinguishing between different types of skin cells [13]. A novel hybrid deep learning model 

has enhanced classification accuracy for various types of skin cancer through the use of several 

convolutional layers and attention mechanisms [14]. Lastly, a hybrid diagnostic approach 

incorporating attributes of multiple CNN models was outlined for the early detection of skin 

lesions. The significance of ensemble and feature fusion methods to improve classification 

generalization and robustness was presented in their work [15]. 

1.1 Motivation & Objectives of the Study 

The numerous existing deep learning methods for skin cancer diagnosis have notable 

limitations that the proposed study aims to overcome. Many prior works suffer from high 
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computational complexity, making them less suitable for real-time or resource-constrained 

clinical environments. Some models improve feature extraction but still struggle with minute 

artifacts such as hair, moles, and bubbles, which negatively impact classification accuracy. 

Others achieve good performance but fail to generalize well in imbalanced datasets, noisy 

images, or variable clinical conditions. Moreover, conventional approaches often demand 

longer processing times, limiting their efficiency in practical healthcare use. To address these 

gaps, the proposed study introduces an advanced framework that combines improved feature 

extraction, optimal feature selection through novel optimization techniques, progressive 

attention mechanisms, and global semantic knowledge distillation. Together, these innovations 

reduce computation time, enhance robustness against artifacts, and significantly improve the 

accuracy and reliability of multiclass skin cancer detection. The primary contribution of the 

proposed model is examined in the following manner. 

1. To introduce an improved feature extraction module for the classification of skin 

cancer based on a two-phase self-attention based Hierarchical Capsule Network (TS-

HCaps).  

2. To provide the Tent Chaotic Walrus optimization algorithm (TCWOA) within a 

detection framework that yields the best characteristics for classifying skin cancer 

while using less time.  

3. To provide a multi-scale hierarchical residual swin transformer (PA-HRST) based 

on Progressive Attention for effective skin cancer segmentation.  

4. To effectively classify skin cancer, we present a Global Attention-based Multilevel 

Semantic Knowledge Alignment Distillation Network (GA-MSKAD).  

5. To predict the severity of skin cancer, a Residual Lasso Logistic Regression model 

(RLLR) is presented. 

1.2 Organization of the Paper 

This manuscript is divided into the following sections: With its problem formulation, 

motivation, and study objectives, Section 1 offers a thorough overview of deep learning 

methodologies relevant to skin cancer diagnosis and the objectives of the study, while Section 

2 offers a thorough review of pertinent techniques related to skin disease identification. A brief 

summary of the methodology used for the skin cancer detection model suggested in this work 

is included in Section 3, along with illustrative images. A thorough evaluation of the 

performance measures attained by the proposed model in relation to current approaches is 

presented in Section 4, with the aid of graphical representations. The overall findings drawn 

from the suggested model are explained in Section 5, along with potential future directions. 

 Related Work 

To improve diagnosis accuracy, recent developments in skin cancer detection have used 

a variety of deep learning and hybrid approaches. A survey of various related techniques for 

skin cancer segmentation and classification is presented below. 
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To enhance lesion border localization and classification [16] suggested a model that 

combined an attention-guided Capsule Network with Active Contour Snake. An improved [17] 

lesion analysis using a dynamic graph cut technique and a full-resolution CNN, In this [18] 

presented a distributed capsule neural network for scalable and effective identification of 

epidermal lesions. To extract both geographical and semantic data, [19] combined capsule 

networks with Graph Neural Networks. Also, an optimization using a genetic algorithm was 

addressed in [20]. 

Additional capsule-based advancements were introduced in [21] and [22], the latter of 

which combined a fuzzy logic-based F-CapsNet with adaptive fuzzy-GLCM segmentation. In 

[23] a dual encoder framework was proposed for accurate and effective segmentation. In this 

work [24] utilized a DSNET to offer deployable and lightweight models. Moreover, [25] used 

a modified attention mechanism to create a reliable CNN model. When taken as a whole, these 

studies show how contemporary skin cancer diagnostic systems prioritize spatial awareness, 

interpretability, and computing efficiency. The reviews of various related techniques for skin 

cancer segmentation and classification are given in Table 1. 

Table 1. Overview of the Existing Models 

Author Name 

& Reference, 

Year 

Technique name Performance Demerits 

Behara et al. 

[16], 2024 

Active contour 

segmentation, 

ResNet50, Capsule 

Network, SGD 

Accuracy-98%  

AUC-ROC-97.3% 

Lack of transparency 

and interpretation in 

capsule activations. 

Adla et al. 

