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Abstract   

The most pivotal condition affecting human health is cardiac disease (CVD). Early 

detection of CVD can help prevent or mitigate its impact, potentially lowering mortality rates. 

Machine learning models are employed to identify CVD risk factors. To enhance CVD 

detection, we propose a robust framework by utilizing a variety of feature selection techniques 

to identify key predictive traits, using K-Fold cross-validation to prevent overfitting and model 

selection, and applying several novel ensemble classification methodologies. Real-time data 

were collected from a private hospital in Salem, and benchmark combined datasets were used 

for cardiovascular disease detection. A feature-type-based technique is used for handling 

missing values, and the Z-score technique is utilised for outlier handling. The SMOTE method 

is used to balance the imbalanced class. Three feature selection techniques, i.e., Pearson 

Correlation Coefficient, Recursive Feature Elimination, and Random Forest Feature 

Importance, are used to select the best attributes. Innovative ensemble classifiers like Bagging-

Boosting Stacked Ensemble (BBSE), Heterogeneous Soft Voting Ensemble (HSVE), Feature-

Augmented Heterogeneous Stacking (FAHS), Heterogeneous Bootstrap-Ensemble (HBE), and 

Heterogeneous Sequential Boosting (HSB) are created by combining multiple classifiers. The 

confusion matrix, accuracy, F1 score, recall, precision, and ROC were employed to measure 

performance. In a real-time medical dataset, the FAHS scored the highest accuracy of 92.18% 

without feature selection and the K-Fold CV methods. After applying the attribute selection 

methods and the K-fold CV approach, the FAHS model with the random forest feature 

importance technique scored the highest accuracy of 96.09%. In the benchmark dataset, FAHS 

scored the highest accuracy of 88.67% without feature selection and K-Fold CV. After applying 

the feature selection approaches and K-fold CV technique, the FAHS classifier with the random 

forest feature importance strategy scored the highest accuracy of 94.09%. Cardiovascular 

disease is a major global health problem, requiring correct and early detection. This study 

assesses different AI models, including FAHS, HSB and blended architectures, on a real- world 

medical dataset. The experimental output describes that the hybrid FAHS type exceeds 

traditional classifications, achieving 96.8%validity, 95.5% precision, 96.2% recall, and an 

AUC of 0.97. These findings illuminate the potential of ensemble learning frameworks to 

enhance predictive interpretability, accuracy, and scalability in CVD detection for practical 

healthcare implementation.  In the real-time dataset, accuracy was improved from 92.18% to 

96.09%. On the benchmark dataset, accuracy was improved from 88.67% to 94.09%. The 

random forest feature importance method with the FAHS combination scored the highest 
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accuracy on both datasets. The outcomes are shown individually to provide comparisons. We 

may conclude from the outcome analysis that our suggested models provided the highest 

accuracy. In the future, these models will be very beneficial in detecting CVD with high 

accuracy. 

Keywords: Cardiovascular Disease, Feature Selection, K-Fold Cross-validation, Feature-

Augmented Stacking, Sequential Boosting. 

 Introduction 

Because of its high prevalence and death rates, cardiovascular disease (CVD) continues 

to be one of the major global health threats, severely affecting healthcare systems. The World 

Health Organization (WHO) estimates that CVD causes 17.9 million deaths a year, or nearly 

one-third of all deaths worldwide, with that number expected to reach 30 million by 2040 [1-

4]. Although cardiovascular problems are most prevalent in middle-aged or older men, research 

indicates that they can also affect younger people, underestimating their widespread impact [5-

8]. 

Risk factors for the detection of CVD, such as gender, age, type of pain, blood pressure, 

heart rate, blood sugar, exercise, diet, and family history, must be investigated quantitatively 

[9]. To achieve promising detection accuracies, the current final works have applied machine 

learning (ML) and its types, such as decision trees and support vector machines, to these 

challenging indicators [10–13]. However, the majority of earlier methods are frequently limited 

by the interpretability of features, imbalanced datasets, and inability to scale across different 

populations. 

This study is innovative because it goes beyond traditional machine learning-based 

detection frameworks by utilizing ensemble learning architecture that can extract complex and 

non-linear relationships from clinical and lifestyle data. Aside from earlier approaches that 

mainly respond to cross-domain validation, real-world applicability, and handcrafted attribute 

extraction, this study highlights which architectures are better at generalizing to diverse 

populations by comparing evaluations of several AI models. The proposed framework aims to 

close the gap between theoretical detection models and real-world, scalable healthcare 

applications by combining interpretability mechanisms and placing a strong emphasis on 

deployment feasibility. 

1.1   Cardiovascular Disease Types 

Few types of CVD types: 

• Coronary artery disease (CAD): Heart blood vessel blockage. 

• Hypertension: Blood pressure. 

• Heart failure: Weak heart can’t inject blood.   

• Arrhythmias: Uncommon types of heartbeats. 

• Stroke: Disturbance of brain blood function.   

• Peripheral Artery Disease (PAD): Blood vessel narrowing in the extremity. 

• Congenital Heart Defects: Heart defects that occur at birth. 

• Rheumatic heart disease: Rheumatic fever-induced valve decline. 

• Cardiomyopathy: Heart’s muscles are weak. 

• Aortic dissection or aneurysm: Ruptured aorta or a weak.  
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• Venous Thromboembolism (VTE): Clots in the veins or lungs. 

• Endocarditis: If heart inner layer affects mean heart will be infected 

1.2   Research Contribution 

   The following are a few of the research's main contributions: 

• Real-time and benchmark datasets are used for detection. 

• Pre-processing data by eliminating redundant information, handling missing data 

and outliers, and class balancing. 

• Identify the most essential attributes to detect CVD. 

• Identify the best feature selection method. 

• The 5-fold CV technique is used to address overfitting issues. 

