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Abstract

The chest X-ray imaging (CXR) is a key diagnostic instrument in COVID-19 diagnosis,
wherein more than 600,000 tests are performed worldwide annually and the misdiagnosis rate
is estimated to be 15-20 percent, largely contributed by human error. Conventional manual
reading of CXR images is time-consuming, labor-intensive, and heavily reliant on the skill of
the radiologist, typically resulting in a series of uneven and sluggish diagnostic outcomes. To
overcome these limitations, the current research introduces an innovative state-of-the-art CXR
segmentation model based on rigorous preprocessing techniques in combination with the
optimisation of deep-learning algorithms to obtain precise lung parenchyma and pathological
lesion outlines. Block-matching 3D filtering (BM3D) was applied to suppress noise without
loss of anatomical details following curation of the COVID-19 CXR Dataset. The Optimization
U-Net (OU-Net) architecture, which served as the backbone of the proposed approach, was
carefully designed with adaptive encoder-decoder paths and strengthened skip connections to
better subdivide real lung regions and manifestations of diseases. Additionally, the training
schedule utilizes Modified Grey Wolf Optimization (MGWO) for the optimization of network
parameters, and this accelerates convergence and enhances segmentation accuracy. Empirical
results confirm that the OU-Net with MGWO is superior to conventional and standard deep-
learning models, as the suggested approach enhances accuracy by 4.58%, sensitivity by 5.22%,
specificity by 4.60%, precision by 4.85%, recall by 1.78%, F1-score by 5.07%, Jaccard index
by 5.23%, and Dice score by 5.31%.

Keywords: Block-matching and 3D Filtering, COVID-19, Chest X-Ray, Grey Wolf
Optimization, Optimal U-Net, Segmentation.

1. Introduction

Over 777 million confirmed COVID-19 cases and 7.1 million deaths were reported
globally by mid-May 2025, translating to a global fatality rate of about 0.91% of confirmed
infections [1]. Although many studies indicate much higher excess mortality, perhaps more
than twice the reported amount, these figures represent the official counts [2]. Although some
resurgence has been observed in parts of Asia and the Middle East, test positivity rates and
reported new cases have decreased in recent months in many regions [3]. It is essential to
accurately segment the lung regions in CXRs to identify abnormalities related to COVID-19,
such as consolidations and ground-glass opacities [4]. Segmentation enables Artificial
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Intelligence (AI) models to focus on areas that signal infection, by isolating the relevant
pulmonary structures and addressing artifacts caused by confounding anatomical structures.
This technique of refining methodology results in an effective and dependable process of
analysis in the event of an epidemic surge, when swift triage and diagnosis can significantly
affect patient outcomes [5].

Several companies have increased the creation of Al programs to analyze chest images
to support the diagnosis of COVID-19. RADLogics has deployed a Deep Learning (DL)
application that generates a disease-severity score (also known as the Corona score) for CT and
CXR scans in Chinese, Russian, and Italian hospitals [6]. The DAMO Academy of Alibaba
presented an Al model, which provides a diagnosis within 20 seconds with an accuracy of 96
percent in 26 Chinese hospitals. The system has already been implemented, and has processed
more than 30,000 cases [7]. South Korean based Lunit has also made its Al-assisted CXR
analysis software available free of charge, facilitating triage activities at COVID-19 centers in
South Korea and implementing the technology in one of the largest hospital systems in Brazil

18],

Various hospital chains have embraced the use of Al to enhance the screening and flow
of patients. The Zhongnan Hospital in Wuhan used an Al system created by InferVision that
was trained on thousands of cases of COVID- [9] and utilized across 34 hospitals that scanned
over 32,000 patients to quickly prioritize potentially infected patients. South Australian
Medical Imaging employed the Annalise.ai Al technology in six metropolitan and four regional
hospitals in South Australia [10]. The system identifies areas of interest in CXRs in a similar
way a spell-checker works thus allowing radiologist to be fast and accurate without adding
extra costs to patients. The novel contributions of the work are as follows:

o To integrate BM3D preprocessing with DL segmentation, effectively reducing
noise while preserving fine lung and lesion structures of COVID-19.

o To develop an OU-Net architecture with adaptive encoder-decoder layers and
attention-guided skip connections, enhancing segmentation of both normal and
pathological COVID-19 regions.

o To employ MGWO for automatic tuning of OU-Net hyperparameters, improving
convergence speed and segmentation accuracy beyond standard optimization
techniques.

