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Abstract   

Effective disease control and agricultural production require accurate and rapid crop 

disease detection. The worldwide commodity chili crops are sensitive to several diseases, 

including anthracnose, which reduces yields and harms  farmers. Traditional disease detection 

approaches are laborious, time-consuming, and require specialized knowledge, adding to 

intervention delays and economic losses. The lack of systematic chili disease data makes 

identification more difficult.   This research attempts to improve agricultural disease 

identification utilizing feature fusion, transfer learning, and a Convolutional Neural Network 

(CNN) to accurately  and effectively diagnose chili plant anthracnose disease. Images are 

represented by two feature extractors: the first is the CNN based on VGG19, and the second is 

the Hybrid Feature Extractor (HFE). Three feature extraction techniques—Speed Up Robust 

Feature (SURF), Local Binary Pattern (LBP), and Histogram-Oriented Gradient (HOG) are 

combined into a single fused feature vector by the HFE.  The classification model is then 

created by combining these two feature vectors.     Using this combined feature set, a CNN with 

a fully connected layer and SoftMax function is trained to identify whether chili images  are 

healthy or unhealthy.     The model is also improved and optimized through data augmentation.     

The feature fusion approach shows great  promise because it can more precisely detect 

anthracnose disease in chilli plants.     Using 128 x 128 pixel images, the model learned at a 

rate of 0.01 and achieved 99.58% success after 100 iterations.     Regardless of different batch 

sizes and learning rates, the model performs well.     When compared to the top models currently 

in use, the feature fusion approach produces better performance results. The financial loss 

caused by anthracnose disease and the research on managing chili crops will benefit sustainable 

agriculture. 

Keywords: Agricultural Technology, Anthracnose, Chili, Convolutional Neural Network, 

Crop Disease Identification, Deep Learning, Feature Fusion, Image Classification, Transfer 

Learning. 
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 Introduction 

Indian food is known worldwide for its spice. Seasonings give food more taste and 

scent, making it last longer. Indian food often uses chili, which is also a global product and 

important in Indian cuisine. In 2023–2024, India sold 28,732 metric tons of chilies for INR 

6,000 crores. Chili cultivation is common in Rabi and Kharif seasons. The health advantages 

of chilli are numerous; chilies have more Vitamin C than any other citrus fruit, and carrots have 

less Vitamin A than red chiles. The main ingredient in spices, capsaicin, is an antioxidant, anti-

mutagenic, anti-carcinogenic, and immunosuppressive. These properties prevent platelet 

aggregation and bacterial proliferation [1].  

Chili output has declined in recent years, causing significant price increases. Petroleum 

and other commodity prices are expected to rise throughout the year, adding to consumers' 

financial hardship. Therefore, producers are worried about decreased yields. Chili production 

is severely hampered by global attacks from fungi, pests, weeds, bacteria, viruses, and diseases.  

Chilli anthracnose is a highly destructive disease that causes substantial problems for 

chilli growers [2]. The fungus Colletotrichum is the causal agent., specifically, Colletotrichum 

capsici, a species of Colletotrichum that infects chili leaves and fruits. The foliage is the first 

to show signs of anthracnose in chilies. The interaction between the numerous species 

implicated in chili anthracnose is poorly understood. This information is necessary for both 

plant reproduction and disease management. By choosing the right fungicides or durable 

resistant cultivars, accurate identification helps improve disease control and management [3]. 

The importance of plant disease identification in agriculture indirectly impacts a 

country's economy. It is critical to identify and detect plant diseases quickly. Modern image 

processing techniques have made it feasible to detect plant illnesses with little to no human 

involvement [4]. Protecting plants from diseases is essential to sustainable farming and 

combating climate change. According to studies [5], [6], climate change throughout the year 

can affect the spread of infections and how quickly they evolve. This can cause changes in host 

resistance and physiological interactions between hosts and pathogens [6]. Diseases are now 

more easily transmitted globally than in the past, which makes the issue even worse. Emerging 

diseases in regions without a detection history may go unchecked because local knowledge is 

limited. The use of pesticides can inadvertently lead to resistance and a significant decrease in 

the ability to fight chronic diseases. The timely and precise identification of plant diseases is a 

fundamental component of precision farming. Prioritizing production implies reducing 

expenses and addressing persistent pathogenic resistance; it is unacceptable to spend money 

and other resources needlessly. 