• Combining bagging and boosting strategies with traditional models for effectively 

classifying disease. 

• Identify the best classification method. 

• Improving old manual systems. 

• Improving accuracy. 

• Enhancing effectiveness and efficiency. 

• The proposed framework's outcome is evaluated against the outcomes of the 

previous studies. 

Lack of Real-Time Data and Imbalance 

Traditional ML models require large, high-quality labeled datasets and often perform 

poorly on imbalanced clinical data, leading to the misclassification of high-risk patients. 

Limited Interpretability 

Many existing ML approaches act as “black boxes,” making it difficult for clinicians to 

understand or trust predictions. 

Sensitivity to Noise and Non-Linearity 

Conventional models may fail to capture complex, non-linear interactions among risk 

factors and are often affected by missing or noisy data, reducing their reliability in real-time 

clinical applications 

 Literature Survey 

This work [6] developed a new diagnostic method using the Cleveland dataset from the 

UCI repository. Once missing values were handled, the DT, SVM, RF, and KNN were used for 

classification. The KNN achieved a maximum accuracy of 87%. R. Aggrawal et al. [8] 

described a sequential feature selection strategy for detecting mortality events in heart disease 

patients. Several machine-learning techniques were used, including KNN, RF, SVM, DT, and 

GBC. According to the outcomes, the random forest classifier scored the highest accuracy of 

86.67% with the K-fold CV and sequential feature selection approach. 
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Spencer et al. [14] used four alternative feature selection methods to forecast heart 

disease: principal component analysis, ReliefF, Chi-squared testing, and symmetrical 

uncertainty. The highest accuracy of 85.0% was observed when the Chi-squared variable 

selection was integrated with the Bayes net classifier and 10-fold CV technique. Takci [15] 

employed four optimal variable selection techniques and twelve classification techniques from 

various categories to determine cardiac attacks. Without variable selection, the highest 

accuracy value was 82.59%, and with variable selection, it rose to 84.81% using naive Bayes 

and linear SVM. 

The Framingham Heart Disease and CVD datasets were used for HD analysis [17]. 

Important traits were chosen using the ANOVA-F test. When using all features, the Perceptron 

model had the highest accuracy on the CVD dataset (0.73), and the Linear SVC model had the 

highest accuracy on the Framingham dataset (0.66). After feature selection was applied, the 

accuracy increased to 0.74 for the CVD dataset using SVC and to 0.71 for the Framingham 

dataset using Perceptron. Akua Sekyiwaa et al. [18] used various machine learning methods to 

forecast cardiac disease. They applied models such as KNN, SVM, Logistic Regression, and 

ANN to the UCI combined heart disease dataset. They tuned the models using GridSearchCV. 

The KNN provided the highest accuracy of 87% among these. 

Snigdha Datta [19] used a logistic regression model to predict cardiac disease. The UCI 

Heart Disease data was used in the study to make predictions. The model was validated using 

10-fold cross-validation to ensure consistent and trustworthy outcomes. To find significant 

features, the author additionally employed tests such as the Wald and Likelihood-Ratio. The 

accuracy of the logistic regression technique was 81%. Using the 303 records in the Cleveland 

dataset, Abdar [20] discovered an enhanced decision tree approach that may be used to derive 

rules for prognosticating heart problems, CAD, and CVD. They proposed a C5.0 method with 

an accuracy of roughly 85.33%. The most recognized factors for forecasting heart disease is a 

mixture of characteristics, including trestbps, restecg, thalach, slope, oldpeak, and cp. This 

model could be utilised to determine the variables affecting heart patients. 

2.1   Research Gap 

The following significant research gaps have been found in the field of CVD detection 

based on the examined literature: 

• The research gap in cardiovascular disease detection is that the availability of real-

time datasets is limited, and the accuracy needs to be enhanced.  

• Algorithm selection also plays a vital role in cardiovascular illness detection.  

• The following advanced ensemble methods are still not well studied in CVD 

detection:  

1. Feature-augmented stacking with various models to improve feature 

learning. 

2. Sequential boosting with various models to improve prediction 

refinement. 

3. Bootstrapped ensembles using mixed models for improved accuracy and 

stability. 

4. Combining bagging and boosting techniques to take advantage of both 

variance and bias reduction strengths. 
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This study fills these gaps by proposing a unique paradigm that aims to improve CVD 

detection accuracy and reliability. 

 Proposed Workflow 

 

Figure 1. Novel CVD Detection Framework 

The method of differentiating the work by integrating feature selection with a different 

ensemble learning framework is mainly distinguished for cardiovascular disease (CVD), 

increasing both predictive accuracy and clinical interpretability. Learning is easier when relying 

on a single crispification of generic ML models. This model describes different types of 

beginners with a meta-learner to uncover the complex nonlinear relationships through the 

clinical factors. The content utilized comprises real-time tolerant records, including lifestyle 

differences, medical variables, and demographics, to facilitate robust evaluation across diverse 

cardiac profiles and demonstrate superior performance compared to existing methods. 

Figure 1 depicts the flow of CVD detection strategies. The first step is collecting 

cardiovascular disease data. After collecting the data, the next stage is preprocessing, which 

includes data cleaning, imputation, outlier handling, encoding, normalization, and class 

balancing. The best features are then chosen using feature selection techniques. Later, RF, 

Boost, BBSE, HSVE, FAHS, HBE, and HSB are applied for CVD detection with the K-fold 

CV technique.  After using these algorithms and strategies, we compare the outcomes and 

present our conclusions. This framework initially performs detection without variable selection 
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and K-Fold CV, and then it performs detection with variable selection and K-Fold CV. This 

research explores the impact of the attribute selection strategy, K-Fold CV approach, and 

ensemble classification methods on improving cardiovascular disease detection. 

