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Abstract   

Magnetic Resonance Imaging (MRI) is a technique used to assess various regions of 

the body and is useful in medical diagnosis. Because of this, it is important to maintain the 

clarity of the MRI images that are often degraded by different noises, particularly Gaussian and 

Rician. In this paper   a comprehensive evaluation of different denoising methods for brain MRI 

images, including classical, hybrid, and deep learning methods is conducted.   The methods 

evaluated include BM3D (Block-Matching and 3D Filtering), PCA (Principal Component 

Analysis)-based denoising, PCA combined with median filtering, a proposed hybrid approach 

(combining PCA, median filtering, and bilateral filtering with Rician bias correction), and 

DnCNN (Denoising Convolutional Neural Network) trained on custom MRI image patches. 

The metrics used to assess these denoising methods include PSNR (Peak Signal to Noise Ratio), 

SSIM (Structural Similarity Index), and histogram-based metrics like Bhattacharya distance, 

intersection, and correlation. In summary, the DnCNN method shows the best results across all 

noise types and levels, demonstrating high structural preservation. However, the proposed 

hybrid method also demonstrates competitive results compared to DnCNN and better results in 

comparison to classical methods like BM3D and PCA-based denoising methods. From this 

comparison, it can be concluded that while the deep learning-based method is overall the best 

for denoising, the hybrid method can also be seen as an alternative in cases of limited training 

resources. 

Keywords: Medical Imaging, Patch-Based Processing. Noise Reduction Techniques, Principal 

Component Analysis (PCA), Median Filtering, Total Variation Denoising, Adaptive Median 

Filtering, Deep Learning. 

 Introduction 

Medical imaging has undergone various transformations in the last few years especially 

with the growth of digital imaging technology. It is an important field as it can conduct non-

invasive diagnosis, treatment planning, and ongoing monitoring. In this context, Magnetic 

Resonance Imaging (MRI) is a popular imaging technique as it can produce high-resolution, 

high-contrast images of internal body structures, particularly soft tissues. [1] It is used to obtain 
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interior images of various sections of the body, making it possible to detect pathologies such 

as tumors and degenerative disorders.  

The noise produced during the process of generating the MRI image can sometimes 

degrade the quality of these scans. Noise artifacts degrade image quality by reducing contrast 

and signal-to-noise ratio (SNR) while also obscuring tiny features, altering the overall visual 

impression of the image possibly leading to misdiagnosis or treatment delay.  There are various 

factors contributing to this noise including temperature variations, patient movement, device 

malfunctions, and environmental conditions. In a CT phantom study assessing liver lesions, it 

was found that the detection sensitivity started dropping as the noise index was increased. [25] 

This shows that noise may obscure small lesions in MRI images, potentially leading to 

misdiagnosis. As a result, there is an increasing need for efficient denoising mechanisms that 

can decrease undesirable noise while retaining crucial anatomical information. [2] 

While there are many possible noise types that can affect MRI Images, Gaussian and 

Rician noise are the most common and problematic. Gaussian noise develops from random 

fluctuations in electrical signals and manifests as uniform intensity variations across the image. 

Rician noise, however, is unique to magnitude MRI images and originates from the non-linear 

translation of the complex-valued MRI data. It introduces a signal-dependent bias, especially 

in low-intensity regions, and deviates greatly from Gaussian features. [3] Hence, Gaussian and 

Rician noise are considered for evaluation in this study. Standard denoising methods are found 

to be inefficient when it comes to effectively removing Rician noise from images without 

deblurring. 

Many conventional denoising methods have been developed previously including 

Gaussian filtering, median filtering, wavelet-based filtering, etc. While most of these methods 

are generally effective, they sometimes face a trade-off when it comes to reducing noise in an 

image and preserving edge details. Excessive smoothing can lead to the destruction of 

important details in the image, while insufficient smoothing can result in some noise remaining 

in the image after the process. Additionally, many of these methods are not flexible enough to 

handle the complex and varying noise patterns in real-world MRI images. 

To bridge this gap, numerous approaches have emerged, including PCA (Principal 

Component Analysis)-based methods, hybrid approaches, and deep learning-based approaches. 

In this study, a comparison of the effectiveness of five denoising approaches is presented, as 

follows: 

 BM3D (Block-Matching and 3D Filtering): This is an advanced traditional method 

that uses collaborative filtering to group related 2D patches into 3D blocks. 

 PCA-Based Denoising: A patch-based method that uses Principal Component 

Analysis (PCA) to lower the number of dimensions and reduce noise. It is extremely 

effective at removing Gaussian noise from images while maintaining their structure. 

 PCA + Median Filtering: An improvement over PCA where median filtering is 

applied as a post-processing step after reconstruction to remove residual speckle and 

other white noise, thus improving the visual clarity of the image. 

 Proposed Hybrid Method: This method uses PCA, median filtering, Rician bias 

correction, and optional bilateral filtering to provide a flexible approach that can 
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handle both Gaussian and Rician noise while preserving structural and edge details 

and reducing noise. 

 DnCNN (Denoising Convolutional Neural Network): It is a denoising network 

that utilizes deep learning and has been trained on a dataset of MRI patches affected 

by Gaussian and Rician noise at different levels of intensity. This model has the 

ability to understand intricate noise patterns and spatial features thereby resulting in 

high-quality reconstructions of patches and producing good quality denoised images. 