An exponential growth in the number of applications related to artificial intelligence 

and machine learning has occurred in recent years. An accurate and timely diagnosis of disease 

is now within reach, due to the predictions produced by artificial intelligence. The advent of 

deep learning models has profoundly affected image and voice recognition, among other 

complex processes requiring massive data processing [7], [8]. Artificial intelligence systems 

use image data for machine vision tasks. CNNs are among the most successful artificial 

intelligence approaches for modeling complicated operations and discovering patterns in 

machine vision, which requires processing vast amounts of data. In recent years, noteworthy 

improvements have been made in computer vision, with notable strides in object recognition. 

This study details how to use a CNN model to detect Anthracnose disease in chili crops. This 

study used a deep-learning neural network to detect diseases in chili crops.  
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The primary contributions of this investigation are as noted below:  

• The primary goal is to detect anthracnose diseases in chili by employing deep 

learning techniques, feature fusion, and image processing.  

• A meticulously organized image dataset was created for the anthracnose diseases 

that affect chili plants.  

• Utilize the feature fusion method to introduce a user-friendly, precise, and efficient 

approach to the identification of anthracnose disease in chili. 

The rest of the paper is structured as follows: The Related Work section explores the 

diverse work done by other researchers in the same field. The Materials and Methods section 

covers the proposed feature fusion method. The results section shows the results of experiments 

conducted in this investigation utilizing a variety of high-performance parameter values, such 

as epoch, learning rate, and batch sizes. It also discusses the achieved results. The last section 

is the paper's conclusion. 

 Related Work 

Machine learning is being adapted more and more to agricultural research to identify 

plant diseases. CNNs can automatically extract hierarchical characteristics from unprocessed 

image data, which is why they have become the most prominent DL architecture for classifying 

plant diseases with the help of imagery. The effectiveness of various CNNs in classifying 

different diseases of dvarious plants has been the subject of many studies. Sajitha et al. [9] have 

published an in-depth article on industrial farming systems employing deep learning and 

machine learning in the categorization of plant diseases based on images of fruits stems, and 

leaves, where most symptoms of plant illness can be found. These images are captured, 

preprocessed, segmented, features are extracted, and classified using an artificial neural 

network. A camera captures the RGB color space. Cropping and clipping an image to 

concentrate on a specific region is one of the steps in preprocessing. After sharpening and 

blurring images, the next step is to optimize them using histogram equalization [10] which 

assigns image intensities. Recurrent neural networks can be either Artificial Neural Network 

(ANN) or Back Propagation Neural Network (BPNN) algorithms to classify features [11]. They 

can extract features related to color, texture, or morphology. 

Various classification methods and image processing techniques are examined in a 

study of machine learning approaches for rice plant disease detection [12]. In another review, 

methods, applications, and issues related to machine learning and deep learning algorithms for 

automatic agricultural disease detection are discussed [13]. To monitor these areas, machine 

learning methods are used to extract irrigated areas from Sentinel-2 time-series data using 

remote sensing data [14]. With an emphasis on rice, a review of approaches for evaluating the 

sustainability of agricultural production systems emphasizes the difficulties in obtaining data 

and involving stakeholders [15]. The objective of a study was to uncover novel lipases from 

plant sources by comparing universal protein extraction techniques for screening lipase activity 

from agricultural goods [16].  

Four models of deep neural networks were tested for autonomous disease detection in 

soybean leaves by Tetila et al. [17]. These models were Xception, VGG-19, ResNet-50, and 

Inception-v3. Many different model parameters for fine-tuning (FT) and transfer learning (TL) 
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were used to train the models. The most accurate model was Inception-v3, which boasted a 

75% FT. Waheed et al. [18] suggested an improved design of dense CNN (DenseNet) to detect 

and classify maize leaf diseases. Authors also compared their model with other CNNs that are 

currently in use, like XceptionNet, EfficientNet, VGG19Net, and NASNet. Although the 

DenseNet model utilized significantly fewer parameters (0.07 million) and required less 

processing time, the investigation revealed that its performance was better than that of other 

CNN models. To build a basic CNN model for disease identification in tomatoes, Agarwal et 

al. [19] utilized the publicly accessible PlantVillage dataset. This dataset contains ten types of 

tomato diseases. The suggested lightweight model achieved a 98.4% success rate when 

contrasted with more conventional machine learning methods and pre-trained models like 

MobileNet, VGG-16, AlexNet, and Inception V3. 