3.1   CVD Dataset 

The first step in this investigation is collecting both real-time data and open-source UCI 

cardiovascular disease data. For the real-time data, patient details were collected from a private 

hospital in Salem. For the benchmark dataset, combinations of five different datasets are used 

for cardiovascular detection. 

3.2   Data Preprocessing 

It is impossible to directly develop machine learning models from real-world data, 

which typically contains noisy information and missing values and may be in an unfavorable 

format. Data preprocessing improves a machine learning technique's accuracy and efficiency. 

It is necessary to clean and prepare the data for the model. 

3.2.1   Data Cleaning 

The main motive is to upgrade the standard and dependability of the data, ensuring that 

it is precise, consistent, comprehensive, and appropriate for modeling, or decision making. In 

this research, data cleaning was done to find and fix mistakes, inaccuracies, invalid entries, 

inconsistencies, and unnecessary portions of the data. As a result, the data quality is increased, 

enhancing its utility. In this study, data cleaning was done to find and fix mistakes, 

inconsistencies, inaccuracies, duplicate entries, and unnecessary portions of the data. As a 

result, data quality is enhanced, increasing its utility. 

3.2.2   Handling Missing Values 

 

Figure 2. Imputation Pseudocode 

Dealing with missing values involves handling incomplete or missing data points in a 

dataset. Various factors, including human mistakes, system faults, and problems with data 
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collection, can cause missing values.  Many machine learning algorithms cannot directly handle 

missing data; hence, it is crucial to manage them correctly. This study employs a feature-type-

based methodology to handle missing values (Fig. 2). 

The most prevalent value fills in the missing binary values. Data consistency is 

maintained by substituting the median for numerical missing values and "Others" for 

categorical ones. These imputations guarantee appropriate management while preserving the 

integrity of the dataset. 

3.2.3   Handling Outliers 

Outliers are unusual data points that significantly depart from the norm. They can be 

much higher or lower than most other values and often stand out as anomalies or extreme 

values. Handling outliers is crucial for improving model accuracy, data quality, and the validity 

of insights derived from the data. To preserve data integrity, numerical outliers are detected 

using the Z-score approach and replaced with the median of non-outliers. The z-score is a 

statistical metric for detecting outliers within a dataset by quantifying how far away a data 

instance is from the mean. 

3.2.4   Encoding 

Encoding, in data preprocessing, refers to transforming categorical data into a number-

based format that models can use efficiently. This conversion is essential because many 

machine learning models need numerical data for prediction. In this study, target encoding is 

used to encode the categorical data. Target encoding with cross-validation is a leakage-free 

technique for encoding categorical variables that substitutes the target variable's mean, which 

is calculated solely from the training fold and not the row itself for each category. 

3.2.5   Data Normalization 

In data analytics, data normalisation is a pre-processing method that scales and 

transforms data into a consistent range or distribution. It ensures that no feature overshadows 

any other, regardless of scale or importance. In this work, normalisation is done via min-max 

scaling. The min-max scaling feature scaling approach converts the features to a specific range, 

usually 0 to 1. 

3.2.6   Class Balancing 

Class balancing is resolving imbalanced datasets in which the number of samples in one 

or more classes is substantially less than in the other class (es). It aims to provide a roughly 

equal distribution of samples across all classes in the dataset, which improves machine learning 

models' performance by minimising bias towards the majority class. In this research, the 

Synthetic Minority Oversampling Technique (SMOTE) is applied for class balancing.  

SMOTE is a data augmentation method that creates synthetic samples for the 

underrepresented class to balance unbalanced datasets. It generates new data points by 

interpolating current minority class samples and their closest neighbors. 

d = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1       (1) 
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Where: 

• The Euclidean distance between the two points is denoted by d (Eq. 1). 

• n is the number of dimensions. 

• The coordinates of the two points in each n dimension are denoted by xi and yi. 

A lower Euclidean distance indicates that the two points are more comparable since 

they are closer. A smaller Euclidean distance between neighbors produces synthetic samples 

that are more accurate because they are closer to the original data point. 

3.3   Feature Selection 

An attribute is one that either makes the problem harder to solve or makes it easier. 

Variable selection is the process of choosing essential traits for the model. By using the most 

important data, feature selection can limit the predictors for the model and help prevent high 

variance problems. The filter-based method determines the score derived from statistical 

measures and their dependence on the class label for each characteristic [14, 15, and 21]. The 

wrapper approaches utilize a particular learning algorithm to identify the characteristics best 

suited for a given dataset. Embedded feature selection picks key characteristics during model 

training. The benefits of filter and wrapper approaches are combined in the embedded 

technique. This research employs filter, wrapper, and embedded predictor selection approaches 

to find the most crucial characteristics. 

3.3.1   Pearson Correlation Coefficient Method 

The Pearson correlation coefficient method is a filter-based variable selection 

technique. The relationship between the continuous attributes and the class feature is 

discovered using the pearson correlation approach. Its value falls between -1 and 1, where a 

total negative linear correlation is denoted by -1, no correlation is denoted by 0, and a total 

positive correlation is denoted by +1. 

Steps of the Pearson Correlation Coefficient Method 

Step 1: Calculation of Variable Means: The Pearson correlation method's initial action is to 

discover the mean of each variable (X, Y) separately (Equation 2) 

𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 , 𝑦̅ =

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1      (2) 

Step 2: Computation of the Covariance Component: For the numerator, the sum of the products 

of the deviations of each sample from their respective means was computed (Equation 3). 

∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛
𝑖=1      (3) 

Step 3: Standard Deviation Calculation for Variables: The denominator was then determined 

by taking the square root of the total of the squared deviations for each variable from its mean 

(Equation 4). 

√∑ (𝑥𝑖 − 𝑥̅)𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1
2

    (4) 

Step 4: Computation of Pearson's Correlation Value: The Pearson correlation coefficient, 

calculated by dividing the numerator by the denominator and yielding a number between -1 
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and 1 (Equation 5), shows the strength and direction of the linear relationship between X and 

Y. 