A comprehensive evaluation of five denoising methods was conducted on MRI datasets 

with Gaussian and Rician noise (10%, 20%, 30%) using metrics such as PSNR, SSIM, 

Bhattacharyya distance, histogram intersection, and correlation coefficient. These findings 

emphasize the trade-offs involved in the denoising process: while deep learning approaches 

like DnCNN achieve the highest overall quality, traditional and hybrid techniques still offer 

practical advantages in terms of interpretability, computational efficiency, and adaptability in 

specific circumstances. This study provides valuable insights into the trade-offs of different 

methods, highlighting their clinical and research relevance and guiding the development of 

robust and versatile denoising strategies for medical imaging. 

 Related Work 

Noise reduction in MRI Images has been an important field of research for years and 

this has led to the creation of different denoising methods. These methods can be categorized 

into traditional filtering approaches, patch-based statistical methods, model-driven frameworks 

like BM3D, and newer deep learning techniques. Each method has its own advantages and 

limitations when it comes to removing Gaussian and Rician noise in MRI images. The 

effectiveness of some of these methods are discussed in this section. 

2.1 Classical Denoising Method 

Conventional image denoising methods serve as a foundation for many of the latest 

noise reduction techniques. Some of the original approaches include Gaussian smoothing, 

median filtering, and bilateral filtering, each having its own distinct approach to noise 

reduction. 

 

Figure 1. Gaussian Filter Example Image 

Gaussian filtering is based on the principle that noise follows a normal distribution and 

applies a low-pass convolution kernel to process the image and filter the noise. [4] Although 
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this technique is able to successfully suppress high-frequency noise, it tends to blur out the 

critical anatomical and structural details which becomes a significant challenge in brain MRI 

images, where subtle variations and boundary definitions are important for accurate medical 

diagnosis. Figure 1 shows an example of image denoised by Gaussian Filter. 

Median filtering is another common method used for eliminating impulse noise, like 

salt-and-pepper, by replacing each pixel's value with the median of its neighboring pixels' 

values. This approach is non-linear and maintains edges preservation more effectively 

compared to Gaussian filtering. [5] Nonetheless, when used to denoise continuous-tone images 

such as MRI scans, it often distorts delicate textures and reduces subtle low-contrast features, 

potentially obstructing diagnostic evaluation. 

 

Figure 2. Median Filter Example Image 

The bilateral filter reduces noise while preserving the integrity of edges by considering 

both the spatial position of pixels and their intensity similarities. This filtering method aims to 

strike a balance between noise reduction and edge preservation by combining spatial and 

intensity-based weighting. [6] While it is more sensitive to edges compared to Gaussian 

filtering, bilateral filtering requires careful parameter adjustment and can still lead to smoothing 

of fine structures when dealing with higher noise levels. 

More advanced classical methods like Total Variation Denoising (TVD) have been 

developed to maintain edge quality while suppressing noise levels. TVD encourages piecewise 

smoothness by reducing the total variation of the image, making it effective for preserving 

edges while removing uniform noise. [7]. However, this technique may encounter challenges 

in environments with high levels of significant noise, often failing to preserve low-contrast or 

delicate anatomical details that are crucial for medical diagnosis. Figure 3 shows an example 

of image denoised using the TVD method. 

 

Figure 3. TVD method Example Image 
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Numerous variations of non-local means (NLM) have been proposed to improve MRI 

denoising by utilizing structural redundancy. For example, Li et al. (2024) [13] introduced a 

globally informed NLM approach that utilizes global self-similarity for noise reduction, giving 

an overall better performance than local patch-based techniques like PRI-NL-PCA. In 

summary, while traditional denoising methods have proven to be efficient in removing noise, 

they often fall short of meeting the demands of contemporary medical imaging. Their limited 

ability to adjust to diverse noise characteristics and maintain anatomical and structural details 

has led to the pursuit of hybrid and learning-based strategies, which this research intends to 

investigate and refine. 

2.2 Patch - Based and PCA - Based Denoising 

Methods based on patch techniques enhance global filtering by making use of the local 

redundancies found in images. By extracting overlapping patches and recognizing similar 

patterns [8], these strategies enable more flexible filtering that preserves details. One example 

of this is Principal Component Analysis (PCA) denoising, which operates under the premise 

that noise exists within the lower variance components of a set of patches. PCA has 

demonstrated effectiveness in the reduction of Gaussian noise while maintaining prominent 

signal structures. However, its performance diminishes when faced with complex noise types 

like Rician, and it may not completely remove artifacts in uniform areas. 

2.3 Model-Based methods: BM3Dand Variants 

Block-Matching and 3D Filtering (BM3D) is an advanced denoising method that 

organizes similar patches into three-dimensional groups and performs collaborative filtering in 

a transformed domain. [9] It shows remarkable efficacy in managing Gaussian noise and often 

outperforms earlier patch-based techniques. With its high Peak Signal-to-Noise Ratio (PSNR) 

and robust structural preservation, BM3D has become a standard for evaluating other denoising 

approaches. Nevertheless, its performance with Rician noise is not as effective, since it is 

tailored for additive white Gaussian noise and lacks features to handle signal-dependent bias. 

2.4 Rician Noise modeling and Correction 

Rician noise, which is characteristic of magnitude MRI images, leads to distortions that 

are both signal-dependent and non-additive. In contrast to Gaussian noise, Rician noise does 

not follow a zero-mean distribution and has a greater impact on regions with low intensity. 

Numerous studies have suggested bias correction strategies to address this issue, often 

involving statistical models of the Rician distribution or non-local means tailored for the Rician 

context. [10] These methods strive to eliminate the bias caused during magnitude 

reconstruction; however, many of them require precise estimation of the noise level and hence 

can be computationally demanding or sensitive to parameter tuning. 