This paper is structured into five key sections: Section 2 provides a comprehensive
survey of existing studies, Section 3 details the proposed methodology with BM3D
preprocessing, OU-Net segmentation, and MGWO optimization, Section 4 presents
experimental results with detailed discussions, and Section 5 concludes with key findings and
future research directions.

2. Related Work

Bahroun [11] suggested a two-step Convolutional Auto-Encoder (CAE) model, which
did not process images altogether but rather the segmented CT scans and CXR images
independently and then combined the features obtained to identify COVID-19. The framework,
nevertheless, made the computation more complex with dual path features processing. Orenc
[12] introduced a better segmentation method that utilized several variants of U-Net and Ant
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Colony Optimization (ACO) to optimize the encoder-decoder-based architectures and
consequently generated fine-grained lung contours in CXR images. This approach, however,
was incapable of maintaining strength with highly unbalanced data. Gtifa [13] presented a
Cuckoo Search Optimized (CSO) multi-level thresholding scheme together with a
Convolutional Neural Network (CNN), which optimized feature capture of CXR images to
identify COVID-19 and associated lung diseases. Multi-level thresholding, on the other hand,
was computationally appropriate but not as scalable to large datasets.

Vinothini [14] suggested a more developed framework for segmentation and severity-
prediction, which used nnU-Net to extract lung regions and a faster region-based CNN with a
gated joint selection algorithm to grade the severity. Mehta [15] proposed a MultiResUNet-
based DL model that can learn the multi-scale contextual features of the image to accurately
segment the lungs in the CXR dataset, but their performance degraded when using CXRs with
low contrast or high noise. Herng [16] suggested a segmentation scheme with variant k-means
clustering algorithms, which segmented CXR images into optimal clusters to improve the
localization of COVIDI19 lesions; the clustering scheme was sensitive to centroid selection,
thus affecting stability.

Kang [17] suggested a segmentation-aided fusion-based classification algorithm and
used a combination of segmented CXR images and a complementary feature fusion to
automatically analyse the image; however, high-quality segmentation masks were necessary,
and the errors during the segmentation process were transferred to the analysis results. Din [18]
introduced a DL network called CXR-Seg, which used a modified Deep Auto Encoder (DAE)
optimised by the Whale Optimization Algorithm (WOA) to learn precise lung boundaries using
CXR datasets, but the model required a large amount of labeled training data, which cannot be
used in scenarios with scarce data. Biju [19] developed a DL-based segmentation method that
identified infected lung areas of the CXR scan before subjecting the image to a classification
process, which was less accurate when lesions blended with normal body features.

Kumari [20] proposed an Optimised K-Means Clustering (OKMC) segmentation model
with a hybrid Visual Geometry Group (VGG19) Support Vector Machine (SVM) model to
classify COVID-19. The k-means algorithm was used to divide the infected lung areas, and
VGG19 was used to extract the features that were then classified using SVM, however, there
was a drop in segmentation accuracy when there was low contrast and uneven intensity
distribution in the images. Otair [21] suggested a locally adaptive thresholding algorithm,
which optimally adjusted the threshold values to partition the inflicted lung areas of CXR
images by COVID-19; the algorithm was not very robust to high inter-patient differences in
lung textures. Slika [22] suggested a parallel framework based on Vision Mamba (VMamba)
and Dragonfly Optimisation Attention (DAA) that combined lung segmentation and
replacement augmentation to predict pneumonia severity using CXR; the parallel framework
added complexity to the architecture, which made the minimisation of deployment challenging.