𝑟 =
𝑁𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟

𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟
     (5) 

Here, r: Pearson correlation coefficient. xi: Value of the ith data instance of feature x. yi: 

Value of the ith data instance of the target feature y. 𝑥̅: Mean of the values in x. 𝑦̅ ∶ mean of the 

values in y. n: Number of data instances. 

3.3.2   Recursive Feature Elimination (RFE) 

The recursive feature elimination is a wrapper-based attribute selection method.  

Recursive feature elimination involves iteratively fitting a model and eliminating the least 

important attributes according to the model's coefficients or variable relevance values. The RFE 

can lessen overfitting and enhance the model's generalisability by removing superfluous or 

unnecessary features.  

Steps of RFE 

Step 1: Train SVM Model: Using every feature in the CVD dataset, a linear Support Vector 

Machine was trained. The decision-making function is (Equation 6): 

                           f(x) = wT x + b                   (6) 

Where: 

• w = feature coefficients (weights) 

• x = input features 

• b = bias 

Step 2: Calculate Feature Importance: The absolute value of each feature's coefficient indicates 

how important it is (Equation 7): 

                                                     Importancei = ∣wi∣                                 (7) 

Where wi is the coefficient of the ith feature. 

Step 3: Rank Features:  Every feature was rated according to its determined importance scores. 

Step 4: Remove Least Important Feature: The feature that received the lowest significance 

score was removed. 

Step 5: Retrain and Repeat: Steps 1 through 4 were repeatedly performed until the desired 

number of characteristics remained. 

3.3.3   Random Forest Feature Importance (RFFI) 

Random Forest Feature Importance is an embedded attribute selection technique. To 

assess a feature's importance, each tree in the random forest can use its potential to increase the 

purity of its leaves. 
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Steps of RFFI 

Here is a detailed explanation of the Gini-based feature importance computation that 

the random forest truly employs. 

Step 1: Impurity Calculation for Parent Node:  Before the split, the parent node's Gini impurity 

was calculated (Equation 8). 

The ΔGini indicates how much the split reduced the impurity 

𝐺𝑖𝑛𝑖 (Parent)  =  1 − ∑ 𝑃𝑖
2𝑐

𝑖=1
    (8) 

Where: 

• The number of classes is C. 

• Pi is the likelihood that an observation belongs to class I. 

Step 2: Calculating Subnode Impurities After Split: The Gini Impurity for the left and right 

immediate subnodes was then computed after the data were divided using a feature (Equation 

9). 

𝐺𝑖𝑛𝑖 (Node)  =  1 − ∑ 𝑃𝑖
2𝑐

𝑖=1
    (9) 

Step 3: Calculating Weighted Gini Impurities: Using weights determined by the number of 

samples in each child node, the weighted sum of the Gini impurity of the immediate subnodes 

was calculated (Equation 10). 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐺𝑖𝑛𝑖 =  
𝑁1

𝑁
 𝐺𝑖𝑛𝑖 (𝑁𝑜𝑑𝑒 1)  +  

𝑁2

𝑁
  𝐺𝑖𝑛𝑖 (𝑁𝑜𝑑𝑒 2)  (10) 

N1: The count of samples in Node 1 after the split. 

N2: The count of samples in Node 2 after the split. 

N: The overall count of samples in the parent node before the split (N=N1+N2). 

Step 4: Calculation of Impurity Reduction: Lastly, the reduction in impurity, ΔGini, was 

obtained by subtracting the weighted total of the Gini impurity of the direct subnodes from the 

Gini impurity of the parent node (Equation 11). 

𝛥Gini = Gini before split  - Gini after split    (11) 

Step 5: Feature Importance Aggregation: 

Feature Importance =∑(ΔGini for each node where features are used) (12) 

Add all the feature's Gini Impurity (ΔGini) reductions across all tree splits to determine 

its importance (Equation 12). 

3.4   K-fold Cross-validation Technique 

Cross-validation is a statistical technique utilized to evaluate a predictive model's 

performance and estimate its test error to improve generalization. The concept of cross-
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validation is to divide the sample into several sets. There are numerous varieties of cross-

validation. This research uses a K-fold cross-validation approach to validate the results. The K-

fold cross-validation method divides the dataset into K folds. Every iteration uses K-1 folds for 

training, while the remaining fold is used for validation. By iterating this procedure K times, 

each data point is guaranteed to appear exactly once in a validation set. In this study, 5-fold 

cross-validation is used to reduce overfitting. 

Five-fold Cross-validation Steps 

Step 1: The training dataset is divided into five equal subsets (folds): f1, f2, f3, f4, and f5. 

Step 2: For i=1 to 5 

• The i-th fold is chosen as the validation set. 

• The training set consists of the remaining 5−1 folds. 

Step 3: Use the training set to train the ML model. 

Step 4: Assess the model's accuracy using the validation set. 

Step 5: For all five folds, repeat steps 3 and 4. 

Step 6: Calculate the final accuracy by taking the average of the five iterations' accuracies. 

 

Figure 3. Five-fold Cross-Validation 

As shown in Figure 3, the dataset is separated into five folds, each approximately equal 

in size. The cross-validation will employ one-fold for testing and four for training. 