2.5 Deep-Learning Based Denoising 

Deep learning techniques have transformed image processing applications, particularly 

in the area of denoising. In this context, Convolutional Neural Networks (CNNs) have proven 
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to be a strong resource for denoising medical images because they can learn hierarchical 

features directly from noisy inputs. In contrast to conventional filters that depend on manually 

created rules, CNNs autonomously retrieve spatial and contextual data to differentiate between 

noise and significant structures. [17] 

DnCNN employs a residual learning approach to estimate noise from an input image 

and then removes it to produce the denoised result. With training on extensive datasets, DnCNN 

shows great generalization and outperforms conventional techniques in both visual quality and 

PSNR values. Recent advancements have adapted DnCNN and comparable architectures to 

address real-world and multiplicative types of noise. [11] However, most of the pre-trained 

models assume Gaussian noise and may not perform optimally on MRI-specific noise patterns 

unless fine-tuned on domain-specific data. 

2.6 Hybrid and Adaptive Denoising Techniques 

Recent research has explored hybrid filtering methods that combine the benefits of 

different techniques to overcome the shortcomings of single methods. For example, merging 

PCA with median filtering has been proposed as a way to effectively diminish both global and 

local noise variations. Other hybrid approaches integrate deep learning with statistical 

preprocessing, allowing networks to concentrate on learning the residuals from inputs that have 

been partially denoised. These methods seek to find a balance between obtaining successful 

denoising results and maintaining important details, especially in fields like medical imaging. 

2.7 Summary and Research Gap 

Previous works rely on classical filters like BM3D, Mean, Median, and PCA. Classical 

filters are modeled for Additive White Gaussian Noise (AWGN), which does not consider 

Rician Noises. Rician noise is signal-dependent, demonstrating   poor performance in MRI 

denoising. It also introduces bias in low intensity regions, which cannot be corrected by 

classical filters.  Classical filters apply a fixed operation for the whole image and do not adapt 

to local image statistics. There are only a handful of studies that provide an extensive 

comparison under both Gaussian and Rician noise scenarios, specifically focused on MRI brain 

images. Additionally, there has been limited research comparing hybrid PCA-based approaches 

to advanced deep learning models like DnCNN and traditional benchmarks such as BM3D 

within a systematic and uniform framework. 

The present work addresses this gap by: 

 Training a DnCNN model on MRI-specific patches. 

 Designing a hybrid approach that integrates PCA, median filtering, and optional 

Rician correction. 

 Evaluating all methods using quantitative metrics like PSNR, SSIM, and 

histogram-based metrics (Bhattacharyya, Intersection, Correlation). 

 Comparing the performance of Gaussian and Rician noise under multiple noise 

levels (10%, 20%, 30%). 
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 Proposed Work 

The methods used in this work to denoise brain MRI images are explained in this 

section. This category includes deep learning techniques like DnCNN, BM3D, and methods 

like principal component analysis (PCA) and median filtering. Since hybrid approaches may 

yield better results, a hybrid solution is described for Rician noise. To ensure consistency, 

comparable datasets and metrics are used to evaluate the methods. 

Let 𝐼𝑐𝑙𝑒𝑎𝑛 be the clean MRI image, 𝐼𝑛𝑜𝑖𝑠𝑦 be the corrupted image affected by either 

Gaussian or Rician noise. The goal of image denoising is to 𝐼𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 ≈ 𝐼𝑐𝑙𝑒𝑎𝑛 such that the 

noise is suppressed while preserving structural details. 

3.1 Image Processing 

 Before using any algorithms on the images, it is advised that they normalization, it's a 

good practice. Prior to being normalized to the range [0,1], the images are first converted to 

grayscale. This ensures numerical consistency throughout the calculations and simplifies the 

processing pipeline.  

 Normalization is applied as follows to image I: 

𝐼𝑛𝑜𝑟𝑚(𝑥,𝑦) = 
𝐼(𝑥,𝑦)

255
     (1) 

Normalizing provides a uniform range of pixel values which enhances the effectiveness 

of subsequent statistical and filtering processes. 

3.2 Patch Based PCA Filtering 

Principal Component Analysis (PCA) is a popular statistical method used to eliminate 

noise in an image by lowering its dimensionality, making it particularly efficient in tasks 

involving image denoising. In most cases, noise is found the in low variance directions and 

PCA has the capability of separating this noise from dominant signal structures. By converting 

image patches into a reduced-dimensional subspace, PCA successfully suppresses noise 

elements while preserving key features and anatomical details. [12] PCA is developed around 

the idea that information in an image can be represented in fewer pixels. The additional 

unnecessary noise pixels can be filtered out without causing any loss of structural details. 

Patch Extraction 

The core of the denoising process is based on patch-wise PCA filtering. Initially, the 

input images are converted to equal sized square patches (typically 8 × 8) with a predefined 

stride to allow overlap. 

For a normalized image I of size H×W, overlapping patches size p×p are extracted as: 

𝑃𝑖𝑗 = 𝐼(𝑖: 𝑘,𝑗: 𝑙)    (2) 

Here, i and j denote the row and column index and k and l are taken as k = 𝑖 + 𝑝 − 1, l 

= 𝑗 + 𝑝 − 1.These are used to show how the i and j values vary over the image in steps of the 
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chosen stride. Each patch 𝑃𝑖𝑗 is flattened into a vector and collected into a matrix X∈ 𝑅𝑚×𝑛 

where m is the number of patches and 𝑛 = 𝑝2 is the number of pixels in each patch. 

