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Abstract   

Architectures based on Convolutional Neural Networks (CNNs), like U-Net, have 

demonstrated notable efficiency in the segmentation of renal medical images. However, 

because convolution processes are limited and have restricted accessible fields, they frequently 

have trouble capturing long-range dependencies. Recent developments have improved global 

context modeling by incorporating transformer modules into U-Net variations to address this 

issue. However, during the global fusion process, these transformers based methods run the 

risk of losing important local spatial information. This research introduces Multi-Scale MCPA, 

a unique architecture designed specifically for the segmentation of 2D renal medical images. 

An encoder, decoder and cross perceptron module are the three main parts of MCPATo provide 

rich multi-scale feature interaction, the Cross Perceptron primarily uses several Multi-Scale 

Cross Perceptron (MCP) modules to capture local dependencies. To efficiently model long-

range dependencies, these features are spatially unfolded, concatenated, and processed by a 

Global Perceptron component. A Progressive Dual-Branch Structure (PDBS) is implemented 

to enhance segmentation performance, particularly for fine-grained structures. During training, 

this component guides the network to progressively transfer its attention from coarse structural 

elements to intricate pixel-level representations. The proposed method is specifically designed 

for 2D medical image segmentation tasks, given the clinical significance of 2D imaging and 

the high computing demands of 3D models. Experimentation of the proposed approach on 

multiple publicly accessible datasets from different imaging tasks and modalities, such as 

OCTA (ROSE), fundus images (DRIVE, CHASE_DB1, HRF), MRI (ACDC), and CT 

(Synapse), demonstrates that the proposed method reliably outperforms state-of-the-art 

segmentation methods, accomplishing enhancements of +2.1% Dice score on Synapse CT, 

+2.6% on ACDC MRI, and up to +3.4% on retinal fundus datasets. The effectiveness and 

generalizability of MCPA are established by experimental results, which show that it routinely 

outperforms existing techniques in segmentation accuracy. 

Keywords: Medical Image, Multi-Scale, Cross Perceptron Convolutional Neural Networks 

(CNNs), Segmentation. 

 Introduction 

In contemporary Computer Aided Diagnostic (CAD) systems, medical image 

segmentation is important for accurately locating and defining anatomical features, lesions, or 
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diseased regions [1]. It is comprehensively used in many clinical tasks, such as vascular 

structure analysis, tumor detection, and organ boundary identification, in imaging modalities 

like fundus photography, Magnetic Resonance Imaging (MRI), Computed Tomography (CT), 

and Optical Coherence Tomography Angiography (OCTA). Improving computable analysis, 

treatment planning, and diagnostic accuracy all depend on accurate segmentation [2]. 

Convolutional Neural Networks (CNNs) have made considerable progress in medical 

image segmentation during the last ten years [3]. Since of their encoder-decoder architecture 

and the efficient use of skip connections to preserve spatial information, architectures like U-

Net and its derivatives have shown impressive performance [4]. Nevertheless, the intrinsic 

dependence of CNN-based models on local convolutional kernels limits their capacity to 

represent distant spatial connections. Performance is frequently subpar as a result of this local 

receptive field bias, particularly when segmenting complicated structures with global 

contextual linkages [5]. 

Transformer-based models have been combined into medical image segmentation 

workflows in order to overcome these restrictions [6]. Transformers have demonstrated 

significant promise in modeling global feature dependencies through self-attention processes 

since their initial introduction in Natural Language Processing (NLP). In an effort to combine 

the advantages of transformers and CNNs, hybrid models such as TransUNet and Swin-UNet 

have introduced global feature modeling, which has improved performance [7]. These models 

do have certain drawbacks, though. In medical imaging scenarios connecting fine structural 

boundaries or low-contrast regions, local contextual information can be unintentionally 

extended by global attention mechanisms. Furthermore, transformers typically require 

substantial training datasets and computational resources, which aren't always feasible in the 

medical field [8]. 

Given these complications, we propose a brand new and effective segmentation 

framework designed especially for 2D medical image segmentation, the Multi-Scale Cross 

Perceptron Attention Network (MCPA). Contrast to traditional CNN or transformer based 

architectures, MCPA presents a Cross Perceptron Attention mechanism that uses a single 

structure to jointly model local and global dependencies [9]. A multi scale encoder, a decoder 

with skip connections, and a Cross Perceptron module that permits both local feature 

augmentation and global context aggregation make up the three primary parts of the design 

[10]. 

The MCP module, which is at the core of the MCPA network, is designed to extract and 

integrate data from a diversity of receptive fields. This enables the network to efficiently 

capture object boundaries and tissue variations at various scales. In order to accurately model 

long range dependencies, the network uses a Global Perceptron module after local feature 

extraction. This module aggregates spatially unfolded multi scale structures and learns their 

global correlations [11]. 