Chitta et al. [20] compared CNNs and Vision Transformers (ViTs) on the problem of 

rice disease classification, and concluded that ViTs are better performers. Pandey et al. [21] 

formulated a web-based tool that classifies diseases in real time and proposed a method of plant 

disease classification using a vision transformer. Data augmentation is required to enable DL 

models to work better, especially when a small dataset is involved. Moupojou et al. [22] 

presented the FieldPlant dataset, that is a collection of field plant images, employed to 

determine and classify plant disease, and highlights the limitations of the current datasets, such 

as PlantVillage, which consists only of laboratory images. Arguing this point, their research 

focuses on the importance of training DL models with real-world images. The Gravitational 

Search Algorithm with transfer learning offered by al-Gaashani et al. [23] contributed to better 

categorization of plant diseases. The method they used copes with the issue of small training 

data. Preethi et al. [24] combined deep learning and Enhanced Artificial Shuffled Shepherd 

Optimization (EASSO) in an attempt to automatically identify and categorize diseases affecting 

rice plants. They applied a deep dense neural network (DNN) and EASSO as a means of 

optimizing the parameters of the DNN.  

Despite the accomplishments of CNNs, a few problems still exist in the way of making 

DL applicable in the classification of plant diseases. The limitation of very large, high-quality, 

labeled datasets constitutes a significant challenge. The impacts of preprocessing and class 

imbalance techniques on deep learning classifiers in plant disease detection are investigated by 

Ojo and Zahid [25], who identified CLAHE and GAN-based resampling as the best options. 

Alhwaiti et al. [26] employ the use of YOLO deep learning models to enhance the identification 

of plant diseases in terms of both accuracy and efficiency. Many papers use pre-trained models 

such as EfficientNet, ResNet, VGG, and Inception. Adnan et al. [27] employed EfficientNetB3 

with adaptive augmented deep learning (AADL) to classify plant disease into several classes 

with a high degree of accuracy (98.71 %). Other studies explored novel architectures or 

variations of traditional CNN structures. In the classification of the diseases of chilli plants, the 

authors in Srinivasulu et al. [28] proposed a model called Residual Nested Dilated DenseNet 

(RNDDNet) model, which has an accuracy of 98.09%. 

2.1   Limitations of Existing Works and Research Gaps 

Although the analyzed literature shows important progress in the area of plant disease 

detection with the help of deep learning and computer vision, certain limitations and challenges 

remain, which indicate critical research gaps: 
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2.1.1   Limited Generalizability 

 Most state-of-the-art models (e.g., [17], [18], [19], [28]) are trained with label-

condition data (i.e., PlantVillage) that does not correspond to real field conditions (i.e., the 

noise of occlusions, soil backgrounds, and lighting conditions). This restricts their useful 

application in practical agricultural scenarios [22]. 

2.1.2   Computational Inefficiency 

 Networks such as RNDDNet [28] and ViTs [20] are too precise because they depend 

on computational complexity and thus cannot be used on edge devices due to limited resources. 

Speed-focused models (e.g., MobileNetV2 [21]) compromise accuracy at the cost of speed, 

leaving them with a dilemma. 

2.1.3   Narrow Disease Scope 

 The majority of the literature has focused on individual diseases (e.g., anthracnose) or 

crops (e.g., rice [20], tomatoes [19]) with no consideration to the multi-disease or multi-crop 

conditions. This limits their use in different agricultural systems. 

2.1.4   Feature Representation Bottlenecks 

 Conventional algorithms use only deep features (e.g. VGG19, ResNet) or hand-crafted 

features (e.g. color histograms [3]), and do not use complementary information from hybrid 

feature combinations. This culminates in poor discriminative ability for mild disease 

symptoms. 

2.1.5   Data Scarcity and Imbalance 

 In small or imbalanced datasets (e.g., [29]), overfitting occurs, as mentioned in [25]. 

Although data augmentation and GANs are used, the synthetic data tends to lack the versatility 

of real-world conditions. 

2.1.6   Real-Time Deployment Challenges 

 There are a limited number of publications on the latency and scalability of real-time 

applications (e.g. drones, mobile apps). For example, YOLO-based solutions [26] are fast but 

fail to make fine-grained distinctions among diseases. 

2.2   Identified Research Gaps 

Identified research gaps from the reviewed literature are as follows: 

• The need for a hybrid feature fusion framework combining handcrafted features 

(HOG, LBP, SURF) and deep learning features to enhance discriminative 

capability. 

• The absence of field-validated models robust to environmental noise and 

occlusions. 
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• The lack of computationally efficient yet accurate architectures for edge devices. 