3.5   Classification Algorithms 

3.5.1   Bagging-Boosting Stacked Ensemble (BBSE) 

A Bagging-Boosting Stacked Ensemble is a sophisticated ensemble machine-learning 

method that improves model performance by fusing the ideas of boosting and bagging. This 

model uses the bagging technique (Extra Trees) to reduce variance and the boosting technique 

(LightGBM) to reduce bias. Through the integration of bagging, boosting, K-fold CV and a 

feature-augmented stacking strategy, this model presents a unique approach that sets it apart 

from earlier methods for CVD detection. The BBSE pseudocode is represented in Figure 4. 
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Figure 4. BBSE Pseudocode 

Steps of BBSE 

The dataset was initially loaded and afterward divided into training and test sets. To 

produce out-of-fold prediction probabilities for the training data, the Extra Trees model is 

trained using 5-fold cross-validation. It is then retrained on the entire training set to produce 

prediction probabilities for the test data. LightGBM is trained by integrating the base training 

features with the ET training probabilities, often known as meta-features. After that, LightGBM 

uses the base test features and ET test probabilities to produce end detection. The efficiency of 

the model is then assessed by visualising the outcomes. Here, ET serves as the underlying 

model, and LightGBM serves as the meta-model. 

3.5.2   Heterogeneous Soft Voting Ensemble (HSVE) 

The soft voting ensemble averages the estimated probability of multiple models instead 

of choosing the majority vote. This approach allows each model to contribute based on its 

degree of confidence, improving the accuracy and smoothness of detection. By combining 

heterogeneous classifiers, K-fold CV, and soft voting ensemble tactics, this method offers a 

novel and comprehensive approach that is not often found in previous related studies. Figure 5 

displays the step-by-step procedure of the heterogeneous soft voting ensemble approach, which 

utilizes the GNB, LR, SVM, and CatBoost models. This combination combines probabilistic-

based (GNB), linear-based (LR), Margin-based (SVM), and boosting-based (CatBoost) 

models. 

Steps of HSVE 

The initial step is data preparation. Next, the models are initialised. All models are 

combined in a soft voting classifier to increase accuracy. To assess the performance of the soft 

voting classifier, 5-fold cross-validation is used on the training set. The soft voting classifier is 

retrained with the complete training dataset following cross-validation. The final assessment 

metrics are then presented based on the predictions made by this final trained model on the test 

set. 
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Figure 5. HSVE Pseudocode 

3.5.3   Feature-Augmented Heterogeneous Stacking (FAHS) 

Feature-augmented stacking is an ensemble learning strategy that improves on the 

traditional stacking method by training the meta-learner with both the original input features 

and the predictions from the base models. This technique improves performance over standard 

stacking by assisting the meta-learner in capturing more intricate patterns, minimising 

information loss, and correcting biases. This approach presents a fresh model that is very 

different from other works on heart disease detection by merging heterogeneous classifiers, K-

fold CV, and feature-augmented stacking approaches. Figure 6 demonstrates the algorithmic 

steps of the FAHS model. Five different models: LR, Extra Trees (ET), SVM, KNN, and 

XGBoost were used in FAHS. This combination aggregates linear-based (LR), tree-based (ET), 

Margin-based (SVM), distance-based (KNN), and boosting-based (XGBoost) models. 

Steps of FAHS 

The process starts with setting up the dataset. Model initialisation is the next phase. To 

train each base model, 5-fold cross-validation was used. For the training set, out-of-fold 

prediction probabilities were gathered. The models were then used to estimate probabilities on 

the test set after being retrained on the entire training set. The original features are blended with 

these probabilities to produce improved datasets. To get final predictions, the meta-model 

XGBoost is trained using the improved training data and evaluated using the improved test 

data. After that, the model's performance is assessed, and the outcomes are displayed. 
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Figure 6. FAHS Pseudocode 

3.5.4   Heterogeneous Bootstrap-Ensemble (HBE) 

The goal of the HBE is to increase model accuracy by using predictions from many 

models, each trained on distinct bootstrapped data, through a K-Fold Cross-Validation 

architecture. The ensemble improves generalisation and model diversity through a soft voting 

ensemble. 

 

Figure 7. HBE Pseudocode 

This HBE boosts the model's stability and helps to reduce variance. This approach 

introduces an innovative model that is very different from other research on CVD detection by 

merging bagging-based diverse classifiers, K-fold CV, and soft voting ensemble approaches. 

Figure 7 illustrates the pseudocode of the heterogeneous bootstrap-ensemble model. Four 

different models: Quadratic Discriminant Analysis (QDA), SVM, KNN, and RF, were used in 

HBE. This combination incorporates probabilistic-based (QDA), Margin-based (SVM), 

distance-based (KNN), and tree-based (RF) models.  
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Steps of HBE 

Data preparation is the first phase, while model definition is the second. Bagging 

classifiers are built for QDA, SVM, and KNN, and RF is directly incorporated. The soft voting 

classifier is used to merge these models. To get the average accuracy, the ensemble is tested 

using K-fold cross-validation. The findings are then displayed once it has been trained on the 

entire training set and tested on the test set. 

3.5.6   Heterogeneous Sequential Boosting (HSB) 

In sequential boosting, several models are trained one after the other, each one 

concentrating on the mistakes made by the one before it. The primary objective is to increase 

the model's accuracy by lowering bias and variance through iterative adjustments. By 

integrating the advantages of several models into a sequential boosting framework, 

heterogeneous sequential boosting enhances prediction performance and produces more robust 

learning on complicated datasets, better error correction, reduced bias, and improved 

generalisation. This strategy differs from traditional methods in that it combines differential 

classifiers, K-fold CV, and sequential boosting methodologies to create a unique and 

comprehensive approach. Figure 8 demonstrates the pseudocode of a heterogeneous sequential 

boosting model, which utilizes LR, DT, SVM and XGBoost. This combination integrates 

linear-based (LR), tree-based (DT), Margin-based (SVM), and boosting-based (XGBoost) 

models. 

 

Figure 8. HSB Pseudocode 

Steps of HSB 

The first step in the procedure is data preparation. Then assign equal weights to each 

fold of the 5-fold cross-validation and train the models in a sequential manner (LR → DT → 
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SVM → XGBoost). After every model, sample weights are changed to highlight instances of 

incorrect classification. Finally, on the test fold, the predictions from each model are combined 

using a weighted sum, and the model's performance is assessed using the relevant metrics. 