PDBS improve the segmentation of fine anatomical structures. This element 

progressively moves training emphasis from coarse structural segmentation to pixel level 

accuracy, making it easier to detect tiny, thin areas like tissue membranes and blood vessels. 

The MCPA structure is tailored for 2D renal image data, which continues to be the most 

common format in many diagnostic workflows because of its efficiency, accessibility, and 

clinical relevance, in contrast to 3D CNN models, which are computationally costly and 

frequently impractical in clinical settings [12]. 
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The MCPA network is tested on several publicly available datasets that include a wide 

range of imaging modalities and anatomical targets, such as fundus photography (DRIVE, 

CHASE_DB1, HRF), MRI (ACDC), CT (Synapse), and OCTA (ROSE). The experimental 

results validate the robustness, generalization, and applicability of our approach in real-world 

clinical scenarios by showing that it achieves state-of-the-art performance across all 

benchmarks [13]. 

MCPA, a unique 2D renal medical image segmentation network, is offered in this 

research. An encoder, decoder, as well as Cross Perceptron component make up architecture. 

The Cross Perceptron is proposed to further model long-range dependencies within the spatial 

domain and capture local feature relationships across various scales, making multi-scale feature 

fusion possible. A PDBS, modeled after the RCE module, is proposed to enhance the 

segmentation of tiny tissue structures [14]. Beginning with global image-level breakdown and 

working its way down to fine-grained, pixel-level characteristics, the PDBS progressively 

directs the network's focus. 

The main objectives of the research work are as follows, 

 The MCPA framework, which uses a unique Cross Perceptron module to efficiently 

integrate global attention and local feature extraction. 

 A PDBS, which is related to the RCE module and increasingly transfers the network's 

training attention to pixel-level, more granular data. This arrangement increases 

segmentation accuracy by including the Cross Perceptron. 

 A variety of medical imaging modalities and datasets, such as CT (Synapse), MRI 

(ACDC), fundus images (DRIVE, CHASE_DB1, HRF), as well as OCTA (ROSE), 

presentation of MCPA network. Results from experiments show that MCPA 

consistently performs enhanced than current 2D segmentation methods based on CNN 

and Transformer. Interestingly, the suggested network preserves a lightweight 

architecture while achieving greater performance, which lowers overall medical 

processing costs and computational complexity. 

Renal segmentation plays a critical role in medical imaging since the kidneys are 

affected by a wide range of diseases, including chronic kidney disease (CKD), cystic injuries, 

tumors, hydronephrosis, and inherited anomalies. Accurate delineation of renal structures in 

CT, MRI, and ultrasound images is important for diagnosis and screening, treatment planning, 

surgical guidance, and therapy monitoring. 

 Related Works 

Res-UNet [10], UNet++ [27], and Eff-UNet [15] are a few of the improved variants that 

were developed over the years to enhance performance as well as efficiency. These variants 

support denser, nested skip connections as well as stronger CNN backbones. The UNet 

architecture [16] with its encoder-decoder structure connected by skip connections for retention 

of geographic information has evolved as a central element in renal medical image 

segmentation. Response Cue Erasing (RCE) was introduced in [17] to solve difficulties in 

segmenting small tissue structures. RCE improves segmentation by removing confident pixel 

areas from the input image according to the output of the main branch, prompting the model to 

concentrate on less confident, often finer areas. One of the limitations of this method is the 
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potential inconsistency between the segmentation results of the main and assist branches, which 

could be caused by the abrupt activation of the RCE mechanism. 

A new split-based coarse-to-fine vessel segmentation network named OCTA-Net was 

introduced in [18], especially designed for OCTA images. This structure provides better 

performance for throughvascular exploration by separately identifying thick and thin arteries. 

While CNN-based UNet representations have demonstrated promising performance across a 

range of segmentation tasks, their inherent use of fixed-size convolutional kernels places a 

ceiling on their ability to process globally informative information and long-range spatial 

interdependence [18]. As a result, their ability to model more extensive feature correlation 

remains constrained. Medical image segmentation has improved dramatically over the past few 

years, with Vision Transformer (ViT) architectures being marked by their capacity to capture 

global context information. 