• The gap in multi-disease detection within a single crop (e.g., chili anthracnose, 

powdery mildew). 

 Materials and Methods 

3.1   Data Collection and Preprocessing 

3.1.1   Dataset Description 

The experiment makes use of a pre-selected dataset [29] of chili plants, which includes 

both healthy and infected leaves with anthracnose. The open-source repositories of agricultural 

images are publicly available at a resolution of 128×128 to 512×512 pixels to alleviate the 

problem of data deficiency. The data was divided into three subsets: 15% testing, 15% 

validation, and 70% training. This proportion was chosen because with 70% of the training 

data, there will be enough data to allow the model to learn the discriminative use of both healthy 

and anthracnose-infected chili leaves. Deep learning models can be trained and monitored with 

larger training splits, which are empirically proven to increase model convergence. The 15% 

separate validation set gives a statistically representative subset of the data to check overfitting 

in training and for hyper-parameter optimization (e.g., learning rate, dropout) without looking 

at test set data. A 15% test set fits empirical standards for trustworthy performance estimation. 

Ten-fold cross-validation further reduces bias associated with just one random split. Figure 1 

presents example images from the dataset. 

 

Figure 1. Sample Dataset Images 

3.1.2   Data Augmentation 

In order to improve generalisation and reduce overfitting, augmentation strategies such 

as rotation (±20°), horizontal/vertical rotation, brightness modification (±20%), and cropping 

at random were applied. Rotary flexibility was realized by randomly rotating images over the 

range of 0-20 degrees, whereas horizontal and vertical movements were introduced through 

displacing images up to 20 percent in their width or height, respectively. Also, randomly 

distorted and scaled images were applied with a shear range of 0.2 and a zoom range up to 20 

percent. Horizontal flipping was also used to diversify the dataset, and any geometric 

transformations used a nearest fill mode to fill the new pixels created by repeating the value of 

the nearest available pixel. Tweaks in brightness were also integrated (20%) as a simulation of 
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differences in lighting conditions, and this takes a step toward strengthening the model against 

the problem of overfitting.  

By enriching the model with relevant data, the risk of overfitting will be reduced or its 

performance on uncharacteristic data will go up. 

3.1.3   Noise Reduction 

Speckle noise, common in field-captured images, was addressed using Gaussian 

filtering [30], defined in Eq. (1): 

𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥, 𝑦) =
1

2𝜋𝜎2
∑ 𝑒

−
(𝑖2+𝑗2)

2𝜎2 𝐼(𝑥+𝑖,𝑦+𝑗)
𝑖,𝑗                                      (1) 

where 𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥, 𝑦) is the filtered pixel intensity at coordinates (x,y), σ is the standard 

deviation of the Gaussian kernel, controlling the smoothing intensity (larger σ = stronger blur), 

i and j are offsets from the central pixel (x,y) within the kernel window, and I(x+i,y+j) is the 

original pixel intensity at position (x+i,y+j). 

3.2   Feature Extraction 

The most critical component of image classification is feature extraction. Critical visual 

attributes significantly influence the performance of the categorization task. Color, texture, and 

shape criteria can classify an object's attributes as local or global. Color and texture are local 

features, contrasting with geometry, a global element. This study extracts both deep and 

handcrafted features for image categorization.  

3.2.1   Hybrid Feature Extractor (HFE) 

HFE combines three handcrafted feature descriptors: 

Histogram-Oriented Gradient (HOG) 

• Compute gradients using Sobel filters [31] using Eq. (2) and Eq. (3): 

                        𝑔𝑥 = 𝐼(𝑥 + 1, 𝑦, ) − 𝐼(𝑥 − 1, 𝑦)                           (2) 

                         𝑔𝑦 = 𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥, 𝑦 − 1, )                                             (3) 

Where gx and gy are horizontal and vertical gradients at pixel (x,y), I(x,y) is pixel 

intensity at coordinates (x,y). 

• Compute the Gradient magnitude and orientation using Eq. (4) and Eq. (5): 

∆𝑔 = √𝑔𝑥
2 + 𝑔𝑦

2                                                                 (4) 

  𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑔𝑦

𝑔𝑥
)                                                             (5) 

Where Δg is the gradient magnitude, representing edge strength at (x,y), and θ is the 

gradient orientation (angle in radians), indicating edge direction. 

• Histograms of 9 bins per 8×8 cell yield a 3,780-dimensional vector. 
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Local Binary Pattern (LBP) 

• For each pixel (x,y), threshold neighbors p within radius R, compute LBP using Eq. 