Qi [23] proposed AO-TransUNet, a multi-attention optimization network that extended
the conventional U-Net architecture with transformer-based modules. However, the
transformer integration required high computational resources, limiting real-time applicability.
Alaoui Abdalaoui Slimani [24] proposed an enhanced U-Net++ model that integrated discrete
wavelet transforms with attention gate mechanisms for pathological lung segmentation in CXR.
However, the model showed performance degradation on noisy datasets due to over-sensitivity
in feature selection. Su [25] proposed COVSeg-VLM, a vision—language model that aligned
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textual prompts with visual CXR features to segment COVID-19 infections. However, the
reliance on prompt engineering reduced consistency across diverse clinical settings.

3. Proposed Work

The algorithm described below includes a new synthesis of pre-processing, DL
segmentation, and meta-heuristic optimization, specifically set up for COVID-19 CXR images.
Figure 1 demonstrates the proposed system architecture. Finally, an OUNet with MGWO is
utilized to automatically tune hyperparameters such as the learning rate, convolutional filter
sizes, and batch normalization parameters, hence guaranteeing rapid convergence and high
Dice coefficients. The combination of BM3D, OU-Net, and MGWO in a unified CXR
segmentation process is a contribution that has yet to be mentioned in the existing literature.

Step 1: BM3D Preprocessing: BM3D filters were applied to each CXR image to
remove noise without distorting the coarse anatomy of the pulmonary fields. This preprocessing
step ensures that salient features required in the segmentation process are retained and improves
further feature extraction.

Input CXR Image
Initial Weights .- .
BM3D Enhanced Image Sl Initialize Wolfs and Positions
z
QU-Net Encoder Evaluate Fitness [
® g
i g
Bottleneck | g Identify Global Best Position g
l E =) l % 3 Segmentation
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! L. & Analysis
OU-Net Decoder | Update Wolfs and Positions = y
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Output Mask i “Imgm: Convergence Check
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v —> B
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Figure 1. Proposed System Architecture

Step 2: OU-Net Segmentation: Images processed by BM3D were used to train the
OU-Net architecture. Its encoder-decoder architecture uses adjustable layers and attention-
based skip-connections that highlight the important areas. Dynamic feature weighting is applied
to ensure that the network can pay attention to both the lung boundaries and the pathological
structures therefore performing better in segmentation.

Step 3: MGWO: The OU-Net hyper-parameters including convolutional kernel sizes,
learning rate and dropout rates were optimised using the MGWO algorithm. Using the
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hierarchical hunting behavior exhibited by grey wolves, MGWO exploits the parameter space
more efficiently, with faster convergence as well as improved segmentation performance.

Step 4: Segmentation Evaluation: The completed segmented images were assessed in
terms of metrics such as the dice coefficient, sensitivity, and global accuracy. The comparison
with traditional DL algorithms demonstrates the high performance of the OU-Net +MGWO
method in performing automated and accurate segmentation of COVID-19.

3.1 OU-Net Segmentation

The OU-Net model is suggested with several structural changes compared to the
traditional U-Net and the Attention U-Net, which are intended to strengthen the refinement of
features and preserve spatial integrity when identifying infection regions in the lungs. OU-Net
uses optimised up-sampling units with adaptive skip pathways that filter and fuse adaptive
features to optimise redundant activations, unlike the regular U-Net which uses direct skip
connections between encoder and decoder layers. Although maintaining the encoder-decoder
depth of the Attention-U-Net, OU-Net uses hybrid convolutional blocks with channel
recalibration modules, which do not require all-is-well encodings in channel recalibrations, as
a result, they do not have this attribute offered.
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Figure 2. Proposed OU-Net System Architecture
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Figure 2 above is an optimised extension of the traditional U-Net model specifically
designed to extract lung regions in COVID-19 patient CXR images introduced as the OU-Net
segmentation model. It operates on an encoder-decoder design where hierarchical feature
representations are extracted using the encoder, but their output is rebuilt accordingly to form
spatial details to accurately outline lung boundaries using the decoder. Unlike the regular U-
Net, OU-Net also includes attention to refined convolutional blocks and optimized skip
connections to maintain contextual information as well as increase the level of precision at the
boundary. This design allows the model to resolve fine differences in the infected lung tissues,
and it can cope with problems caused by low contrast and overlapping anatomies. Therefore,
OU -Net provides credible segmentation of lung areas, which constitutes a foundational stage
for downstream activities like detecting infections, assessing the disease, and automated
diagnosis of COVID -19.