Hybrid architectures that blend CNNs and Transformers have been the focus of 

researchers in order to benefit from their strengths. In order to capture local and global features 

at the same time, models like TransUNet and HiFormer integrate Transformer components into 

the encoder of CNN-associated UNet models. Likewise, in segmentation tasks, UNETR [19] 

uses a Transformer-related encoder along with a CNN-related decoder. Despite such 

advancements, relying on a simple combination of CNN and ViT components to extract and 

combine both local and global information is still difficult. In order to increase segmentation 

accuracy, TransUNet, for instance, significantly deepened the model, which can lead to less 

informative features in the deeper layers [29].  Pure Transformer-based models have become 

the focus of modern research, which seeks to improve performance by utilizing more complex 

self-attention mechanisms. The Swin Transformer [20] was initially used as the encoder and 

decoder in a UNet-like framework by Swin-Unet [21], allowing for categorized feature 

representation. To further improve segmentation capabilities, MISS Former [6] presents a 

better transformer context bridge made up of particular blocks that are proposed to capture local 

as well as global correlations across multi-scale characteristics. 

A Cross-scale Global Transformer (CGT) is used by C2FTrans [22] to successfully 

capture global-scale dependencies with minimal computational complexity. Ductile high kernel 

consideration, which applies large convolutional kernels to effectively recognize relevant 

information in volumetric records, is introduced by DLKA-Net [23]. Additionally, a number of 

Transformer-based UNet versions have shown outstanding performance in a variety of medical 

image segmentation tasks, including UNETR [7], CoTr [24], nnFormer [25], Scale Former 

[26], DAE Former [27], Trans Deep Lab [28], PVT-CASCADE [29], and LeViT-UNet-384 

[30]. Though the goal of these models is to use self-attention procedures to harness multi-scale 

feature information, they commonly fail to adequately capture the interplay between local and 

global dimensions. There is a lot of room for improving segmentation performance because of 

this limitation. Additionally, many of these networks, like Scale Former [31] and D-LKA Net 

[32], rely on numerous constraints and higher computational complexity in order to extract 

features. They therefore necessitate significant computational and medical resources, which 

might not align with representative financial limitations. 

Existing segmentation methods still have a number of drawbacks despite notable 

advancements. The fixed-size convolutional kernels used by CNN-based U-Net variations limit 

their capability to capture long-range spatial relationships. Although hybrid CNN-Transformer 

approaches improve global context modeling, their performance is frequently subpar due to 

unsuccessful integration of local and global features. Richer global representations are offered 
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by pure transformer-driven designs, but their applicability in clinical contexts is limited by their 

potential to overlook specific local information and their high processing requirements. 

Furthermore, though some approaches (e.g., TransUNet, ScaleFormer, DLKA-Net) enhance 

model complexity or scale, resulting in increased computing costs and poorer interpretability, 

others (e.g., RCE) solve small feature segmentation but risk introducing contradictions. 

Overall, architectures that can efficiently model local as well as global relationships while 

remaining robust across modalities are still needed. 

 Proposed Methodology 

A 2D renal medicinal image segmentation process called the MCPA is illustrated in 

Figure 1. The network encompasses three main components: an encoder, a decoder, and a Cross 

Perceptron module depicted in Figure 2. The encoder is designed to extract rich linguistic 

structures from the input renal image, while the decoder renovates the segmentation mask. 

Particularly, the MCPA framework supports the use of either a CNN or Transformer backbone 

for both the encoder and decoder. In contrast to the original UNet architecture, which uses 

direct skip connections between corresponding encoder and decoder layers, the proposed 

design presents the Cross Perceptron to replace these independent connections, enabling more 

effective multi-scale feature interaction. The goal of this proposed design is to allow the 

network to effectively incorporate multi-scale information by capturing long-range 

dependencies across several feature scales.  

 

Figure 1. Design of Proposed Methodology 



Swapna J., Roselin Kiruba R 

Journal of Innovative Image Processing, September 2025, Volume 7, Issue 3  1064 

 

 

Figure 2. The Architecture of the Cross Perceptron 

A PDBS, based on the RCE module, additionally addresses the difficulties of semantic 

segmentation in renal medical images, particularly those containing fine anatomical 

components, like retinal vascular segmentation in fundus images. The suggested architecture 

has dual parallel branches, each related to MCPA context, to improve segmentation accuracy 

and preserve structural details, as shown in Figure 3. Main branch is designed to perform 

coarse-grained complete segmentation, while the fine branch targets fine-grained, exhaustive 

segmentation. To facilitate active interaction among the dual branches, the RCE module is 

integrated as a communication bridge. Furthermore, during training, a Progressive 

Regularization Loss (PR Loss, denoted as LP), that progressively shifts the learning focus from 

the main branch to the fine branch. This progressive approach enhances the model’s capability 

to capture intricate anatomical details, thereby improving complete segmentation performance. 