PCA Transformation 

PCA is used to project the patch data into a lower-dimensional subspace that captures 

the most significant variance in the data. The steps are: 

 Mean Centering: For a given dataset X with m samples, the mean of each feature 

can be computed as: 

µ𝑗 = 
1

𝑚
 ∑ 𝑋𝑖𝑗

𝑚
𝑖=1     (3) 

Here, j = 1,2,3……n. where n is the number of features. 

The mean-centered data is then: 

𝑋′ = 𝑋 - µ     (4) 

 Covariance Matrix: Compute the covariance matrix C of the mean-centered data: 

C = 
1

𝑚−1
𝑋′𝑇 𝑋′    (5) 

 Eigen Decomposition: Compute the eigenvalues λ and eigenvectors V of C: 

CV = λV    (6) 

Eigenvectors define the principal components, while eigenvalues represent the variance 

contributed by each component. 

 Projection and reconstruction: Let 𝑉𝑘 be the matrix of top k eigenvectors that 

preserve 95% of the variance. The data is transformed and reconstructed as: 

𝑋𝑃𝐶𝐴 = 𝑋′ 𝑉𝑘
𝑇  𝑉𝑘 + 𝜇    (7) 

This suppresses noise (captured in lower-variance components) while preserving 

structural details. 

Patch Aggregation 

The grouping of clean patches created by the PCA reconstruction process is known as 

patch aggregation. Data is gathered to create the final denoised image. Overlapping patches 

result in multiple reconstructions of a pixel. The intensity of a pixel is determined by the 

weighted average of the overlapped patches. The image reconstruction is smooth because the 

patch aggregation process creates a smooth transition between the overlapping patches. 

In most situations, principal component analysis-based denoising is a reliable method 

that offers significant advantages. It achieves this by separating the noise's random particles 

from the image's intrinsic structure in the direction of greater variance. PCA does not require 

previous modeling or training because it is unsupervised and can adapt to local features. [14] 

PCA is a popular choice for denoising because of its interpretability, computational efficiency, 

and general versatility for the majority of real-world problems, even though it isn't always 

superior to more sophisticated options like deep learning models. 
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Median Filtering 

By using median filtering, denoising is achieved by replacing each pixel's value with 

the median value extracted from the surrounding pixels.   While trying to reduce noise, linear 

filters like the Gaussian filter have a propensity to smooth out edges.  By using the median 

filter, which can denoise an image while preserving its edges and structural components, this 

can be prevented. [16] As a result, it is a perfect addition to PCA. 

For a pixel I(x,y), a median filter over a 3× 3 neighborhood is defined as: 

𝐼′(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛{𝐼(𝑖, 𝑗)|(𝑖, 𝑗) ∈ 𝑁(𝑥, 𝑦)    (8) 

where 𝑁(𝑥, 𝑦) denotes the neighborhood centered at (𝑥, 𝑦). This step effectively 

removes isolated noise particles without blurring edges. 

The two primary objectives of using a median filter after PCA are to:  

 Remove extra noise that PCA might have missed 

 Offer structural refinement to enhance local uniformity in consistent regions of 

images without sacrificing edges.  

 When these two techniques are combined, a visually cohesive denoising solution that 

can strike a balance between removing noise and preserving fine details is produced. 

3.3 Hybrid Denoising Framework  

One or two traditional techniques are insufficient to reduce complex noise patterns in 

MRI images, primarily those resulting from Rician noise.  Patch-based PCA denoising, median 

filtering, Rician bias correction, and, if preferred, bilateral filtering and histogram matching are 

all combined in this hybrid approach to improve visual and structural quality.  Figure 4 

illustrates how the methodology flows. 

 PCA patch-based denoising 

 Median filtering 

 Rician bias correction (for Rician noise) 

Since Rician noise is signal-dependent, conventional denoising techniques like PCA 

and median filtering may leave some noise particles behind after the process is finished, 

especially in low-intensity regions of magnitude MRI images.  This is addressed by performing 

a Rician bias correction step, which restores the underlying signal's statistical expectation. 

If 𝐼𝑑 is the denoised image and σ is the estimated noise standard deviation, the bias-

corrected image is computed as: 

𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑥, 𝑦) =  √max(𝐼𝑑  (𝑥, 𝑦)2 −  σ 2, 0)   (9) 

This correction is derived from the statistical expectation of Rician-distributed signals. 
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The upward bias caused by magnitude reconstruction can be handled by this. The square 

root formulation ensures that only physically meaningful (non-negative) intensities are retained 

after bias removal. 

Noise level σ is estimated from the difference between the original noisy image 𝐼𝑛  and 

the denoised image 𝐼𝑑: 

σ  = std(𝐼𝑛𝑜𝑖𝑠𝑦  - 𝐼𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑)    (10) 

This step is critical in recovering accurate signal representation, especially in low-SNR 

regions where Rician bias has the greatest impact. 

Bilateral Filtering 

Bilateral filters allow for both smoothing and edge preservation because they consider 

both spatial proximity and intensity similarity, unlike traditional linear filters.  This produces 

an easily interpretable denoised image, which is particularly helpful in medical imaging 

domains like brain MRI, where edge integrity and soft tissue clarity are essential.  This can be 

considered an optional post-processing technique to improve the visual quality of the denoised 

image. 

The bilateral filter for a pixel I(x,y) is given as: 

𝐼𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙(𝑥, 𝑦) =  
1

𝑊𝑝
∑ 𝐼(𝑖, 𝑗) ⋅ 𝑓𝑠(∥ (𝑖, 𝑗) − (𝑥, 𝑦) ∥) ⋅ 𝑓𝑟(∣ 𝐼(𝑖, 𝑗) − 𝐼(𝑥, 𝑦) ∣)(𝑖,𝑗)∈𝑁  (11) 

where: 

 𝑓𝑠 is the spatial kernel (e.g., Gaussian with respect to distance). 