[17], 2023 

Dynamic graph cut 

algorithm, 

Transferring models, 

and FrCN architecture 

Accuracy-97.98%  

Precision-94.33% 

Depending solely on 

the data quality. 

Lack of 

interpretation. 

Dubey et al. 

[18], 2024 

GHO-Capsule Neural 

Network, SSFO, 

Hybrid GHO 

optimizer 

Accuracy -99.06%, 

specificity-97.83% and 

sensitivity-99.50% 

Difficulties in 

processing large 

amounts of clinical 

data. 

Santoso et al. 

[19], 2024 

GNN, Capsule 

network, Tiny 

Pyramid ViG 

This model attained 

95.52% accuracy after 

75 epochs of training. 

Depending solely on 

the specific dataset. 

Imbalanced datasets. 

Salih et al. 

[20], 2023 

CNN, DICE Accuracy-98.66% Reliance on quantity 

and quality of 

training data. 

Sivasangeetha 

et al. [21], 

2023 

Coot search 

optimization, Capsule 

network 

Accuracy-99.26 Limited and 

imbalanced datasets. 

Ali et al. [22], 

2023 

GLCM, Capsule 

network, dynamic 

routine technique, F-

CapsNet 

99.16% (ISBI 2017),  

99.45% (ISBI 2019),  

98.42% (PH2) 

Limited 

generalization 

analysis. Potential 

bias in the training 

data. 
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Ahmed et al. 

[23], 2025 

DuaSkinSeg model, 

MoblieNet v2, and 

ViT-CNN 

This model enhanced 

diagnosis performance. 

Limited adaptability 

Chen et al. 

[24], 2025 

Lightweight DSNET 

model 

MIoU – 80.23%, DSC – 

89.06% (ISIC 2017);  

MIoU – 81.30%, DSC – 

89.81% (ISIC 2018)  

Lack of analysis of 

generalization 

performance. 

Thwin et al. 

[25], 2025 

DCAN-Net Accuracy – 97.57%, 

Recall – 97.57%, 

F1 – 97.10% 

Lack of 

transparency. 

2.1 Research Gap 

High accuracy is achieved by models such as those suggested by [16, 17] but they 

require a large amount of computing power, which may not be feasible in settings with limited 

resources. Developing more lightweight and efficient models that do not compromise accuracy 

remains a critical area for future research. Research focused on enhancing model performance 

with low-quality or non-standardized images could make these tools more universally 

applicable. Despite achieving high performance, models like the one suggested by [18] often 

function as "black boxes," making it challenging for clinicians to trust and accept these 

technologies. Enhancing the interpretability of these models could bridge the gap between AI 

researchers and medical practitioners. 

 Proposed Work 

The well-ordered DL approaches proposed in this study are ideal for skin cancer 

segmentation and classification. Below Figure 1 illustrates the architectural design of the 

proposed framework. To improve feature accuracy, the data were first pre-processed for de-

noising. An enhanced low pass wiener filter (ELPWF), which successfully eliminates noise 

while maintaining important image properties, was used for this pre-processing stage. 

Following noise reduction, the data are examined, and features are extracted using the TS-

HCaps model, which effectively captures intricate temporal correlations and latent 

characteristics while focusing on the most crucial aspects of the image data through the use of 

self-attention techniques.  

Complex temporal connections and latent features were effectively captured by 

TCWOA, which selects the retrieved features. Furthermore, TCWOA minimizes unnecessary 

computational overhead by ensuring that feature selection is performed efficiently. Following 

pre-processing, data are input into the PA-HRST model, which uses its hierarchical structure 

to more easily analyse the data while capturing both local and global aspects. This increases 

the transparency and explicability of a model's decisions. The GA-MSKAD approach uses 

distillation techniques to improve classification accuracy and global attention mechanisms to 

align multilevel semantic knowledge for SC classification. After categorization, the RLLR 

model was used to assess the severity of the identified cancer with different severity metrics. 
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Figure 1. Architectural View of the Proposed Work 

3.1 Enhanced Low-Pass Wiener Filter 

A filter model is frequently used to improve image values by eliminating high-

frequency noise, interpolating, and de-blurring. To guarantee that the retrieved features are 

useful, noise-free, and indicative of the actual properties of the lesion, image pre-processing is 

essential. In particular, the Wiener filter, an Enhanced Low-Pass Wiener Filter (ELPWF) is a 

popular pre-processing method for reducing image noise while maintaining small details such 

as lesion boundaries, color variation, and texture, all of which are critical for precise 

classification. The hybrid model, also referred to as the ELPWF model, was used in this study 

to process the following data. To smooth the actual continuous conditioning variables and 

reduce the significance of the aberrant values, a low-pass filter was first employed. 