 

Figure 3. Overall Architecture of Proposed Progressive Dual-Branch Design 
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3.1 Multi-Granularity Perceptron Attention Framework 

The encoder and decoder in the suggested approach are based on the recently 

extensively used Transformer-based architecture, with the Shunted Self-Attention (SSA) 

network serving as the backbone. SSA presents a Multi-Scale Token Aggregation (MTA) 

process in contrast to conventional Transformers, which use self-attention at a similar scale to 

compute query (Q), key (K), and value (V). This makes it conceivable to extract keys and 

values at different scales, which helps the model preserve detailed tokens for miniature 

structures while combining tokens that belong to enormous objects in an adaptive manner. Each 

of the four stages that make up the encoder and decoder includes a Patch Embedding (for the 

encoder) or a Patch Expansion (for the decoder), which is monitored by a number of SSA 

blocks. 

Using the Patch Embedding process, the input picture (x \in \mathbb{R}^{H \times W 

\times C}) is initially downsampled and then molded into a categorization of compacted 2D 

patches ( x_P ). Three convolutional layers with kernel dimensions of 7, 3, and 2, and strides 

of 2, 1, and 2 are used in Stage 1's Patch Embedding process. In comparison to the original 

renal image, this leads to a four-fold reduction in spatial dimensions. Only a single convolution 

layer with a kernel dimension of 3 is employed in Stages 2-4, and each stage downsamples 

feature maps twice. 

In a similar manner, the deconvolution layers' patch expand function progressively 

returns the feature maps' spatial dimensions to the initial input size in the decoder from Stage 

1 to Stage 4. Decoder Stages 1 through 3 add an additional processing step, where the Cross 

Perceptron module features are concatenated with the output of the patch expand procedure at 

every stage. After that, a linear layer is applied to this combined feature map, halving the 

number of channels. The SSA block then receives the generated features for additional 

processing. MTA gathers appropriate information across multiple scales, permitting the 

network to capture both fine details as well as broad patterns. The SSA Feed Forward Network 

(SSA FFN) applies non-linear transformations to the generated features, refining and improving 

the representations for subsequent layers. Equation (1) defines the attention scores, which are 

then calculated by concatenating the aggregated tensors from several scales. 

Qi = XAiQ 

Ki, Vi = MTA(X,ri)AiK,MTA(X,ri)AiV   (1) 

Vi = Vi + DA(Vi;θ1) 

Here, MTA(X, ri) stands for the MTA layer in the ith attention head, which applies a 

convolutional layer to implement the downsampling rate ri. A depth-wise convolution layer 

parameterized by is represented by DW(⋅). More tokens in the key (K) and value (V) 

illustrations are combined as the value of θ1. As ri grows, this shortens their sequence lengths 

and enhances the model's ability to capture properties of larger-scale objects. Equation (2) then 

formulates the SSA Feed-Forward Network (SSA FFN), applying the output of the SSA 

module. 

x =Linear(a) 

x =Linear(σ(a+ DW(x;θ2)))    (2) 

In this formulation, Linear(⋅) represents a fully connected (linear) layer, and σ() denotes 

the GELU activation function.  For a comprehensive explanation of the SSA mechanism, 

readers are discussed to [18]. To optimize segmentation performance, apply a hybrid loss 
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function that combines Cross-Entropy Loss and Dice Loss, both of which measure the 

inconsistency between the predicted segmentation and the ground truth labels. Overall loss 

function is defined as follows: 

Ltotal = αLCE +(1− α)LDice    (3) 

In this case, the weighting hyperparameter, α, is set to 0.4 as suggested by earlier 

studies. 

Algorithm 1: MCPA + PDBS Training 

Aim: With two parallel branches (Main and Fine) and a Progressive Regularization 

Loss (PR Loss) that progressively aligns the Fine branch to the Main branch, the 

objective is to train MCPA (encoder + Cross-Perceptron + decoder). 

Training set inputs D={(I(𝑖),Y(𝑖))} 

Model parameters: θMCPA, θfine, and θmain 

Batch size B, initial LR 𝜂0, optimizer, and epochs are hyperparameters.  

Emax PR schedule parameters: exponent 𝛼, E1 (end of transition), and E0 (end of 

initial stage). 

Loss weights: any weight for LP (implied via f(E)) and 𝜆 for CE/Dice hybrid (or 𝛼 

previously). 

The following defaults are suggested:  

E_max = 200, E0 = 0, E1 = 50 (tuneable), α = 1 (linear ramp), λ = 0.4, optimizer = 

Adam, optimizer = cosine decay, B = 20, η0 = 1e-4, and scheduler = cosine decay. 

Steps for advanced training (numbered) 

1. Set the MCPA parameters (backbone weights, CPA/M-CPA, G-Perceptron, and 

decoders) to their initial values. Set up the cosine LR scheduler and optimizers.  

2. To Emax for era E=1: 

i. Determine the PR scale factor (E). 