Throughout the cross-validation procedure, these actions are performed for every fold. The 

performance outcomes are provided once all models have been retrained on the entire training 

dataset and predictions have been made on the test set. 

3.6   Results and Discussion 

The suggested model produces a binary result at the end of the classification stage that 

shows if a person is expected to have cardiovascular disease or not. A prediction label of '0' 

indicates the absence of CVD, while a label of '1' indicates the existence or high risk of CVD. 

This output represents the model's judgment about the patient's cardiovascular health and is 

based on the patterns discovered in the training data. 

3.7   Performance Analysis 

Evaluation metrics assess the efficacy of a statistical or machine learning model. A 

model can be tested using a wide variety of evaluation indicators. In this stage, the findings of 

the classifiers are displayed and compared among them. The final result will be based on the 

classifier with the highest accuracy on the given dataset. The confusion matrix is the foundation 

for these metrics. It is a two-by-two matrix that compares the algorithm's predicted class values 

with the actual class values. Table 1 illustrates the confusion matrix. 

Table 1. Confusion Matrix 

 

Actual Class 

Predicted Class 

CVD = 1 CVD = 0 

CVD = 1 TP FN 

CVD = 0 FP TN 

The confusion matrix can be used to draw the following conclusions: 

• True Positive (TP) prediction 

• True Negative (TN) prediction 

• False Positive (FP) prediction 

• False Negative (FN) prediction 

Consequently, the evaluation metrics can be outlined as follows: 

Accuracy = (True Positive + True Negative) / The total number of predictions       (13) 

Precision = True Positive / (True Positive   + False Positive)                                          (14) 

Recall = True Positive / (True Positive   + False Negative)                                           (15) 
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F1 Score = 2 * (Precision * Recall) / (Precision + Recall)                                             (16) 

• The percentage of accurately categorised outcomes with correct positives and 

negatives is known as accuracy (Eq. 13). 

• The percentage of accurately classified outcomes that are positively classified is 

known as precision (Eq. 14). 

• The percentage of positive instances that are correctly   classified is referred to as 

recall (Eq. 15). 

• The percentage of correctly predicted positive instances for all optimistic forecasts 

is the F1 Score (Eq. 16). 

 Dataset Description 

4.1   Real-Time Dataset Details 

For this study, real-time patient data were collected from a private hospital in Salem, 

India, covering the period between 2019 and 2023. The dataset consists of 2,300 patient 

records, each containing 15 input features (clinical, demographic, and diagnostic variables) and 

1 output feature representing the target classification label. The input features include vital 

signs (heart rate, blood pressure, temperature), biochemical parameters, and medical history 

indicators. 

In terms of demographics, the dataset covers patients aged 18 to 75 years, with a nearly 

balanced gender distribution (52% male, 48% female). Patient diversity is further reflected in 

varying health conditions, ranging from chronic diseases such as diabetes and hypertension to 

acute conditions requiring hospitalization. This heterogeneity improves the generalizability of 

the predictive model. 

Preprocessing steps were applied to ensure data quality and consistency. Missing values 

were handled using mean imputation for numerical features and mode imputation for 

categorical variables. Outliers were detected through the Z-score method and corrected where 

clinically justified. All numerical variables were normalized using minmax scaling to eliminate 

magnitude bias, and categorical variables were converted into numerical form via Target 

encoding. Finally, the dataset was split into training (80%), and testing (20%) subsets. Table 2 

and figure 9 present the detailed variable descriptions and their feature distributions, 

respectively. 

Table 2. Attribute Details of the Real-Time Dataset 

S.No Attribute Name Description 

1 Gender The gender of the patient 

2 Age Age of the patient 

3 Blood Pressure Systolic blood pressure level 

4 Pulse Rate Pulse rate level 
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5 Temperature Body temperature 

6 Respiratory Rate Respiratory rate level 

7 SpO2 Oxygen saturation level 

8 Complaints Admitted with complaints 

9 Obesity 1=Obesity; 0=No 

10 Anemia 1=Anemia; 0=No 

11 Cholesterol Total; cholesterol level 

12 Glucose Fasting glucose level 

13 Asthma 1= Asthma; 0=No 

14 Hypertension 1= Hypertension; 0=No 

15 Diabetes 1= Diabetes; 0=No 

16 CVD Output class. 1=Presence of 

cardiovascular disease; 0=No disease 

 

Figure 9. Feature Distribution of the Real-time Dataset 

4.2   Benchmark Dataset Details 

Table 3 shows the benchmark combined dataset's attribute details, which were retrieved 

from the UGC repository. This dataset comprises the Cleveland, Hungarian, Swiss, Long 
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Beach, VA, and Statlog Heart datasets. It contains 1,190 records, 11 input features and one 

output feature. Figure 10 demonstrates the benchmark dataset's feature distribution. 

Table 3. Attribute Details of the Benchmark Dataset 

S.No Attribute Name Description 

1 Age Age of the patient [Years] 

2 Sex Sex of the patient [1=Male; 0=Female] 

3 Chest Pain Type There are four different types of chest pain [0=Typical 

Angina; 1=Atypical Angina; 2=Non-Anginal pain; 

3=Asymptomatic] 

4 Resting EGC Resting Electrocardiogram results [0=Normal; 1=ST-

T Abnormality; 2=Probable LVH]  

5 Resting BP Resting blood pressure level (mm Hg) 

6 Cholesterol Serum cholesterol level (mg/dl) 

7 Fasting BS Fasting blood pressure [1: if Fasting BS > 120 

(mg/dl), 0: otherwise] 

8 Maximum Heart Rate Maximum heart rate achieved during exercise 

9 Oldpeak ST depression from exercise 

10 Exercise Angina Agnosia was discovered after exercising [1=Yes; 

0=No] 

11 ST Slope The slope of the peak exercise ST segment [1=Down 

sloping, 2=Flat; 3=Up sloping] 

12 Heart Disease Output class. 1=Presence of cardiovascular disease; 

0=No disease 
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Figure 10. Features Distribution of the Benchmark Dataset 

 Implementation on the Real-Time Dataset 

Figure 11 displays the results of the attribute selection methods on the real-time CVD 

dataset. For implementation, the best ten features were selected from each feature selection 

method. According to the Pearson correlation method, Cholesterol, Hypertension, Glucose, 

Age, Diabetes, Blood Pressure, Complaints, Obesity, and others are the first ten best features. 