 𝑓𝑟 is the range kernel (e.g., Gaussian with respect to intensity difference). 

 𝑊𝑝 is a normalization factor. 

Histogram Matching 

Histogram matching involves contrasting the denoised image's intensity distribution 

with a reference image, which is typically a template or a version of the image without noise. 

For the denoised image's cumulative distribution function (CDF) to closely resemble the 

reference image's CDF, it is adjusted. Histogram matching is helpful in standardizing contrast 

and intensity levels across different images. To address the intensity variations that occur 

during the denoising and bias correction processes, the transformation ensures that the 

statistical properties of the noise-reduced image match those of high-quality images [19]. This 

can be viewed as an additional post-processing option. 

This combined approach utilizes the advantages of each of the current methods. PCA 

aids in the following processes: bilateral filtering to enhance perceptual quality; median 

filtering to selectively reduce impulsive noise; Rician bias correction to recover low-intensity 

values; and histogram matching to normalize contrast.  All of these elements work together to 

create a strong denoising mechanism designed to control the complex noise patterns in MRI 

data, guaranteeing better visual clarity and ultimately a more accurate diagnosis. 
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Figure 4. Hybrid Method Workflow 

3.4 BM3D Denoising 

Block-Matching and 3D filtering, or BM3D, is an image denoising technique with high 

acclaim for its ability to suppress a wide range of noise effectively while also maintaining 

complex textures and fine details. Its rationale is that in a natural or medical image, many sites 

contain similar patches or patterns. These patches are clustered by BM3D, which exploits the 

ensuing redundancy. 

There are some significant steps in the BM3D process: 

 Grouping analogous 2D patches into 3D blocks.   

 Performing a 3D transform (such as DCT or wavelet).   

 Applying coefficient shrinkage (thresholding).   

 Executing the inverse transform and merging the results.  

Let Y be the 3D group of noisy patches: 

𝑌𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 =  𝑇−1 (𝑆ℎ𝑟𝑖𝑛𝑘(𝑇(𝑌))    (12) 

Where 𝑌  is the 3D stack of similar noisy patches, 𝑇 denotes the 3D transform, 𝑆ℎ𝑟𝑖𝑛𝑘 

represents the thresholding function, and 𝑇−1 is the inverse transform. 
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The BM3D can efficiently handle the denoising of Gaussian-impacted images. Its 

collaborative and non-local characteristics enable it to provide optimal denoising performance 

with texture preservation and edge crispness.  

Moreover, the BM3D method is non-parametric, which implies that it does not need to 

adjust parameters or undergo any form of extensive prior training. [15] However, BM3D is not 

ideal for handling non-Gaussian noise like Rician, which is commonly found in MRI scans.  

Since it is designed for Gaussian noise, its thresholds and similarity measures fail to consider 

the signal-dependent, non-zero mean distribution of Rician, leading to frequent residual 

artifacts or over-smoothing, especially in low-intensity regions. 

3.5 DnCNN (Denoising Convolutional Neural Network) 

DnCNN (Denoising Convolutional Neural Network) is one of the most widely used 

deep convolutional neural networks. It utilizes residual learning to predict the noise and clean 

it from the noise-corrupted images and has been shown to perform well in eliminating both 

Gaussian and Rician noise. Rather than trying to predict the clean image, it tries to predict the 

expected noise and subtracts the same from the image to yield a denoised outcome. The residual 

learning strategy utilized in DnCNN enhances the training effectiveness since it enables the 

network to learn the complex noise patterns, particularly in clinical images such as MRI where 

the features of the noise may vary in different regions. The architecture diagram is illustrated 

in Figure 5. 

Architecture Details: 

The network architecture comprises 17 convolutional layers. Details of the architecture 

are explained in Table 1. 

 The first layer performs a convolution with 64 filters of size 3×3, followed by a 

ReLU activation. 

 The intermediate 15 layers each consist of convolutional layers with 64 filters of 

size 3×3, followed by Batch Normalization and ReLU activations. 

 The final layer is a convolutional layer with a single output channel (for grayscale 

images) and no activation, yielding the predicted noise. More details are provided 

in Table 1. 

This structure is designed to maintain the input image dimensions through same 

padding. The network output, which estimates the noise 𝐹𝜃 (𝐼𝑛𝑜𝑖𝑠𝑦), is subtracted from the 

noisy input to obtain the denoised image. 

𝐼𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 =  𝐼𝑛𝑜𝑖𝑠𝑦 −  𝐹𝜃  (𝐼𝑛𝑜𝑖𝑠𝑦)    (13) 

Where 𝐹𝜃 is the trained model. 
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Figure 5. DnCNN Architecture 

To improve the DnCNN model's generalization to domain-specific artifacts, it was 

retrained using MRI-specific patches that had synthetically injected Gaussian and Rician noise.  

While many new deep learning techniques, such as UNet, GANs, and Transformer-based 

models, may yield better results, DnCNN is used in this study because it is less complicated 

than GAN or Transformer-based models while still producing powerful denoising results.  

Because DnCNN is frequently used in the literature for benchmarking, the outcomes are 

comparable to earlier research. 