The low-pass filter is expressed as: 

𝑌(𝑛) = ∑ ℎ(𝑘) ⋅ 𝑥(𝑛 − 𝑘)𝑘=𝑁−1
𝑘=0     (1) 

Where ℎ(𝑘) denotes the filter coefficient, 𝑥(𝑛) is the input, and 𝑌(𝑛) denotes the 

filtered output. The 2D Gaussian low-pass filter is given by: 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
 𝑒

−
𝑥2+𝑦2

2𝜎2     (2) 
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The cut-off frequency is where the response drops to a maximum of 0.607. The Wiener 

filter is: 

𝐹̂(𝑢, 𝑣) = [
𝐻∗(𝑢,𝑣)

|𝐻(𝑢,𝑣)||𝐻(𝑢,𝑣)|2 +
𝑆𝑁(𝑢,𝑣)

𝑆𝐹(𝑢,𝑣)

]𝐺(𝑢, 𝑣)   (3) 

It reconstructed degraded images, reduced noise, and enhanced the accuracy of the 

proposed ELPWF model. 

3.2 Two-Phase Self-Attention based Hierarchical Capsule Network 

This approach uses the proposed TS-HCaps model with pre-processed data as input. An 

advanced deep learning architecture called the two-phase self-attention based hierarchical 

capsule network (TS-HCaps) was created to improve feature representation and classification 

accuracy in challenging image analysis tasks such as skin cancer lesion classification, where 

both global structure and local texture are essential. TS-HCaps integrates: self-attention 

mechanisms for adaptive feature weighting across spatial and channel dimensions, hierarchical 

feature learning for multi-scale abstraction, and capsule networks for modelling part-whole 

interactions, and is divided into two stages to distinguish between high-level and low-level 

decision learning. 
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Figure 2. Architecture of TS-HCaps Model 

The above Figure 2 illustrates the architecture of the TS-HCaps model. To improve 

feature extraction and categorization, the proposed architecture combines a capsule network 

with a multiphase attention mechanism. Prior to the Second Phase Attention (Attn-II), which 

improves contextual awareness by using parallel attention paths, pre-processed input data are 

subjected to First Phase Attention (Attn-I) to capture local interdependence. A Temporal 

Attention module, that records sequential dependencies over time, was used to further enhance 
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these outputs. The Primary Capsule Layer retains low-level characteristics and spatial linkages 

after the attention-enhanced data are processed through convolutional layers to extract spatial 

patterns. The Higher-Level Capsule Layer, which uses dynamic routing to describe part-whole 

linkages, further refines these layers. While backpropagation modifies the network to maximize 

performance, forward propagation through these capsule layers produces deeply extracted 

features. This hybrid technique is well suited for tasks requiring accurate categorization and 

temporal awareness because it combines the advantages of capsule networks for robust, 

hierarchical feature encoding with attention mechanisms for spatial-temporal focus. 

3.3 Tent Chaotic Walrus Optimization Algorithm 

Issues with earlier feature selection models, such as PSO [26], Grey Wolf Optimization 

(GWO) [27], and the Whale Optimization Algorithm (WOA) [28], include inadequate 

convergence rates, lack of optimal depth, and becoming trapped in local optima. The high 

detection rate in the WOA model led to a fast rate of convergence. This model creates a single 

flattened feature that is then fed into the TCWOA model by combining features, including 

color, size, texture, and skin tone contrast. The best buildings are selected by combining the 

WOA with a tent chaotic map. Table 2 shows the pseudocode of TCWOA for feature selection 

as follows: 

Table 2. Pseudocode of TCWOA for Feature Selection 

Algorithm: Pseudocode of TCWOA 

Input: Algorithm parameter (population size M , maximum repetition S ) 

Produce Initialize population by tent map and define relevant parameter  

Calculate fitness and achieve ideal solution  

While Ss   

         If 1_ signalDanger {Exploration stage} 

                  Modify fresh location of every walrus  

        Else {Exploitation Stage} 

             If 5.0_ signalSafety  

                 For every male walrus  

                      Modify fresh location founded on Halton series  

             End for  

                  For every female walrus  

                            Modify fresh position   

                 End for  

                 For every juvenile walrus  

                         Modify fresh location   

                 End for 

                else 

                   If 5.0_ signalDanger  

                        Modify fresh location of every walrus  

                   else 

                   End if  
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                End if  