𝑓(𝐸) = {

0, E ≤ E0

(
E − E0

E1 − E0
)𝛼E0 < E < E1

1, E ≥ E1

 

ii. For every little batch of pictures 𝐼 with labels Y: (Main branch employs the 

whole MCPA flow: encoder → MCP/CPA → G-Perceptron → decoder.) Forward Main 

branch:1=Pmain(l; θmain). 

iii. To create modified input used for Fine branch, applies Response Cue Erasing 

(RCE) procedure. Top-k confident pixels from I (those with the highest likelihood in 

1I) are erased using lmod=R(I,I1). 

iv. Moving forward Branch of fineness: I2=Pfine(lmod; θfine) 

(Fine branch: CNN-based alternative, identical MCPA architecture, but with an 

emphasis on fine details.) 

v. Determine the segmentation losses: 

vi. Dice L𝐷𝑖𝑐𝑒(I2,Y) and Cross-Entropy LEC(I2,Y). Decrease in hybrid 

segmentation: Lsc=λLCE(1−λ)L𝐷𝑖𝑐𝑒 

vii. LP=f(E)∥l1−l2∥2 is the progressive regularization loss. 

viii. Loss total: 𝐿=𝐿𝑠𝑒𝑔+𝐿𝑃. 

ix. (If desired, calculate the segmentation loss on both branches and combine; 

𝐿=𝐿main+𝐿fine+𝐿𝑃 is a popular choice.) 
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x. Backward + update: use an optimizer to update after computing gradients with 

respect to 𝜃main and 𝜃fine. Use mixed precision if you'd like 

3. Scheduler step: use cosine decay to update LR. 

4. Checkpoint and validation: assess using the val set (PA, Dice, SE, SP). Save the 

best checkpoint. 

5. Finish the training. 

3.2 Cross Perceptron 

The Cross Perceptron module incorporates data from various spatial resolutions to 

efficiently fuse multi-scale features. Four Cross Perceptron Segments Perceptron 1 through 

Perceptron 4 are used for simulating the local relationships among feature maps at dissimilar 

scales. This improves the final representations by adding more local detail and semantic 

meaning. Inspired by the method [6], it applies a Global Perceptron (G-Perceptron) segment to 

capture global dependencies. This module concatenates and clarifies multi-scale characteristic 

vectors along spatial dimensions for thorough context modeling. 

Attention(Q, K,V) = softmax(QKT/√ dk )V   (4) 

where 𝐾𝑇 is transpose of K as well as 𝑑𝑘 is dimensionality of attention heads. 

The central element of Perceptrons 1 through 3 is the Cross Perceptron Attention (CPA) 

module. Two inputs are established by the CPA module: one from the output of the associated 

encoder stage and the other from a preceding Perceptron or a lower stage. A linear layer 

processes each input independently to produce the value (V), key (K), and query (Q) 

projections. The Multi-Head Cross-Attention (MHCA) mechanism then uses these projections 

to calculate attention values among Q, K, and V that come from various sources. A Typical 

self-attention formulation is used for the attention computation. 

Sequence lengths vary in this research because the inputs to the CPA module are derived 

from encoder outputs at different stages or from other MCP modules. In order to calculate 

cross-attention values (as explained in Equation (4)), it is necessary to align the sequence 

lengths of the output features 𝑄, 𝐾, as well as 𝑉. According to Table 1, 𝑄, 𝐾, and 𝑉 inside every 

CPA segment (from Perceptron 1 to Perceptron 3) are given particular sequence lengths in 

order to strike a balance between computing efficiency and accuracy. 

Within the same MCP, it is critical that the length of 𝑄 stays the same for every CPA 

module. On the other hand, 𝐾 and 𝑉 can have the similar length (as in Perceptron 1) or different 

lengths (like in Perceptrons 2 and 3). The outputs of several CPA modules are concatenated 

within each MCP module, and their dimensionality is further reduced by passing them via a 

Linear Layer. The output will match the unique feature dimensionality of the appropriate 

encoder step. The Feed-Forward Network (FFN) module subsequently performs additional 

processing on the output. The following is a mathematical definition of the entire FFN 

operation: 

Xi = Xi∗+Linear(σ(Linear(Xi∗)))     (5) 

where X𝑖∗ indicates the FFN's input and X𝑖 stands for its output. It should be noted that 

the FFN's output preserves the same dimensions as its input. In particular, the outputs of the 
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FFN for the second, third, and fourth stages are represented by the symbols X2, X3, and X4, 

accordingly. 