Table.1 Layer-Wise Configuration of the DnCNN Model used in this Study 

Layer Layer Type 
Filter 

Size 

No of 

Filters 
Activation 

Batch 

Normalization 
Purpose 

1 Convolution 3 × 3 64 ReLU No Feature extraction 

2-16 Convolution 3 × 3 64 ReLU No Deep representation 

17 Convolution 3 × 3 1 None No Noise estimation 

 Experimental Setup 

To evaluate the effectiveness of various denoising methods for MRI images corrupted 

with different types and levels of noise, a structured dataset was prepared and a controlled 

testing framework was implemented. 
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4.1 Dataset preparation 

A total of 27 clean brain MRI images were collected from an open-source data science 

platform Kaggle. These high-quality, noise-free images served as the ground truth reference 

for both training and evaluation. The dataset was chosen for its diversity in anatomical 

structures and consistency in resolution, making it suitable for denoising tasks. 

To simulate realistic noise conditions commonly encountered in MRI, two types of 

noise were artificially introduced: 

 Gaussian noise (additive white noise, modeled using a normal distribution) 

 Rician noise (signal-dependent noise typical in MRI magnitude images) 

Each noise type was applied at three different noise intensity levels: 10%, 20%, and 

30%. Thus, the training dataset consisted of a total of 162 noisy images. The Gaussian and 

Rician affected images modeled the fundamental characteristics of hospital MRI images. Real 

hospital MRI images include additional complexities like hardware artifacts patient motion, 

physiological noise, and magnetic field inhomogeneity, which could not be simulated in this 

study. Therefore, the experiment on the inclusion of synthetic noise is an approximation, not a 

perfect match. 

4.2 Patch Extraction for DnCNN Training 

To train the DnCNN model, each of the 162 noisy images was divided into small 

overlapping patches of size 40×40 pixels using a sliding window approach. Training the dataset 

took almost 36 hours on a CPU only system for 10epochs. This process resulted in 10,584 

training patches, which were used to train a noise-specific version of the DnCNN denoising 

model. These patches capture a variety of structural patterns and noise characteristics across 

different intensities and types. 

4.3 Test Set Preparation 

For objective evaluation, an independent test set was curated (as seen in Table 2). It 

consists of 7 clean MRI images, each corrupted with the same two noise types (Gaussian and 

Rician) at three levels (10%, 20%, 30%), resulting in 6 test subsets, each containing 7 images 

thus resulting in 42 testing images. These noisy test images were not part of the training set and 

were used to evaluate the generalization ability of the denoising algorithms. While 42 images 

may seem like a small number for testing, several similar studies, such as those conducted by 

Olesen et al. [26][27] have used limited dataset and still achieved comprehensive results. The 

current set is sufficient for initial study and evaluation however for clinical-level assurance, 

larger-scale validation on multi-center datasets will be needed. 

These test images were denoised using: 

 The trained DnCNN model 

 The proposed hybrid approach (PCA + Median + optional Rician bias 

correction) 
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 Two additional ablation setups: 

 PCA only 

 PCA + Median 

 A benchmark state-of-the-art method: BM3D. 

Table .2 Test Set Images Details 

Noise Type Noise Level No. of Images 

Gaussian 10%,20%,30% 21(7 each) 

Rician 10%,20%,30% 21(7 each) 

While the training process for the dataset took long hours, the testing process only 

requires few seconds to produce the results. All the experiments were conducted on a system 

equipped with an Intel 12th Generation Core i5-12450H CPU (8 cores, 12 threads) and 16 GB 

of RAM, running Windows 11. The implementation was carried out in Python (with libraries 

including NumPy, OpenCV, Scikit-learn, and TensorFlow) using the PyCharm IDE. 

 Results and Discussions 

In this section the quantitative and qualitative metrics used to evaluate the resultant 

denoised brain MRI images obtained across the different noise types (Gaussian and Rician) and 

at intensities (10%, 20%, 30%) are discussed. The comparison is between classical denoising 

methods like BM3D, PCA, and PCA with median filtering along with our proposed hybrid 

method and deep learning method (DnCNN). The performance metrics used for evaluation 

include PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Similarity Index) and histogram-

based metrics like Bhattacharya distance, intersection and correlation. 

To achieve a comprehensive analysis, the average results of the denoised images for all 

the testing images across the different quantitative metrics are considered. To analyze the 

quality of the images, the resultant denoised images for all the methods for one brain MRI 

testing image are shown. The visual comparison can be seen in Figure 6. 
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Figure.6 Resultant Denoised Brain MRI Images across Different Noise Types and 

Intensities 

Quantitative Assessment (PSNR and SSIM Metrics) 

To objectively measure how well the suggested methods as well as classic methods 

work, two well-known image quality measurements, Peak Signal-to-Noise Ratio (PSNR) and 

Structural Similarity Index Measure (SSIM) are used. 
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Peak Signal-To-Noise Ratio (PSNR) 

PSNR is a logarithmic metric used to evaluate the original image (meaning the 

maximum signal power) against the discrepancy between the original and altered image in 

order to measure the strength of the original images in comparison to the unwanted noise that 

reduces its fidelity. PSNR can be calculated using the formula: 

PSNR = 10𝑙𝑜𝑔10(𝑅2/MSE)     (14) 

Here, R represents the maximum possible pixel value of the image (255 for 8-bit 

images) and MSE stands for Mean Squared Error which can be calculated as: 

MSE = 
1

𝑁
∑ (𝐼(𝑖) − 𝐾(𝑖))2𝑁

𝑖=1      (15) 

Here: 

 I stands for original image 

 K stands for denoised image  

 N stands for the total number of pixels 

Structural Similarity Index (SSIM) 

SSIM is a quantitative metric used to measure the loss of image quality of the resultant 

denoised image compared to the original image after undergoing various processing steps. It 

gives a more accurate assessment of how much closer the denoised image is to the original 

image in comparison to PSNR. PSNR only considers pixel-wise differences, while SSIM 

compares similar patterns between images and judges if it has better edge and structural 

preservation. [18] The SSIM results can be found using the following formula: 

SSIM(I,K) = ( 2µ𝐼µ𝐾+𝐶1)(2𝜎𝐼𝐾+𝐶2)/(µ𝐼
2+µ𝐾

2 +𝐶1)(𝜎𝐼
2+𝜎𝐾

2+𝐶2)  (16) 

Where:  

 µ𝐼 𝑎𝑛𝑑 µ𝐾 are the average pixel values of the original and denoised images, 

respectively.  