According to the Recursive Feature Elimination method, Cholesterol, Age, Glucose, 

Complaints, Hypertension, Pulse Rate, Blood Pressure, SpO₂, Respiratory Rate, and 

Temperature were the first ten best features. In the Random Forest Feature Importance method, 

Cholesterol, Complaints, Hypertension, Blood Pressure, Age, Pulse Rate, Diabetes, SpO₂, 

Obesity, and Glucose are selected as the top ten features. 
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Figure 11. Attribute Selection Methods on the Real-time Data 

 

Figure 12. Performance Comparison Using All Features on the Real-time Dataset 
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Figure 12 shows performance measures, namely accuracy, recall, precision, F1 score, 

the confusion matrix, and the ROC curve when employing all real-time data elements. The 

FAHS model has the greatest accuracy score and AUC value out of all the classifiers. Figure 

13 displays a variety of performance measures based on features chosen using the Pearson 

correlation coefficient method on real-time data. Among the classifiers, FAHS had the highest 

accuracy score and AUC value. 

 

Figure 13. Performance Comparison Using Pearson Features on the Real-time Dataset 

Figure 14 shows a range of performance metrics on a real-time dataset depending on 

the features selected using the recursive feature elimination method. The FAHS achieved the 

highest accuracy score and the highest AUC value. 
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Figure 14. Performance Comparison using RFE Features on the Real-time Dataset 

Using features, the RFFI chose based on real-time data, Figure 15 displays performance 

measures: accuracy, recall, precision, F1 score, the confusion matrix, and the ROC curve. The 

FAHS has the highest accuracy score and AUC value among all the classifiers. 

 

Figure 15. Performance Comparison Using RFFI Features on the Real-time Dataset 
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 Model Performance Comparison 

6.1   Model Performance Comparison on the Real-Time Dataset 

Figure 16 shows a metric comparison of the real-time dataset, without feature selection 

and K-Fold CV, as well as with feature selection and K-Fold CV. Without feature selection and 

K-Fold CV, the FAHS had the best accuracy (92.18%). Then, feature selection and K-Fold CV 

were utilised for experimentation.  While using the Pearson correlation coefficient feature 

selection, FAHS produced the highest accuracy of 94.05%. With the Recursive Feature 

Elimination feature selection method, FAHS scored the highest accuracy (95.41%). While 

employing the Random Forest Feature Importance technique, FAHS produced the best 

accuracy of 96.09%. The results section lacks essential statistical validation, including variance 

analysis and confidence intervals, which are critical for assessing the reliability and 

generalizability of the findings. Without these measures, it is difficult to determine the stability 

of model performance across different patient cohorts or datasets. Incorporating such statistical 

analyses would strengthen the credibility of the results, provide clearer insights into prediction 

uncertainty, and support more robust clinical interpretation. 

 

Figure 16. Metrics Comparison of the Real-time Dataset 

While comparing all feature selection methods and classifiers on the real-time dataset, 

the random forest feature importance method and the FAHS combination had the highest 

accuracy of 96.09%. 
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Figure 17. Predictive System on the Real-time Dataset 

The cardiovascular disease detection system was created using the Python programming 

language. To provide an easy-to-use user interface, this application was developed as a desktop-

based system using the built-in Python library Tkinter. Internet access is not necessary, and it 

is lightweight and simple to maintain. This predictive system uses the FAHS model with RFFI 

traits to detect CVD. Figure 19 shows that the patient with age, cholesterol, blood pressure, 

hypertension, pulse rate, diabetes, SpO₂, obesity, glucose, and complaints values of 55, 320, 

200, 1, 135, 1, 92, 1, 170, and “chest pain, breathing difficulty,” respectively, has 

cardiovascular disease. Model Performance Comparison on the Benchmark Data 

Figure 18 shows a metric comparison of the benchmark dataset, without feature 

selection and K-Fold CV, as well as with feature selection and K-Fold CV. Without feature 

selection and K-Fold CV, the FAHS had the best accuracy (88.67%) 

 

Figure 18. Metrics Comparison of the Benchmark Dataset 
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After applying feature selection and K-Fold CV, in the Pearson correlation coefficient 

feature selection, FAHS produced the highest accuracy of 91.13%. With the Recursive Feature 

Elimination feature selection method, FAHS scored the highest accuracy (92.61%). While 

employing the Random Forest Feature Importance technique, FAHS produced the best 

accuracy of 94.09% When comparing all feature selection methods and classifiers on the 

benchmark dataset, the random forest feature importance method and the FAHS combination 

had the highest accuracy of 94.09%. 

 

Figure 19. Predictive System on the Benchmark Dataset 

Figure 19 shows that patients with Chest Pain Type, Cholesterol, Maximum Heart Rate, 

Age, Oldpeak, and ST Slope values of 2, 180, 165, 28, 0.3, and 3, respectively, do not have 

cardiovascular disease. This detection was made using the RFFI attributes and the FAHS 

model. 

 Comparative Analysis 

Table 4 compares the performance of the suggested work with that of other studies. R. 