            End if  

      Modify walrus location  

      Evaluate fitness value and modify current ideal solution  

         1+= ss  

End while  

Outcomes ideal solution  

An optimization method inspired by nature, the Tent Chaotic Walrus Optimization 

Algorithm (TCWOA) is useful for detecting skin diseases, especially during the feature 

selection stage.  Many features are taken from photos or clinical data in medical image analysis, 

such as when classifying skin conditions like psoriasis, eczema, or melanoma.  A lot of these 

elements might be unnecessary or redundant, which could hurt diagnostic models effectiveness 

and performance. This is addressed by TCWOA, which increases model accuracy and lowers 

computing costs by choosing the most informative subset of characteristics. The algorithm 

imitates walrus behavior, balancing exploration and exploitation through adaptive mechanisms. 

A tent map is used to initialize the population, increasing diversity and preventing premature 

convergence. Candidate solutions (“walruses”) update their positions based on simulated 

danger and safety signals, enabling efficient search-space navigation. By integrating chaotic 

dynamics and role-based behavior, TCWOA avoids local optima, enhances robustness, and 

ensures search diversity. Beyond medical applications, it also proves useful in engineering, 

finance, and other optimization-driven fields. 

3.4 Global Attention-based Multilevel Semantic Knowledge Alignment Distillation 

Network 

In skin disease detection, large dermoscopic images contain numerous features related 

to color, texture, shape, and borders, making optimal feature selection essential to identify the 

most informative attributes. Attention mechanisms, specifically channel and spatial attention, 

further enhance these features by focusing on critical spectral channels and spatial regions, such 

as lesion borders or irregularities, resulting in refined features that improve classification 

accuracy. These enhanced features are then input into two models: a deep, complex teacher 

model that achieves high accuracy but is computationally intensive, and a lighter, faster student 

model designed for practical use in mobile or real-time applications. Through knowledge 

distillation, the student model learns by mimicking the teacher model’s outputs and internal 

representations, enabling it to attain comparable performance with reduced complexity and 

faster inference times. Global attention produces improved features- that are fed into the 

MSKAD model to classify skin cancer.  Figure 3 illustrates the architecture of the GA-MSKAD 

model. 
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Figure 3. Architecture for Proposed GA-MSKAD Model 

3.4.1 Teacher Module 

In the teacher module, enhanced features are input into a transformer model that 

leverages self-attention to capture complex semantic relations among features, which may be 

irregular in the initial embeddings. The self-attention mechanism produces outputs as: 

Attention(Q, K, V) = softmax(
𝑄𝐾𝑇

√𝑑𝑥
)V   (4) 

Where, 𝑑𝑥 the feature dimension, and Q, K, and V is represent the query, key and value 

matrices derived from the initial embedding’s combined with positional encoding: 

𝑄 = 𝑊𝑄 𝐸 , K= 𝑊𝑘 𝐸,  V= 𝑊𝑉 𝐸    (5) 

With 𝑊𝑄 , 𝑊𝐾, 𝑊𝑉 as embedding weights. Multiple attention matrices are computed and 

integrated, followed by a layer normalization process LN (.) and a fully connected feed-forward 

network FFN (.). 

𝑍 = 𝐿𝑁(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) + 𝐸)        (6) 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐿𝑁(𝐹𝐹𝑁(𝑍) + 𝑍)     (7) 

The final feature relation semantic encoding Fsemantic is obtained by applying mean 

pooling over the output: 

𝐹𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 = 𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑂𝑢𝑡𝑝𝑢𝑡)   (8) 

Where, 𝐹𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 represents the contextual semantic representation of the features. 
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3.4.2 Student Module 

In the student module, a bidirectional gated recurrent unit with soft-attention (BiGRU-

SA) captures global semantic features from the initial embedding’s EEE, selectively 

emphasizing significant information. The soft-attention mechanism computes a weighted sum 

of feature-wise global embedding’s: 

𝐹𝑔𝑙𝑜𝑏𝑎𝑙 = ∑𝛼𝑖  𝐸𝑖     (9) 

Where 𝛼𝑖 is the attention weight or consideration score for each feature calculated as, 

𝛼𝑖  =
exp (𝑊𝑎 𝐸𝑖 )

∑ exp (𝑊𝑎 𝐸𝑖 )𝑗
     (10) 

With 𝑊𝑎 as a learnable weight matrix. The forward (
ℎ𝑡
→) and backward (

ℎ𝑡
←) GRU layers 

process the sequence to generate latent states: 

      
ℎ𝑡
→ = 𝐺𝑅𝑈𝑓(𝐸𝑡,

ℎ𝑡−1
→   )    (11) 

 ℎ𝑡
←  = 𝐺𝑅𝑈𝑓(𝐸𝑡,

ℎ𝑡+1
←   )     (12) 

Finally, the latent states from both directions are concatenated to form the global 

semantic encoding. 