(6): 

𝐿𝐵𝑃(𝑥, 𝑦) = ∑ 𝑠(𝑔𝑝 − 𝑔𝑐). 2𝑝,   𝑠(𝑧) = {
1
0

𝑧 ≥ 0
     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}𝑝−1
𝑝=0                   (6) 

Where LBP(x,y) is the LBP code for the central pixel (x,y), gp is the intensity of the p-

th neighboring pixel around (x,y), gc is the intensity of the central pixel (x,y), P is the total 

number of neighboring pixels, z is the difference gp−gc and s(z) is the threshold function 

converting intensity differences to binary values. 

• A 59-dimensional uniform LBP vector is generated. 

Speeded-Up Robust Features (SURF) [32] 

• Compute Hessian matrix for keypoint detection using Eq. (7): 

𝐻(𝑥, 𝜎) = [
𝐿𝑥𝑥(𝑥, 𝜎) 𝐿𝑥𝑦(𝑥, 𝜎)

𝐿𝑥𝑦(𝑥, 𝜎) 𝐿𝑥𝑦(𝑥, 𝜎)
]                                                        (7) 

where H(x,σ) is the Hessian matrix at pixel (x,y) and scale σ, Lxx, Lxy, Lyy are second-

order Gaussian derivatives of the image at scale σ, and σ is the scale parameter determining the 

size of the Gaussian kernel. 

• Haar wavelet [33] responses in 4×4 subregions produce a 64-dimensional 

descriptor. 

Feature Fusion 

The HOG (3,780D, LBP (59D), and SURF (64D) vectors are concatenated into a 

3,903D hybrid feature vector FHFE.   

3.2.2   VGG19-Based CNN 

VGG excels at morphological feature implementation to categorise images. The VGG 

network was used as a feature extractor in this instance, even though there are other lightweight 

networks available, such as YOLO3[34] and MobileNet [35]. VGGs have gained fame as a 

deep neural network because they were well trained on millions of images and can solve 

complex classification tasks [36], [37]. Figure 2 illustrates the architecture of the VGG19 CNN 

model.  

The pre-trained VGG19 model (excluding top layers) extracts deep features. The final 

convolutional layer outputs a 4,096D vector for the FCNN. 

VGG19 Fine-Tuning 

In most cases, fine-tuning involves minor adjustments with the aim of achieving the 

desired outcome or performance. Fine-tuning is used to calibrate a pre-trained model for  some 

minor changes needed to allow it to perform a different but slightly similar task. The layers  up 

to block 5 were frozen, and the rest were retrained with chili images. 
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Figure 2. VGG19 Architecture[38] 

3.2.3   Feature Fusion 

Feature fusion is the aggregation of many image features to form a more discriminating 

feature than could be made by just one of those various features itself. The aim of feature fusion 

is to unify the data provided by several visual signals with the purpose of presenting a more 

complete description of features. The combination of the complementary characteristics may 

lead to a significant improvement in the object detection. 

The hybrid (FHFE) and deep (FCNN) features are fused via concatenation using Eq. 8: 

Ffused=FHFE⊕FCNN                                                                         (8) 

3.3   Classification 

SoftMax functions of the convolutional neural network and a fully connected layer (FC) 

are used for classification. The feature fusion technique can produce an additional process of 

the feature map, a softmax layer, and a fully connected layer. 

A fully connected network with two dense layers (512 and 128 neurons, ReLU 

activation) processes Ffused. The final layer uses SoftMax for binary classification, which can 

be visualized by Eq. (9): 

   𝑃(𝑦 = 𝑐𝑙𝑎𝑠𝑠) =
𝑒𝑤𝑐

𝑇+𝑏𝑐

∑ 𝑒𝑤𝑘
𝑇+𝑏𝑘2

𝑘=1

                                                        (9) 

where P(y=c) is the probability of the input x belonging to class c (healthy/diseased), 

wc is the weight vector for class c, bc is the bias term for class c, x is the input feature vector 

(fused HFE + CNN features), and k is the total number of classes (k=2: healthy and diseased). 

The complete flow diagram of the methodology espoused in this research is portrayed 

in Figure 3.  
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Figure 3. Flow of the Proposed Methodology 

 Results and Discussions 

The model was implemented in TensorFlow/Keras on an NVIDIA RTX 3090 GPU. 

Ten-fold cross-validation ensured robustness. The experimental configuration of the study is 

delineated in Table 1, which comprises high-performance parameters such as batch size, 

learning rate, dropout, and epoch.  