Aggrawal et al. [8] classified the data using sequential feature selection and random forest with 

an accuracy of 86.67%. 

Table 4. Accuracy Comparison with Other Studies 

Reference Feature selection, K-

Fold CV 

Classifier Maximum 

Accuracy% 

R. Aggrawal et al. 

[8] 

Sequential Feature 

Selection, k-fold 

RR, LDA, SVM, KNN, 

DT, GBoost 

86.67 (RF) 

Spencer et al. [14] Chi-squared, ReliefF, 

SU, PCA 

10-fold CV 

Bayes Net Classifier, 

KNN, DT, SVM, 

AdaBoost 

85.0 

(Chi with BN) 

Takci [15] ReliefF Method NB, KNN, RF, SVM 

(Linear kernel) 

84.81 

(SVM Linear) 

Zhaobin Qiu et al. 

[16] 

LASSO OCSCatBoost, LR, DT, 

KNN 

73.67 

(OCSCatBoos) 
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Snigdha Datta. [19]  Wald and Likelihood-

Ratio, 10-fold CV 

Logistic Regression 81.0 

Annwesha 

Banerjee Majumde 

et al. [22] 

10-fold CV Bagged Ensemble 

(KNN, GNB, LR) 

82.8 (LR)  

82.5 (GNB) 

83.2 (KNN) 

Zhang et al. [23] PCA Stacking 

(Many Classifiers) 

87.7 

 

Tomar and 

Agarwal [24] 

F-Score Feature 

Selection 

LSTSVM 85.59 

Dwi Normawati et 

al. [25] 

VPRS, MFS 

10-fold, 5-fold, 3-fold 

Rule-based classifier 

derived using the VPRS 

approach 

76.34 

(VPRS with 5-

fold CV) 

 

Proposed work: 

Using Real-Time 

Dataset 

 

Random Forest 

Feature Importance 

 

BBSE 

HSVE 

FAHS 

HBE 

HSB 

93.03 

94.56 

96.09 

94.05 

95.07 

 

Proposed work: 

Using the 

Benchmark Dataset 

 

Random Forest 

Feature Importance 

BBSE 

HSVE 

FAHS 

HBE 

HSB 

88.18 

92.12 

94.09 

90.15 

92.61 

Spencer et al. [14] predict heart disease using the chi-squared feature selection method 

and a Bayes net classifier with 85.0% accuracy. Using the reliefF method and the SVM (linear 

kernel), Takci [15] showed 84.81% accuracy in HD prediction. Zhaobin Qiu et al. [16] predict 

heart disease using the LASSO feature selection method and an OCSCatBoost with 73.67% 

accuracy. Snigdha Datta [19] used 10-fold CV and LR to score 81% accuracy in CVD 

prediction. Annwesha Banerjee Majumde et al. [22] predict heart disease using 10-fold CV and 

a bagged ensemble with a maximum accuracy of 83.2% on KNN. Zhang et al. [23] classified 

the data using stacking, achieving an accuracy of 87.7%. Tomar and Agarwal [24] diagnosed 

HD using LSTSVM and F-Score Feature Selection with an accuracy of 85.9%. When Dwi 

Normawati et al. [25] employed VPRS and MFS with varying folds, the VPRS model produced 

a high accuracy of 76.34% using 5-fold cross-validation. When compared to previous 

experiments, the majority of the suggested models with different feature selection techniques 

showed improved accuracy (Figures 18 and 20). In Table 2, I emphasized the best feature 

selection technique and classifier combination that produced the greatest results. 

 Conclusion and Future Work 

In this research, missing values are handled using a feature-type-based method, and the 

Z-score technique identifies outliers. Class imbalance is addressed using the SMOTE approach. 

Three feature selection algorithms, seven classification approaches, one cross-validation 

method, and several performance evaluation metrics were used for cardiovascular disease 

(CVD) detection. Experiments were run with and without a variable selection process to 

determine the impact of variable selection. The Pearson correlation coefficient, RFE, and RFFI 

methods were used as feature selection techniques. On the UCI cardiovascular disease datasets 

and a real-time dataset, several analytical approaches, including RF, XGBoost, BBSE, HSVE, 
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FAHS, HBE, and HSB, were used, and the results were compared with other studies. By testing 

the algorithm on several subsets of the data, the 5-fold cross-validation helps to minimize 

overfitting. If a model performs consistently well across all five folds, it is likely to be more 

robust and less prone to overfitting. According to feature selection algorithms, in real-time data, 

Cholesterol, Hypertension, Blood Pressure, and Age are the most essential and suitable features 

for classifying cardiovascular disease and healthy individuals. In the benchmark dataset, 

according to feature selection algorithms, ST slope, Oldpeak, Chest Pain Type, and Maximum 

Heart Rate are the most important and suitable features for classifying cardiovascular disease 

and healthy individuals. The FAHS model combined with the RFFI method achieved the 

highest accuracy of 96.09% on the real-time dataset and 94.09% on the benchmark dataset. 

When comparing both datasets, the real-time data achieved the highest accuracy. In this 

research, accuracy increased using feature selection, the k-fold cross-validation technique, and 

ensemble classifiers, and the purpose was accomplished as expected. This research offers a 

brand-new framework for detecting CVD diseases that consists of five creative ensemble-based 

methods. These methods use a number of sophisticated techniques, such as feature-augmented 

stacking, bootstrapped sampling, K-Fold cross-validation, sequential boosting, bagging and 

boosting integration, diverse classifiers, and soft voting ensemble approaches. While each 

method uses a different subset of these strategies, their combined use highlights the overall 

novelty and potency of the suggested framework. 

Future models can be developed by assembling (hybrid) algorithms that combine 

several attribute selection methods to obtain the best attribute subsets. These suggested models 

could be expanded to address issues in industries other than healthcare, such as banking and 

agriculture. 
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