Replace the CPA module in Perceptron 4 with a Modified Cross Perceptron Attention 

(M-CPA) segment to further enhance   performance. The M-CPA uses a MTA component to 

offer multi-scale K and V representations, just as the SSA design does. The Q, K, and V 

sequence length combinations of Perceptron 4's M-CPA are also considered.  Furthermore, 

features from two adjacent scales are concatenated to generate each M-CPA input. For example, 

F1 and F2 are concatenated to produce F12, and F3 and F4 are combined to form F34. The 

following is a formal definition of the operation: 

F12=Remodel(F1[−1,C1]) cRemodel(F2[−1,C1]) 

F34= Remodel(F3[−1,C1]) cRemodel(F4[−1,C1])          (6) 

Here, the channel depth is denoted as 𝐶1. Proportions of 𝑄, 𝐾, and 𝑉 are modified 

appropriately since every input to the M-CPA is created by adding two feature maps. As shown 

in Table 1, the channel diameters of 𝑄, 𝐾, and 𝑉 are significantly compacted to 32 in order to 

diminish computing overhead. The channel complexities of F12 and output F34 from 

Perceptron 4 are the same. The G-Perceptron module receives these two features concatenated. 

SSA is applied to the combined feature first. An SSA-FFN is used to expand feature 

representation after paying attention to capture dependencies. Four features F1, F2, F3, and F4 

are produced when the feature encoding of global dependencies is finally divided according to 

the original channel order. 

The scales F1, F2, F3, and F4 are consistent with these characteristics, as are G-

Perceptron's Q, K, and V sequence lengths. Through the integration of global features and 

efficient global dependency modeling, the G-Perceptron enhances model performance by 

implementing multi-head attention throughout the global characteristic space. 

3.3 Progressive Dual Branch Design 

A PDBS related to MCPA aims to improve segmentation performance for medical 

images by utilizing delicate tissue features, such as retinal blood vessels in fundus images. The 

Main Branch and Fine Branch are two components of PDBS, which uses MCPA as the 

backbone network, as shown in Figure 3. It should be noted that the majority of current methods 

for segmenting these complex structures are typically CNN-based. This inclination most likely 

results from the comparatively little investigation of Transformers in this field, which has been 

encouraged by concerns about how well they can capture fine-grained local features. 

Therefore, a CNN-based MCPA is created in addition to using the Transformer-based 

MCPA architecture outlined in Section 3.1 to replace the Transformer-based modules. While 

the Fine Branch is intended to capture fine-grained features in medical images, the Main Branch 

is responsible for segmenting large-scale regions. Both branches follow the design principles 

commonly used in architectures such as UNet by employing CNN-based architectures for their 

encoders and decoders. An RCE module is provided to facilitate resourceful cooperation 

between the two branches. By connecting the Main Branch output to the Fine Branch input, 

this module allows the Main Branch segmentation cues from training to directly inform the 

Fine Branch. The input renal image and the accompanying ground truth label are designated. 

A segmentation map I1 is generated following processing by the Main Branch's MCPA module. 



Renal Medical Image Segmentation using Cross-Perceptron Deliberation and Multi- Scale Feature Fusion 

 

 

ISSN: 2582-4252  1069 

 

Large blood vessels and other perceptible tissue features in retinal images are disregarded from 

the original renal image using the RCE module. The Fine Branch then uses the resulting image 

to focus its training on capturing finer tissue details, such as retinal vessels. A detailed portrayal 

of this entire technique may be found in: 

I1=PMain(I,θ1) 

I2=PFine(R(I,I1),θ2)     (7) 

In this case, () stands for the RCE module, and PMain and PFine consistently refer to 

the Main Branch and Fine Branch, respectively. θ1 and θ2 characterize the parameters of these 

two networks. In particular, from the Main Branch's output, the top k pixels with the extreme 

confidence ratings are selected. Large-scale tissue features that are relatively simple to 

distinguish throughout the renal image are characterized by these high-confidence pixels. Input 

I for the Fine Branch is created using the remaining pixels. A revised feature map I2 is then 

generated by passing this transformed renal image to the Fine Branch network, which 

emphasizes segmenting larger tissue structures with more complicated characteristics. In order 

to execute similarity among the outputs of the Main Branch and the Fine Branch, we adopt a 

stability loss, denoted as ∥𝐼1−𝐼2∥2, based on the regularization loss suggested in [26]. This 

promotes alignment between the two branches, establishing the network's overall resilience. 

However, the Main Branch's segmentation output might not be at its best in the early training 

phases when the model is still not fully tuned. As a result, employing this output to guide the 

Fine Branch may not only be ineffective but also hinder training, which would prevent the 

network from achieving optimal performance. 