𝐹𝑓𝑖𝑛𝑎𝑙 = ⟦
ℎ𝑡
→ , 

ℎ𝑡
←⟧     (13) 

This approach aligns multi-level semantic knowledge through global attention and uses 

knowledge distillation to enhance classification accuracy in skin disease diagnosis. 

3.5 Progressive Attention-based Multi-Scale Hierarchical Residual Swin Transformer 

Progressive attention collects pre-processed data as input for the CNN and transformer, 

integrating both features and improving the latter features by channel attention. The features 

undergo global average pooling (GAP) after convolution, which is then activated by a sigmoid 

function while introducing a residual relation to enhance performance. Finally, the PAM model 

uses the convolution to accomplish the outcome features. The mathematical expression for the 

PAM evaluation process are represented in Eq. (14) and (15), respectively. 

( )( )( )( )l

si

l

si

l

si SDConcatBNB ,1=     (14) 

( )( )( ) l

si

l

ti

l

si

l

si BBGAPBE += 1     (15) 

where 
l

siD
and 

l

siS denote the features extracted by ( )4,3,2, =ll th

 a layer of CNN and 

transformer at time ( )2,1=isi , ( )Concat  signifies the concatenation process, 1 indicates as 11  

convolutional,  terms as batch normalization,  represents as ReLU activation process, ( )GAP  

refers to GAP, and then  indicates a sigmoid function and outcomes features of PAM referred 

as 
l

siE . 
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3.6 Residual Lasso Logistic Regression Model 

In this model, we use M, which denotes the total number of models of skin cancer 

through Q dimensional features. Therefore, the input feature Y represents the QM  matrix, 

and the outcomes  MxxxZ ,....,, 21=  signify the binary variables. If the model is of target 

skin cancer; 
1=jx

 or 
0=jx

. Here, the logarithmic possibility of the jth model fitting to the 

target skin cancer is expressed as 
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where 
 jQjj

j yyyY ,..., 21=
 is a feature of the jth sample, 

 Q ,...,, 210=
 

signifies the regression coefficient of LLRM, and 
( ),1 j

j Yxq =
 terms as the possibility of  

the model, which fits the target skin cancer once regression coefficient are  . 

 Results and Discussion 

In this section, a complete description of the dataset, a comparison of the experimental 

results with existing models, and a discussion are provided. The proposed model used 80% of 

the data for training and 20% for testing, as implemented in Python. The GA-MSKAD 

framework integrates multiple components: a transformer module with an attention dimension 

of 64, feed-forward network (FFN) layers of sizes 128 and 64, and an additional convolutional 

component consisting of 1D convolution layers with 256, 128, and 64 filters. For sequence 

modeling, the student model BIGRU-SA was employed, incorporating 64 GRU units with a 

dropout rate of 0.2. MaxPooling1D with a pool size of 2 and ReLU activation was applied to 

enhance feature extraction. The fully connected layers consisted of dense units (512, 256) with 

dropout rates of 0.3 and 0.2. Finally, the student model utilized zero-padding in 1D along with 

a Softmax activation function to generate multi-class classification outputs. 

4.1 Dataset Description 

In this section, the proposed model utilizes the unique HAM10000 dataset [29] [30] for 

segmentation, classification, and severity analysis. The dataset description is expressed as 

follows: 

4.1.1 HAM10000 Dataset 

Dermatoscopic images from several groups were obtained using various modalities. It 

contains 10,015 images with a resolution of 600 × 450 pixels, making it appropriate for 

academic machine learning training. The HAM10000 dataset consists of seven distinct skin 

lesion classes, each representing a different disease type. Melanoma is a serious and aggressive 

form of skin cancer originating from melanocytes, with 1,113 images. Melanocytic nevi, the 

most common category with 6,705 images, are benign moles formed by clusters of 

melanocytes. Basal cell carcinoma, represented by 514 images, is the most common skin 
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cancer, which grows slowly and rarely spreads. Actinic keratoses, with 327 images, are rough, 

scaly precancerous patches caused by sun damage. Benign keratosis-like lesions include 

seborrheic keratoses, solar lentigines, and lichen-planus like keratoses, with 1,099 images. 