 𝜎𝐼
2  𝑎𝑛𝑑  𝜎𝐾

2 represents the variances of the original and denoised images.  

 𝜎𝐼𝐾 denotes the covariance between the original and denoised images.  

 𝐶1 and 𝐶2 are small stabilizing constants used to prevent division errors. 

Histogram-Based Similarity Metrics 

In image processing, histograms indicate how pixel intensities are distributed and how 

they can be used to classify objects based on colours. When comparing two photos side by side, 

such as a denoised image and its clean reference image, the histograms can tell us how well the 

overall intensity distribution is maintained throughout the denoising process. [20] 

The histogram metrics considered for analysis are as follows: 
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Bhattacharyya Distance  

It measures the similarity between two probability distributions. A lower Bhattacharyya 

distance implies greater similarity. 

Let 𝐻1(𝑖) and 𝐻2(𝑖) be the normalized histogram values (probabilities) of the original 

and denoised images, respectively, for intensity bin i: 

𝐷𝐵(𝐻1, 𝐻2) =  − ln(∑ √𝐻1(𝑖). 𝐻2(𝑖)𝑁
𝑖=1 +  𝜖)   (17) 

 Here N stands for the number of histogram bins (usually taken as 256 for 

grayscale images) and ϵ is taken as a small constant (e.g., 1× 10−1) to avoid log (0). 

Interpretation: 

 𝐷𝐵 = 0. Perfect match 

 Higher values indicate more dissimilarity. 

Histogram Intersection 

It quantifies the amount of overlap between two histograms. Higher intersection values 

imply greater similarity. 

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝐻1, 𝐻2) =  ∑ min (𝐻1(𝑖), 𝐻2
𝑁
𝑖=1 (𝑖))   (18) 

Interpretation: 

 Maximum possible value is 1 which signifies perfect overlap 

 The closer it is to 1, the more similar the two histograms are. 

Correlation Coefficient 

Measures the linear correlation between two histograms. It compares how intensity 

values trend between the two distributions. 

𝐶𝑜𝑟𝑟(𝐻1, 𝐻2) =  
∑ (𝐻1(𝑖)− 𝐻1̅̅ ̅̅ )( 𝐻2(𝑖)− 𝐻2̅̅ ̅̅  )𝑁

𝑖=1

√(∑ ( 𝐻1(𝑖)− 𝐻1̅̅ ̅̅  )2𝑁
𝑖=1 .(∑ ( 𝐻2(𝑖)− 𝐻2̅̅ ̅̅  )2𝑁

𝑖=1

   (19) 

Where 𝐻1
̅̅̅̅  and  𝐻2

̅̅̅̅  are used to represent the mean values of histogram. 

 Correlation close to 1 indicates a strong positive similarity 

 A value near 0 implies no correlation 

The results of the denoised images using the above-mentioned metrics are shown in 

Table 3 to 8. 

 

 

 



Comparative Analysis of Classical, Hybrid, and Deep Learning Approaches for MRI Image Denoising under Gaussian and Rician Noise 

ISSN: 2582-4252  1009 

 

Table 3. Gaussian Noise 10% Results 

Denoising Approach PSNR SSIM Bhattacharya Intersection Correlation 

PCA Method 23.89 0.5986 -2.1716 6.2181 0.7829 

PCA + Median 

Method 

27.17 0.7318 -2.1204 5.7236 0.2477 

BM3D Method 26.21 0.7901 0.3844 5.2915 0.1068 

Hybrid Method 27.77 0.8409 -1.8531 6.0650 0.9955 

DnCNN Method 28.89 0.8669 0.0912 5.7076 0.9881 

Table 4. Gaussian Noise 20% Results 

Denoising Approach PSNR SSIM Bhattacharya Intersection Correlation 

PCA Method 16.05 0.3189 -2.1250 6.1547 0.9038 

PCA + Median 

Method 

22.03 0.5379 -2.1651 5.7626 0.2485 

BM3D Method 17.95 0.3907 0.4045 5.1427 -0.0033 

Hybrid Method 23.16 0.6569 -1.8531 6.0651 0.9955 

DnCNN Method 26.09 0.7953 0.1222 6.3430 0.9698 

Table 5. Gaussian Noise 30% Results 

Denoising Approach PSNR SSIM Bhattacharya Intersection Correlation 

PCA Method 12.70 0.2107 -2.0363 5.7155 0.8621 

PCA + Median 

Method 

18.84 0.4116 -2.1844 5.7912 0.2591 

BM3D Method 13.13 0.2195 0.3587 5.3975 0.0970 

Hybrid Method 21.76 0.4919 -1.8532 6.0650 0.9955 

DnCNN Method 24.07 0.7073 0.1635 6.2181 0.9097 

 

 



Uma Maheswari S., Vaishnavi Suresh Vaidyanath, Sudiksha M., Praveen Kumar R. 