To solve this problem, the training procedure is divided into three separate stages, each 

of which is governed by the regularization loss: the initial, evolution, and final stages. A 

Progressive Regularization Loss (PRLoss, 𝐿𝑃) is employed to help the Main Branch and the 

Fine Branch align seamlessly and efficiently. Throughout training, this loss function 

progressively reduces the difference between the outputs of the two branches, encouraging 

consistency and avoiding negative transmission in the early stages.  

Lp=f(E)·( I1−I2 2)     (8) 

Let (E) be a transformation function that increases monotonically and is reliant on the 

training epoch E. The beginning and ending epochs of the transition stage are characterized by 

the two hyperparameters, (E0) and (E1), respectively. The countenance for the function (E) is: 

𝑓(𝐸) = {

0, E ≤ E0

(
E−E0

E1−E0
)𝛼E0 < E < E1

1, E ≥ E1

    (9) 

In particular, only the Main Branch is engaged throughout the first training phase 

(E≤E0), when (E0)=0. For large-scale tissue structures, this permits the model to learn coarse 

segmentation results quickly. The regularization loss is not applied at this time, and the Fine 

Branch is still dormant. In order to ensure stable and efficient meeting, the transition stage 

(E0<E<E1) should only necessitate modest feature weight adjustments rather than important 

updates due to the non-convex structure of the loss function. 

In the meantime, the function (E) steadily and smoothly rises from 0 to 1, signifying the 

Fine Branch's slow activation and the associated loss of regularization. This design facilitates 

a gradual shift in training focus to the trickier fine tissue segmentation task. A progressive 
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hyperparameter α, controlled by power law function is added to further stabilize training 

process. Interestingly, f(E) exhibits linear development when α=1. 

To optimize segmentation performance, full Progressive Dual branch Arrangement as 

well as the full regularization cost are used in the last training stage (E≥E1), where (E1)=1. 

Consequently, Equation (3) is replaced with the updated total loss 𝐿 as follows: 

Ltotal = λLCE +(1−λ)LDice + LP    (10) 

In this case, 𝜆 is a weighting hyperparameter that was premeditated using the rules. 

 Experimental Results and Discussion 

4.1 Experimental Setup 

 

 

Figure 4. Different Dataset Classification 

The effectiveness of the proposed Transformer-related segmentation framework 

employing the PDBS was assessed through experiments conducted on the ROSE dataset. The 

dataset comprises 1,077 high-resolution medical images with annotations of characteristics of 



Renal Medical Image Segmentation using Cross-Perceptron Deliberation and Multi- Scale Feature Fusion 

 

 

ISSN: 2582-4252  1071 

 

fragile tissue, such as renal vessels. The dataset is divided into 70% of the data for training, 

15% for validation, and 15% for testing. Figure 4 lists the photos from the varied dataset. 

Following its PyTorch implementation, the model was proficient on an NVIDIA RTX 

3090 GPU using the Adam optimizer, a batch size of 20, and an initial learning rate of 1×10⁻⁴. 

A cosine decay schedule was used to dynamically alter the learning rate during training. The 

network was trained over 200 epochs to ensure   convergence. Xavier (Glorot) activation was 

utilized to weight layers permitting robust gradient transmission, and regularized dropouts were 

incorporated into the network to enhance applicability as well as consistency. A data 

augmentation pipeline was also utilized to improve resilience to retinal structural heterogeneity 

and overfitting. In order to simulate various imaging situations, enhancement process 

encompassed random flips in the vertical and horizontal directions, varying contrast and 

brightness modifications, and elastic distortions. 

4.2 Quantitative Results 

The conditions used to estimate the analysis of the suggested models were Pixel 

Accuracy (PA), Dice Coefficient, Sensitivity (SE), and Specificity (SP). The proposed method 

using several segmentation models. Table 1 presents a numerical assessment of the 

segmentation performance of different approaches. 

Table 1. Quantitative Comparison of Segmentation Performance on ROSE Dataset 

Method Pixel Accuracy 

(%) 

Dice Coefficient (%) Sensitivity (%) Specificity (%) 

CNN 87.7 80.4 83.4 86.7 

3D-CNN 89.4 83.8 85.4 81.1 

SCNN-ResNet 92.1 79.6 82.2 83.4 

GAN 95.7 85.9 86.2 89.4 

Ours (PDBS) 96.8 88.6 89.1 91.2 

 

Figure 5. Segmentation Performance on the ROSE Dataset 
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i. Accuracy of Pixels (PA) 

Pixel accuracy is the proportion of appropriately classified pixels in the entire image. 

The proposed PDBS method achieves 96.8% accuracy, which is better than both traditional 

CNN (87.7%) and even GAN established methods (95.7%). Figure 6 illustrates that PDBS has 

exceptional segmentation competence overall. 