The proposed OU-Net algorithm is provided in Tablel. First, the notation of F ijk 18
used to refer to the feature map in the layer [ at the position (i,j) and channel (k). The
convolutional filter weights, denoted by W,ﬁl‘n‘c‘ x represent the input data of the input channel

c and j output channel k and by, is the bias (the bias unit is left out). This is an operation that
retrieves local patterns in the input feature maps.

Fil.j.k= %:12 1Zc 1ernncle+mj+nc+bIlc (D

In this case, A%' j k18 a feature map that is activated at the dispensation of the used layers
(1) and it is the result of applying the Rectified Linear Unit (ReLU) to the F;; ! jk- The ReLU
adds non-linearity, and therefore, allows the network to acquire complicated patterns.

Al gk — = max (O i,j, k) (2)

The pooled feature map P} ; ijk Wwas obtained with a pooling window ({2). The pooling
eliminates space dimension, conserves the dominant features and increases the efficiency of
the computations.

l max
Piik = (p,q) € 0(Aispjrar) €)

The Uil, j krepresents the upsampled attention feature map using transposed convolution.

It restores spatial resolution lost in pooling, enabling precise boundary reconstruction in
segmentation.

l]k ZM 12n1 ]kc Pllr}l] -n,c (4)

Here, S} ik
the corresponding encoder features A¥ 7+ k- Skip attention connections allow retention of fine-
grained spatial details.

is the concatenated feature map combining upsampled features Ul-l’ ik with

SU k= Concat(UU k,AU k (5)

Here, Gl ik 1s the attention map computed using weights W, and bias b, , with o as the

sigmoid function. It highlights relevant regions while suppressing irrelevant background
features.
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The SS ll j k 18 the output feature map after applying attention G ll j k- This enhances critical
regions for accurate segmentation of lung and pathological areas.

Ss} ik = G} j,k.si{ ik (7)

Here, SSil, j k 18 the normalized feature map, where y; and o/ are the mean and variance

of channel k, y; and f; are learnable scaling and shift parameters, and € is a small constant.
Batch normalization stabilizes training and accelerates convergence.

!
_ SSijk—Hk

SSijk =—mr— Y+ Pr ®)

TheY; ;. is the predicted probability that pixel (i, j) belongs to class c. Sigmoid ensures
class probabilities sum to 1, providing multi-class segmentation outputs.

l
SS; :
e Ljk
Vije = —% ©)

2essi‘j,k

Table 1. Proposed OU-Net Algorithm

Convolution Layer: Extract local patterns from input feature maps using convolutional
filters and biases (Eq. 1)

Activation: Apply the Rectified Linear Unit to introduce non-linearity and retain positive
activations (Eq. 2).

Pooling: Perform max pooling over a window to reduce spatial dimensions while preserving
dominant features (Eq. 3).

Upsampling: Restore spatial resolution in the decoder using transposed convolution to
recover fine details (Eq. 4).

Skip attention concatenation: Concatenate upsampled decoder features with corresponding
encoder features through skip connections to retain fine-grained information (Eq. 5).

Attention map generation: Compute attention weights that highlight relevant lung regions
and suppress background noise (Eq. 6).

Attention-based refinement: Refine concatenated features by applying the attention map
to emphasize critical segmentation regions (Eq. 7).