Dermatofibroma, a harmless fibrous tissue growth appearing as firm nodules on the skin, is 

represented by 115 images. Finally, vascular lesions, such as angiomas, angiokeratomas, 

pyogenic granulomas, and hemorrhages, have 142 images. This diverse dataset provides a rich 

resource for training and evaluating deep learning models in skin cancer classification. Table 3 

provides details of the dataset. 

Table 3. Dataset Characteristics 

Sr. 

No. 
Parameter Description 

1 Dataset 
HAM10000 (Human Against Machine with 10,000 training 

images) 

2 
Number of 

images 
10,015 dermatoscopic images 

3 Resolution 600 × 450 pixels (varies slightly for some images) 

4 
Skin lesion 

types 

7 classes: Actinic Keratoses (AKIEC), Basal Cell Carcinoma 

(BCC), Benign Keratosis-like Lesions (BKL), 

Dermatofibroma (DF), Melanoma (MEL), Melanocytic Nevi 

(NV), and Vascular Lesions (VASC) 

5 
Pre-processing 

techniques 

Normalization, Contrast Enhancement, Resizing, 

Augmentation (Rotation, Flipping, Scaling, Cropping) 

6 Data split Commonly 80% Training, 20% Testing 

4.2 Performance Evaluation 

In this section, various graphical presentation evaluations are presented, including 

segmentation, classification, and severity analysis.  In evaluation-level approaches for handling 

class imbalance, the use of balanced metrics rather than relying solely on raw accuracy can be 

misleading in imbalanced datasets. Metrics such as the F1-score, Precision-Recall AUC, 

balanced accuracy, and Matthews Correlation Coefficient (MCC) provide a fairer assessment 

of model performance across both benign and malignant categories. Additionally, applying 

stratified sampling when splitting the dataset into training, validation, and testing sets ensures 

that each subset maintains proportional representation of malignant and benign cases, leading 

to a more reliable and unbiased evaluation. 

4.2.1 Experimental Analysis 

The experimental results clearly highlight the impact of different batch sizes and 

learning rates on the performance of the proposed model. With a batch size of 8 and a learning 

rate of 0.01, the model achieved 96.38% accuracy. Lowering the learning rate to 0.001 
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improved accuracy to 97.90%. Using batch size 16 with learning rate 0.01 gave 98.1% 

accuracy, while the best results of 98.9% accuracy and balanced metrics came with batch size 

16, learning rate 0.001. These findings shown in Table 4 demonstrate that the choice of 

hyperparameters plays a crucial role in optimizing model performance, with smaller learning 

rates and moderate batch sizes leading to better generalization and overall accuracy. 

Table 4. Evaluation of Hyper Parameter Configurations for Proposed Model 

Sr. 

No. 
Metrics / Methods 

Proposed model 

Accuracy Precision Recall F1-score 

1 
Batch size = 8 & 

Learning rate = 0.01 
96.38 96.53 97.10 96.89 

2 
Batch size = 8 & 

Learning rate = 0.001 
97.90 96.89 97.43 97.01 

3 
Batch size = 16 & 

Learning rate = 0.01 
98.1 97.34 96.23 97.87 

4 
Batch size = 16 & 

Learning rate = 0.001 
98.9 98.83 98.1 98.91 

4.2.2 Segmentation Analysis 

This section explores the proposed PA-HRST segmentation model and compares it with 

existing models, namely U-Net [31], Autoencoder [32], Swin Transformer [33], and VGG-16 

Attention U-Net [34].  

   

(a) Average Symmetric Surface Distance (ASSD)              (b) Hausdorff Distance (HD) 

Figure 4. Segmentation analysis of (a) ASSD and (b) HD 

Figure 4 shows the segmentation analysis of the proposed model compared with the 

current models. The HRST model collects enhanced features to facilitate semantic 

segmentation analysis. This model includes a residual connection to preserve relevant features 
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and an ST model to contribute to various features in different measures. The process is 

combined to produce enhanced segmentation performance. This model achieves an ASSD 

analysis of 0.008 and an HD analysis of 4%, which are compared with existing models to show 

their effective performance. 

4.2.3 Classification Analysis 

This section compares various existing techniques, including Swin-Transformer [33], 

ResNet-RNN [35], ResNet-VGG [36], EfficientNet-BiLSTM [37], and CNN-Transformer 

[38]. The performance of these models is evaluated based on key classification metrics: 

Accuracy, Precision, Recall, F1-score, and Specificity, with the results shown in Figure 5. 