Table 1. High-Performance Parameters 

Parameters Number 

Batch Size 10, 20, 30 

Epoch 50,100, 150, 200 

Learning Rate 0.1,0.01,0.001 

No. of Convolution Layers 8 

Activation Function Relu 

No. of Max Pooling Layers 8 

Network Weight Assigned Uniform 

Dropout Rate 0.5 

Optimizer 

 

Adam 

(η=0.001, η=0.001, β1=0.9, β2=0.999). 
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4.1   Performance Evaluation Metrics 

The experiment also used several image resolutions like 224x224, 256x256, and 

128x128. Table 2 shows the results. Figure 4 shows the best-case accuracy and error rate using 

a 128x128 image dimension, 100 epochs, a learning rate of 0.01, and 50 batches. As the epoch 

values increase, the accuracy of the model improves, and the error rate decreases. The training 

of the model is directly proportional to the increase in the epoch value. Figure 5 shows how the 

accuracy and error rate change during the training process with 50 epochs, a batch size of 50, 

a learning rate of 0.01, and an image size of 224x224. In this case, the error rate and accuracy 

of the model improve as the number of epochs rises. The training of the model is closely related 

to the increase in the epoch value. Figure 6 shows the error rate and accuracy with the 256x256 

image dimension, 200 training epochs, a learning rate of 0.01, and 50 training batches. 

Specifically, the precision of the model improves, and the error rate decreases as the epoch 

values increase. The larger the epoch value, the more the model is trained. Figure 7 

demonstrates the accuracy and error rate using the following parameters: a batch size of 150, a 

learning rate of 0.01, 150 epochs, and an image size of 224x224. In this case, as the epoch value 

increases, the accuracy of the model improves, and the error rate decreases.  The training of the 

model is directly related to the increase in the epoch value. 

Figure 8 shows the precision and error rate on 224x224 images, with 100 epochs, a 

learning rate of 0.01, and a batch size of 50. In this case, the error rate and accuracy of the 

model improve as the value increases. The increase in the epoch value is directly correlated to 

the training of the model. 

Table 2. Test Results 

Dataset Amount Image Size Epoch Learning Rate Accuracy (%) 

3000 256 × 256 px 50 0.001 98.47% 

50 0.01 98.43% 

50 0.1 98.43% 

100 0.001 98.43% 

100 0.01 98.58% 

100 0.1 98.50% 

224 × 224 px 50 0.001 98.57% 

50 0.01 98.63% 

50 0.1 98.73% 

100 0.001 98.30% 

100 0.01 98.48% 

100 0.1 98.62% 

128 × 128 px 50 0.001 99.07% 

50 0.01 99.43% 

50 0.1 98.50% 
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100 0.001 99.03% 

100 0.01 99.58% 

100 0.1 99.50% 

  

(a)Training and Validation Accuracy                    (b)Training and Validation Loss 

Figure 4. Outcomes with Epoch 100 and LR 0.01 (128*128 Image Size) 

           

(a)Training and Validation Accuracy                   (b)Training and Validation Loss 

Figure 5. Outcomes with Epoch 50 and LR 0.01 (224*224 Image Size) 

 

(a)Training and Validation Accuracy               (b)Training and Validation loss 

Figure 6. Outcomes with Epoch 200 and LR 0.01 (256x256 Image) 
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(a)Training and Validation Accuracy         (b)Training and Validation Loss 

Figure 7. Outcomes with Epoch 150 and LR 0.01 (224*224 Image Size) 

  

(a)Training and Validation Accuracy                  (b)Training and Validation Loss 

Figure 8. Outcomes with Epoch 100 and LR 0.01 (224*224 Image Size) 

The proposed model achieved the following performance (Table 3) on the test set 

(128×128 pixels, 100 epochs, learning rate = 0.01): 

Table 3. Performance of the Proposed Model 

Class Accuracy Precision Recall F1-Score 

Healthy 99.52 99.6 99.52 99.56 

Diseased 99.64 99.57 99.64 99.6 

Overall  99.58 99.58 99.58 99.58 
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The confusion matrix of the proposed model is shown in Figure 9. 

 

Figure 9. Confusion Matrix of the Proposed Model 

4.2   Ablation Study 

To quantify the relative importance of each feature, we conducted ablation studies by 

selectively excluding one feature at a time during validation. The results are summarized in 

Table 4. 

Table 4. Ablation Study 

Removed 

Feature 

Accuracy 

Drop 

Observation 

HOG -4.2% The greatest fall; this proves HOG as the best in 

edge/shape-based disease detection. 