Normalization: Normalize feature maps with batch normalization (learnable scale and shift)
to stabilize and accelerate training (Eq. 8).

Segmentation Mask: Convert final feature responses to per-pixel class probabilities via the
sigmoid formulation for segmentation (Eq. 9).

Loss minimization: Optimize network parameters by minimizing Dice loss (evaluated with
MGWO) to maximize overlap with ground truth masks (Eq. 10).

Here, Lgice measured by MGWO with similarity between predicted mask Y;; and
ground truth G;;, with € preventing division by zero. Minimizing Dice loss ensures accurate
overlap of segmented regions.
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2XYij.Gij

dice ZYij"'Z Gij+6

(10)
3.2 MGWO Loss Optimization

The MGWO loss optimization worked as a powerful strategy to refine lung region
extraction from CXR images of COVID-19 patients. Figure 3 shows the proposed MGWO loss
optimization flowchart. Inspired by the natural hunting and leadership hierarchy of grey
wolves, MGWO adapted the positions of candidate solutions to minimize segmentation errors
during model training. In this process, the best-performing solutions acted like alpha, beta, and
delta wolves guiding the search, while the others explored around them to find more accurate
boundaries. By embedding this mechanism into the loss optimization stage, MGWO helped the
segmentation network focus on reducing false predictions and enhancing boundary accuracy.
With these mechanisms, the extracted lung regions are not only accurate, but also resistant to
noise, low contrasts, and irregular patterns of infection and, eventually, add to the credibility
of automated diagnosis of COVID-19. The pseudocode of the MGWO suggest algorithm is
provided in Table 2. First, X; denotes the location of the i-th wolf in a D dimensional search
space and N refers to the count of wolves. Every posture defines a space of the OU-Net
hyperparameters (learning rate, kernel size, dropout, and so on) to optimise.

Xi = [xillxizi "'lxiD]l l = 1I2I IN (11)

The flow of the MGWO model is characterized by the following fitness function, which
uses a set of hyperparameters and the segmentation loss of the OU-Net as an indicator of how
well the model recovers its ground-truth lung region. Informally, the fitness of each wolf
position, denoted as X;, representing a candidate set of hyperparameters is evaluated as follows:

fX) = LX) (12)

In this case, L(X;) is normally Dice Loss or Cross-Entropy Loss. A smaller value of
f(X;) provides an optimum solution i.e. the OU-Net segmentation based on those
hyperparameters has the lowest number of errors. This expression leads MGWO to
hyperparameter combinations that optimise accuracy and boundary precision of segmentation
and reduce the false predictions. The alpha (X, ), beta (X ), and delta (Xs) are considered as
the best, second and third wolves respectively. They coordinate the rest of the wolves in the
process of optimizing, and convergence to optimal solutions is assured.

X, = best(f(X)) (13)
Xp = Secondbest(f(x)) (14)
X5 = third_best(f (X)) (15)

Then, D represents the distance between the present position of a wolf, X (t ), and a
prey, X,, scaled by a constant C. This distance determines the strength of attraction to leaders.

D=IC-X,—X() | (16)

Every wolf model its position depending on alpha, beta and delta wolves. The
coefficients A and D are dynamic, regulating step size and direction, which balances
exploration and exploitation around leaders.
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Figure 3. Proposed MGWO Flowchart

(17)
(18)
(19)

The new position of a wolf (X,,,,, ) is the weighted average of the positions of a wolf
with respect to alpha, beta and delta wolves. This consensus mechanism will have strong
movement to the global optimum and not the local minima.

Xnew =X1 +X2 +X3

(20)

Coefficient A controls exploration and exploitation, where a decreases linearly over
iterations t out of total 7. Random vector r € [0,1] adds stochastic behavior to avoid premature

convergence.