Journal of Innovative Image Processing, September 2025, Volume 7, Issue 3  1010 

 

Table 6. Rician Noise 10% Results 

Denoising Approach PSNR SSIM Bhattacharya Intersection Correlation 

PCA Method 21.49 0.5675 -2.1279 5.5057 0.0929 

PCA + Median 

Method 

23.35 0.7031 -2.0373 5.2630 0.1038 

BM3D Method 24.12 0.7606 0.4368 4.9346 0.0822 

Hybrid Method 27.39 0.8210 -1.8531 6.0650 0.9955 

DnCNN Method 28.79 0.8620 0.0729 6.3174 0.9933 

Table 7. Rician Noise 20% Results 

Denoising Approach PSNR SSIM Bhattacharya Intersection Correlation 

PCA Method 14.25 0.2914 -2.1377 5.4490 0.0151 

PCA + Median 

Method 

17.14 0.4936 -2.0603 5.0983 0.0878 

BM3D Method 15.84 0.3804 0.4403 4.7707 0.0186 

Hybrid Method 22.66 0.5541 -1.8531 6.0650 0.9955 

DnCNN Method 25.28 0.7615 0.1250 6.3777 0.9800 

Table 8. Rician Noise 30% Results 

Denoising Approach PSNR SSIM Bhattacharya Intersection Correlation 

PCA Method 10.79 0.1784 -2.0819 5.3119 0.0006 

PCA + Median 

Method 

13.29 0.3543 -2.0234 4.6982 0.0651 

BM3D Method 11.23 0.1973 0.4074 5.1449 -0.0155 

Hybrid Method 19.13 0.3647 -1.8531 6.0650 0.9955 

DnCNN Method 22.74 0.6799 0.1582 6.0434 0.9782 

In this study, the effectiveness of different denoising methods for brain MRI images 

affected by Gaussian and Rician noise at different intensities (10%, 20%, 30%) was analysed 

with the help of quantitative metrics like PSNR, SSIM, and histogram metrics such as 
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Bhattacharya distance, intersection, and correlation. These multi-faceted metrics provide a 

thorough analysis of the important characteristics of a denoised image, which include edge and 

texture preservation, noise reduction, and artifact reduction. The primary objective is to 

demonstrate whether these methods can preserve important anatomical structures while 

removing noise, which is critical for effective medical diagnosis. Doctors rely on visual 

interpretability, lesion clarity, and diagnostic confidence, which PSNR/SSIM cannot fully 

capture. Radiologist-based assessments of diagnostic performance are necessary to establish 

doctor-level trust. The scores used in this study are helpful for technical benchmarking, but by 

themselves, they do not guarantee that images are clinically trustworthy 

BM3D demonstrated strong denoising performance under low noise conditions. 

However, as the noise level started to increase, it began to distort the finer details in the image, 

resulting in lower PSNR and SSIM values. Similarly, other classic methods like PCA and PCA 

+ Median filter were also found to be efficient under lower noise conditions, but their 

performance degraded with increasing noise. 

 Future Work 

Future work can include integrating deep learning models like SwinIR, which have the 

ability to learn complicated noise patterns from large-scale annotated MRI datasets, allowing 

for flexible and context-aware denoising with improved performance in mixed noise 

environments. [21]. Recent works, such as Shou et al. (2023) [24], have shown that transformer-

based models give better performance than standard CNNs in denoising 3D arterial spin 

labelling (ASL) MRI. Other fields where future work can be done include 3D volumetrics 

which involve extending the framework from 2D splicing to a 3D volumetric framework. This 

can help preserve the spatial continuity between slices, which is useful for accurate medical 

diagnosis, as it provides consistent anatomical structure preservation in multi-planar 

reconstructions and can perform better volumetric analysis. [22] Future work can also include 

real-time optimization and deployment as well as cross-modality and generalization methods. 

By evaluating the technique across multiple MRI modalities, such as T1-weighted, T2-

weighted, and FLAIR, as well as across different scanner manufacturers and field strengths the 

robustness and flexibility of the framework can be improved and used for broader medical 

applications. [23]. 

 Conclusion 

Compared to the classical denoising methods based on PCA, the proposed hybrid 

approach has yielded better results across all metrics. It efficiently reduces residual noise and 

maintains edge preservation for low- to medium-level noise images, thus making it ideal for 

low-noise clinical settings. The hybrid method is practical for real-life use. It can run efficiently 

on a CPU, and while it has more steps compared to classical filters, it balances performance 

and practicality. However, the performance of the hybrid method starts degrading at higher 

levels of noise, specifically at Rician 30% and Gaussian 30%. On the other hand, DnCNN 

consistently provides clean and detailed outputs even in severe noise conditions. Its ability to 

deliver strong denoising even at higher levels makes it the most stable approach of all and most 

suitable for real-world and medical applications. The results are consistent for the hybrid 

approach with a slight decrease in the 30% range, while DnCNN provides the highest PSNR 

and SSIM values. 
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The proposed methods are computationally efficient classical and hybrid filters run 

within seconds per slice on CPUs, and the deep learning model, DnCNN, delivers near real-

time inference once trained, making them suitable for hospital use without workflow delays. 

Overall, the study and analysis conclude that while there is no single method that can be 

considered optimal for all conditions, the integration of different strategies, like the proposed 

hybrid method, provides a powerful foundation for robust denoising. A flexible and adaptive 

denoising pipeline, capable of switching between classical and deep learning methods, would 

be most useful for real-time MRI preprocessing systems. 
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