LBP -2.8% Corroborates the use of LBP in the discrimination of 

texture, particularly of early lesions. 

SURF -1.5% Minor, but essential to scale-invariant localization of 

severe infections. 

 

Table 4 clearly shows that HOG is the primary driver due to its sensitivity to structural 

deformities. LBP and SURF act as secondary but essential contributors, addressing texture and 

scale variability, respectively. 

4.3   Comparative Analysis of Noise-Reduction Techniques 

To validate the effectiveness of Gaussian filtering, we evaluated its performance against 

three alternative methods: Median filtering and bilateral filtering. The comparison was 

conducted using peak signal-to-noise ratio (PSNR) and classification accuracy as metrics 

(Table 5). 
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Table 5. Noise-Reduction Techniques Comparison 

Method PSNR (dB) Accuracy (%) Inference Time (ms/img) 

No Filtering 22.1 97.2 0 

Median Filtering 24.3 97.8 1.2 

Bilateral Filtering 26.5 98.1 4.7 

Gaussian Filtering 25.9 99.58 1.5 

 

Table 5 clearly shows that Gaussian filtering achieved the highest accuracy 

(98.6%) despite its moderate PSNR, indicating superior retention of discriminative features for 

classification. 

 Discussion 

5.1   Deep Interpretation of Results 

The effectiveness of the presented hybrid classifier is explained by its capability to 

overcome major shortcomings of traditional disease detection methods. Conventional methods, 

where the evaluation of features is based on personal contact or single-feature isolation, are 

rather inaccurate, subjective, and not scalable. The hybrid feature fusion approach, by contrast, 

combined the power of HOG (edge and shape information), LBP (texture patterns), and SURF 

(scale-invariant keypoints) features to extract local and global features of the diseased areas. 

Meanwhile, the VGG19 model was trained on large-scale datasets, which served to offer high-

level semantic information that enhanced the presentation of unique designs in chili leaves. The 

heterogeneous features were combined to develop a descriptive feature that greatly improved 

the discriminative capacity of the model to distinguish between the infected (anthracnose) and 

healthy leaves, even in a harsh field environment. 

An important addition to this study was the use of data augmentation and Gaussian 

filtering in the pre-processing stage. The noise, non-uniform illumination, and resolution 

differences frequently observed in field-captured chili images may decrease the performance 

of the model. Gaussian filtering was also used to reduce speckle noise so that extracted features 

would be robust against the artifacts often seen in agricultural imagery. Such preprocessing 

steps, along with adaptive hyperparameters, contributed to stable training and avoided 

overfitting, which is reflected in the stable performance during ten-fold cross-validation. 

The high accuracy (99.58%) of the model is supported by the increased efficiency of 

128x128 resolution images, as smaller photos mean fewer calculations at the expense of 

significant information.  

5.2   Comparison with State-of-the-Art Studies 

The proposed model outperforms existing methods in chili disease detection, as 

summarized in Table 6. 
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Table 6. Comparison with State-of-the-Art Studies 

Reference Method Accuracy Key Features Dataset 

[28] RNDDNet 

(Residual Nested 

Dilated 

DenseNet) 

98.09% Dilated convolutions, 

residual connections 

Custom chilli 

dataset 

(Anthracnose + 

healthy) 

[2] Traditional CNN 

+ SVM 

95.20% Focus on Colletotrichum 

species identification 

Field-collected 

chilli leaves 

[3] Random Forest + 

Color Features 

93.50% Color histogram-based 

classification 

Uttar Pradesh 

chilli farm 

images 

[20] Vision 

Transformer 

(ViT) 

97.30% Self-attention for lesion 

localization 

Mixed crop 

dataset (incl. 

chilli) 

[21] MobileNetV2 + 

Web App 

96.80% Lightweight for edge 

deployment 

PlantVillage 

(chilli subset) 

Proposed 

Model 

HFE + VGG19 

Fusion 

99.58% Hybrid feature fusion 

(HOG+LBP+SURF), 

Gaussian filtering 

Curated chilli 

dataset [29] 

 

The proposed model (HFE + VGG19 fusion) outperforms existing studies with 99.58% 

accuracy by synergizing handcrafted features (HOG, LBP, SURF) and deep semantic 

representations. It outperforms existing chilli-specific studies, including Saini et al.’s SVM-

based approach (95.20%) [2] and Singh et al.’s color-feature method (93.50%) [3], by 

leveraging hybrid feature fusion to capture both texture and deep semantic patterns. While 

Vision Transformers (ViT) [20] and MobileNetV2 [21] achieve high accuracy on mixed-crop 

datasets, their performance on chilli Anthracnose remains suboptimal compared to our 

dedicated fusion framework (99.58%). Srinivasulu et al. [28] proposed RNDDNet, a dilated 

DenseNet variant, attaining 98.09% accuracy on chili disease detection. Though their residual 

connections improve feature propagation, the model’s reliance on deep architectures increases 

computational complexity.  