These metrics offer a comprehensive view of each model's effectiveness, highlighting aspects 

such as overall performance, the ability to minimize false positives (Precision), the ability to 

detect true positives (Recall), the balance between Precision and Recall (F1-score), and the 

model's proficiency in correctly identifying negative cases (Specificity). However, the model 

obtains lower performance in malignant lesions that are harder to classify because of their 

visual similarity and class imbalances. Conversely, benign categories are rich in data, which 

makes them easier for the model to learn. 

  

                               (a)                                                                              (b) 

  

                                        (c)                                                                       (d) 
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                                    (e)                                                                            (f) 

Figure 5. Classification analysis of (a) Accuracy, (b) Precision, (c) Recall, (d) F1-score, (e) 

Specificity (f) MCC 

The suggested model outperformed current methods including ResNet RNN, ResNet-

VGG, EfficientNet BiLSTM, CNN-Transformer, and Swin Transformer CNN, achieving a 

high accuracy level of 99.18%. The proposed model outperformed the current ResNet RNN, 

which only managed a low accuracy level of 95.96%.  The accuracies of the earlier models, 

ResNet-VGG and EfficientNet BiLSTM, were 94.73% and 93.06%, respectively. The existing 

fused CNN-transformer achieved 91.47% accuracy, while the popular Swin Transformer 

achieves 90.04% accuracy, which is less than the accuracy of the proposed and existing 

methods. The suggested model had a strong recall value of 99.13%. In addition, the precision 

of proposed model reached a high value of 99.09%, whereas the precision of the earlier models 

was lower and the proposed model achieved an MCC value of 98.96% demonstrating superior 

effectiveness in distinguishing between benign and malignant skin lesions.  

The table below Table 5 highlights a comparison of the classification analysis between 

the proposed model and existing models. 

Table 5. Comparison Analysis of the Proposed and Existing Models 

Metrics / 

Models 

Proposed 

model 

Swin 

Transformer 

CNN [33] 

ResNet- 

RNN 

[35] 

ResNet-

VGG 

[36] 

EfficientNet-

BiLSTM 

[37] 

CNN-

Transformer 

[38] 

Accuracy 

(%) 
99.18 90.04 95.76 94.73 93.06 91.47 

Precision  

(%) 
99.09 89.93 94.79 94.39 92.47 90.93 

Recall 

(%) 
99.13 90.13 95.13 94.65 92.7 91.17 

Specificity 

(%) 
99.03 89.92 95.01 94.47 92.53 91.16 
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F1-score (%) 99.11 89.98 94.96 94.52 92.59 91.05 

MCC  

(%) 
98.96 89.68 94.77 94.08 92.13 90.62 

Figure 6 illustrates the analysis of the confusion matrix of the proposed model. Here, 

the ELPWF model reduces noise and enhances the quality of the input images. The proposed 

GA-MSKAD model includes global attention to capture and enhance features, and the MSKAD 

model classifies different types of Skin Cancer, namely AKIEC, BCC, BKL, DF, MEL, NV, 

and VASC. The proposed model correctly classified 680 labels but incorrectly classified 20 

labels. 

 

Figure 6. Confusion Matrix 

The comparison of the proposed model's MAE to current methods is shown in Figure 

7. In this case, the proposed model outperforms earlier methods with a low MAE value of 4.57. 

The MAE values for the remaining methods, which included CNN-Transformer, ResNet-RNN, 

ResNet-VGG, and EfficientNet-BiLSTM, were 13.36, 14.43, 17.29, and 20.86, respectively. 

Additionally, the proposed model produces a low MSE score of 0.1114. The RMSE of the 

proposed model is then compared to previous methods, yielding a low RMSE of 33.38. 

  

            (a) Mean Squared Error (MSE)                         (b) Mean Absolute Error (MAE) 
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(c) Root Mean Squared Error (RMSE) 

Figure 7. Analysis of (a) MSE, (b) MAE, and (c) RMSE 

In experimental validation using real dermoscopic images, we enable simulation 

findings with benign or malignant classification trends that align with a controlled dataset. 

Here, performances show consistent analysis, demonstrating their flexibility and robustness in 

clinical applications. The figure below 8 provides a comprehensive view of the model's 

performance over time, displaying both training and testing accuracy, as well as the associated 

loss metrics. As the number of epochs progresses, the proposed model shows a steady 

improvement in both training and testing accuracy, indicating that it is effectively learning from 

the data and generalizing well to unseen samples. In parallel, the loss curves for both training 

and testing exhibit a consistent decline, suggesting that the model is converging toward an 

optimal solution with minimal error. The low loss values achieved during both training and 

testing phases further highlight the model’s ability to make accurate predictions while avoiding 

overfitting, demonstrating its robustness and efficiency in handling the task at hand. This 

combined analysis of accuracy and loss underscores the model's effectiveness and stability 

across different stages of the training process. 