 

Figure 6. Pixel Accuracy of Compared Methodologies 

Pixel accuracy of compared methodologies is shown in figure 6. The Pixel Accuracy 

statistic appraises the proportion of correctly identified pixels in the entire image. Permitting 

outcomes, CNN's 87.7% baseline accuracy is rather low due to its limited capacity to capture 

complex contextual relationships. CNN-ResNet recognises superior contextual responsiveness 

at 92.1% by using spatial connection; 3D-CNN improves by 89.4% by adding volumetric 

information, but it still struggles with fine structures. GAN-based separation influences 95.7% 

through use of adversarial learning, which makes separation outputs more accurate. Proposed 

method PDBS accomplishes maximum pixel accuracy of 96.8%, demonstrating the efficiency 

of combining transformer related context modeling, cross attention, and an enlightened dual 

branch design. 

ii. Coefficient of Dice  

The Dice score reflects the overlap among predicted and ground-truth segmentations. 

A higher Dice value indicates improved performance. PDBS again wins with 88.6% when 

compared to CNN at 80.4% and SCNN-ResNet at 79.6%, indicating superior segmentation 

quality, particularly in capturing insignificant tissue characteristics. 

iii. Recall Sensitivity  

Sensitivity quantifies a model’s capability to accurately distinguish separated zones, or 

true positives. PDBS can accumulate the most relevant features with a high sensitivity of 89.1% 

without missing any important sites. In medical imaging, false negatives can be quite damaging, 

subsequently this is crucial. 
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iv. Particularity  

The specificity of a model limits its competence to avoid false positives. Here, the 

PDBS technique also scores the highest at 91.2%, indicating that it effectively avoids 

incorrectly classifying inappropriate background regions as target structures. The proposed 

PDBS architecture constantly outperforms conventional and deep learning related 

methodologies across all criteria. 

4.3 Ablation Study 

Figure 7 displays the dice coefficient as well as the sensitivity of ablation studies that 

gradually delete modules in order to investigate the contributions of various components in the 

proposed system. 

Table 2. Ablation Research Demonstrating Each Suggested Modules Input 

Model Variant Dice (%) Sensitivity (%) 

Baseline SSA + 

Transformer only 

84.5 85.2 

+ Cross Perceptron 

Attention (CPA) 

86.0 86.8 

+ Modified CPA (M-CPA) 87.1 88.0 

+ G-Perceptron 87.8 88.5 

+ Progressive Dual-Branch 

(PDBS) 

88.6 89.1 

 

Figure 7. Dice Coefficient and Sensitivity 

4.4 Qualitative Findings 

Figure 5 shows sample qualitative assessments of segmentation masks created by 

different models. The suggested technique produces more determined and transparent vascular 

structures, especially for insignificant capillaries. 
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4.5 The Efficacy of Progressive Loss 

To verify the efficiency of the proposed Progressive Regularization Loss (PR Loss), 

models trained with and without it were compared. Figure 8 illustrates how training curves 

exhibit more trustworthy and seamless convergence with PR Loss. 

 

Figure 8. Effect of Progressive Regularization 

 With PR Loss: The curve demonstrates a steadier and smoother rise in performance, 

indicating dependability brought about by the Fine Branch’s regular alignment. 

 Without PR Loss: The performance plateaus earlier and develops more deliberately, 

suggesting that the Fine Branch struggles when it is impulsively focused by raw Main 

Branch outputs. The effectiveness of the enlightened training approach in improving 

fine-grained segmentation is amply demonstrated in Figure 9. 

 

Figure 9. Ceoss-Entropy Convergence 

 With PR Loss: The loss drops more promptly and steadily, suggesting that the model 

benefits from more continuous regulation and avoids initial misdirection. 

 In the absence of PR Loss: The slower and less effective convergence is affected by 

an initial requirement on the Main Branch. This further illustrates how the Progressive 
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Regularization Loss enhances training stability, convergence speed, and segmentation 

accuracy. 

 Conclusion 

We showed an MCPA with a PDBS to achieve accurate and reliable 2D medical image 

segmentation. In order to accurately capture fine-grained anatomical structures and long-range 

dependencies, the framework proposed here combines global context modeling and multi-scale 

local feature extraction. PDBS significantly improves segmentation quality by iteratively 

refining the accuracy of structural representations from coarse to pixel-level. Experiments on 

publicly accessible datasets on various imaging modalities, such as MRI, CT, fundus 

photography, and OCTA, consistently show that our algorithm outperforms state-of-the-art 

methods in terms of segmentation accuracy and structural coherence. Because of its wide use 

and high clinical employability, it is the best choice for a variety of clinical imaging 

applications. Light-weight implementations that can be applied in real-time clinical use will be 

explored, and this system will be extended to 3D volumetric segmentation in the future. 
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