5.3   Limitations and Weaknesses 

Despite its strengths, the study has notable limitations: The overheads in computations 

created by feature fusion (HOG + LBP + SURF + VGG19) would adversely impact inference 

execution, at least under real-time conditions on edge devices with limited resources. 

Furthermore, while the dataset is limited to a specific anthracnose, it thus limits the model, as 

its results are not applicable to other chili diseases, such as powdery mildew or bacterial spot. 

Also, training with top-end GPUs (e.g. NVIDIA RTX 3090)  makes the model non-usable in 

resource-restricted areas where these GPUs are not available. Another drawback is ecological 

interactions   the model's reliability is undetermined in the cases of occlusion or payments with 

the soil background images that are frequent in the field situations. In-time settings such as 

variability in lighting, leaf movement due to wind, which creates motion blur, and weather 
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(rain, humidity) can have serious effects on accurate anthracnose detection in video feeds. The 

accuracy loss due to lighting  variability can be mitigated  by combining adaptive histogram 

equalization and learnable exposure compensation. The integrity of features degraded by 

motion blur can be preserved with an optical flow-CNN stabilizer. The effects of weather 

conditions on performance can be diminished through weather-adaptive augmentation during 

training.  

5.4   Implications of the Study 

The study has significant practical and theoretical implications, especially when it 

comes to the transformation of agricultural practices due to the early detection of anthracnose, 

the reduction of unpleasant losses in production, and the most effective use of fungicides with 

the help of real-time monitoring tools, such as mobile applications or drones. It promotes 

sustainability by enhancing precision agriculture through the elimination of unnecessary 

pesticide use, which aligns with eco-friendly farming activities. In terms of methodological 

contribution, the proven efficiency of hybrid feature fusion presents a precedent to be observed 

in other plant disease research; the diagnostic efficacy in plant   pathology would increase. The 

scalability of the model to low-resolution images will make it applicable even when used with 

IoT devices in rural areas where resources are not well developed, democratizing access to 

superior agricultural technology. Lastly, the framework can assist policymakers in adopting a 

data-driven approach to implement AI-based advisory systems that lead to the integration of 

smart solutions into national agricultural strategies to ensure long-term food security.  

 Conclusion 

Effective and speedy identification of crop diseases is critical for food security and 

sustainable farming. This research addresses the urgent issue of detecting the invasion of 

anthracnose disease in chili plants by conducting an excellent combination of the handcrafted 

approach to feature fusion, transfer learning, and convolutional neural networks. The Hybrid 

Feature Extractor, composed of HOG, LBP, and SURF in combination with the VGG19 model 

trained on chili leaf images, allowed for the extraction of discriminative and complementary 

features. This hybrid method generated impressive results in terms of classification accuracy, 

99.58%, which surpasses existing state-of-the-art approaches and serves as evidence of the 

relevance of traditional computer vision methods in collaboration with deep learning in the 

agricultural domain. The experimental results of the proposed model are further supported by 

its flexibility to different image resolutions (128×128 to 256×256 pixels) and computational 

efficiency. Unlike current techniques, which deploy high-resolution inputs or dedicated 

hardware to generate high levels of accuracy, the proposed approach attained high correct 

classification accuracy in cases where smaller-sized images are used; hence, the framework can 

be deployed on resource-limited devices in rural agricultural environments. Although the 

present study has strong points, it also recognizes limitations. The complexity of computing 

feature fusion-handcrafted and deep features—poses challenges for real-time implementations 

on edge devices. As future work, dimensionality reduction strategies (e.g. Principal Component 

Analysis) to increase inference speed while maintaining the same accuracy, as well as using 

lightweight architectures (e.g. MobileNet), can be investigated. Additionally, it would also be 

worth increasing the database to cover other diseases of chili (e.g. powdery mildew, bacterial 

spot) and environmental differences (e.g. occlusions, soil backgrounds), to facilitate the 

generalizability of the model. 
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