  

                                          (a)                                                                   (b) 
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                                       (c)                                                                        (d) 

Figure 8. Analysis of (a) Training Accuracy, (b) Training Loss, (c) Testing Accuracy and 

(d) Testing Loss 

4.2.4 Severity Analysis 

In this section, a suggested RLLM model is evaluated for severity analysis, as discussed 

below, 

 

Figure 9. Severity Analysis of Proposed Model 

Figure 9 displays the severity analysis of the proposed model. By identifying marginally 

significant characteristics, the suggested model standardizes the regression process using a 

Residual LASSO with logistic regression. Here, the LR model forecasts the severity of cancer 

while the residual LASSO model finds the most pertinent features consistent in noisy data.  An 

RMSE of 0.282, an MAE of 0.08, and an MSE of 0.08 were achieved by this proposed model.  

Table 6 displays the analysis of the suggested model for severity. 
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Table 6. Proposed Model Analysis for Severity Analysis 

Metrics Proposed Model 

MAE 0.08 

MSE 0.08 

RMSE 0.282 

The proposed model provides segmentation, classification, and severity analysis, which 

are explored through performance analysis via graphical representation and tabulated in the 

overhead. This performance analysis is compared with existing models to demonstrate its high 

performance and enhance diagnostic accuracy. Table 7 provides a comparison between the 

proposed model and the current models. 

Table 7. Comparison Analysis of the Proposed Model with Current Models 

Methodology Used Accuracy (%) 

Capsule Network, SGD [16] 98.00 

FrCN architecture [17] 97.98 

GHO-Capsule Neural Network [18] 99.06 

Tiny pyramid ViG [19] 95.52 

CNN, DICE [20] 98.66 

DCAN-Net [25] 97.57 

Proposed Model 99.18 

 

Figure 10. Comparison Chart of Accuracy between the Proposed Model and Existing 

Methods 
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Figure 10 shows Accuracy comparison of the proposed model with existing 

methodologies. 

4.2.5 Ablation Study 

The ablation study in Figure 11 illustrates the significance of each component in the 

proposed Severity-Aware Hybrid Deep Learning Framework for skin cancer imaging 

segmentation and classification. 

 

Figure 11.  Ablation Study for Proposed Model 

The efficacy of the integrated strategy was confirmed by the complete model, which 

had the best accuracy of 0.9918. The accuracy dropped to 0.96 when pre-processing was 

skipped, highlighting how crucial image enhancement and normalization are to improving 

model performance. Accuracy dropped to 0.9502 once the feature extraction module was 

removed, underscoring the critical function of TS-HCaps in capturing significant hierarchical 

lesion features. The accuracy dropped the most   when feature selection was removed, reaching 

0.9334. This highlights how crucial TCWOA-based feature optimization is for removing 

redundant data and choosing the most discriminative features. Overall, the ablation findings 

show that the high accuracy and robustness of the framework in identifying skin cancer lesions 

are achieved through the critical roles of pre-processing, feature extraction, and feature 

selection.  Table 8 provides a detailed analysis. 

Table 8. Ablation Study Analysis in Terms of Accuracy 

Ablation Study 

Proposed model 0.9918 

without-preprocessing 0.96 

without-feature extraction 0.9502 

without -feature selection 0.9334 
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 Conclusion 

The proposed method employs the HAM10000 dataset on Kaggle to develop a deep 

learning (DL)-based hybrid system for skin cancer segmentation, classification, and 

quantification of severity. The Enhanced Low-Pass Wiener Filter (ELPWF) is used for image 

quality enhancement and noise removal during preprocessing. Feature extraction from high-

dimensional data is achieved by using the TS-HCaps model, effectively capturing temporal and 

hidden patterns. The Tent Chaotic Walrus Optimization Algorithm (TCWOA) then optimizes 

the features with reduced redundancy and computational costs. For segmentation, the PA-

HRST model performs very well, with an ASSD of 0.008078 and an HD of 4%. Classification 

is achieved using a global attention-based hybrid model, enabling the GA-MSKAD framework 

to successfully differentiate seven skin cancer types (AKIEC, BCC, BKL, DF, MEL, NV, 

VASC) with 99.18% accuracy, 99.09% precision, 99.13% recall, and 99.11% F1-score. Finally, 

cancer severity is forecast through the RLLM regression model, and future work aims to 

incorporate Explainable AI (EAI) for enhanced interpretability. 
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