A=2a-r—a

a=2—-—=
T
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Table 2. Proposed MGWO Loss Optimization Pseudo Code

Inputs: D <« Dimension of search space (number of hyperparameters)

N «— Number of wolves (population size)
T «— Maximum iterations
€ «— Convergence threshold

L(X) <« Loss function (Dice or Cross-Entropy)
n «— Adaptive learning rate for gradient refinement
Output: X,;pne < Optimized OU-Net hyperparameters)

Step 1. Initialize population of N wolves:
For each wolfi = 1to N:
X; = [xi1,xi2,...,xip] // Random initialization in D-dimensional hyperparameter
space
Step 2. Evaluate fitness of each wolf:
For each wolfi = 1to N:
fX) = LX)
Step 3. Identify leadership hierarchy:
Estimate X, Xg, and X5 using Equations (13), (14), and (15).
Step 4. While t < T and |f(Xihha) — f(Xbipna)| = € do:
a. For each wolf i = 1to N:
Estimate Dy, Dg, and Ds using Equation (16). // Compute distances to leaders
Estimate X, X,, X5 using Equations (17), (18), and (19). // Update positions
Estimate X,,.,, using Equation (20). // Consensus movement
Estimate XZ‘ pdated
b. Update adaptive coefficients:

using Equation (24). // Gradient-based refinement

Linear decay (a), Exploration-exploitation control (4), Randomization factor, r € [0,1]
c. Evaluate new fitness f(X;79%¢%) = L(x}Pete?)
d. Update leadership hierarchy: X,, X, and X5 as per updated fitness.
e. Increment iteration t = t + 1and stop if | £(X2P?**?) — f(X,) I< € ort=T.
Step 5. Return X4, as the optimized hyperparameters.

The coefficient C enhances randomization in wolf movements by scaling distances with
random weights. This helps maintain diversity in the population and improves global search
ability in the early iterations.

C=2-r (23)

Here, X}'P***%is the modified position update, where VL(Xye,) is the gradient of the
loss function and 7 is the adaptive learning rate. This modification combines GWO with
gradient descent for faster convergence.
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X P10 = Ko =1 VL (Xnew) (24)

The algorithm stops when the improvement in alpha’s fitness falls below a threshold e,
or when the maximum iteration count T is reached. This ensures computational efficiency while
maintaining high accuracy.

Stop if | f(XEP?) — £(X,) I< € or t=T (25)

4. Results and Discussion

The following section will comprise a comparative analysis of different segmentation
techniques used on the same data. The analysis also highlights the performance variance
through standardized measures in an effort to ensure an equitable and reliable evaluation.

4.1 Dataset

The COVID-QU-Ex dataset is a rich and multifaceted set of CXRs that reflects clinical
real-world variations. The dataset was accessed via:
https://www .kaggle.com/datasets/anasmohammedtahir/covidqu. It contains images obtained
with varied protocols including differences in exposure time, imaging angles, and detector
resolutions, thus modeling a variation in radiological equipment and conditions of operation in
a variety of institutions. There are scans with high contrast and clarity as well as scans with
moderate to low image quality caused by noise, motion artifacts, or uneven illumination as the
imaging setups vary in their acquisition mechanisms. The information encompasses a
significant range of progression of the disease, beginning with the insidious trends of early
COVID-19, featuring hazy ground-glass opacities and at the extreme end, there are severe
infections that have extensive consolidation and bilateral infiltrates. Also, varying patient
positions (anteroposterior and posteroanterior) and anatomy further complicate the data,
making it a perfect training set to design and test powerful segmentation and classification
approaches. These inherent differences make the models trained on COVID-QU-Ex
generalisable to a wider range of diagnostic clinical imaging conditions, which further enhances
their reliability in actual diagnoses. The data consists of 10192 normal and 10 973 COVID-19
CXRs. The training set will consist of 7134 normal and 7681 COVID19 images, the validation
set will also have 1529 normal and 1646 COVID19 images, and the test set will be of 1529
normal and 1646 COVID19 images without any data augmentation.

4.2 Simulation Environment

As shown in Table 3, the implemented experimental setup used Python 3.7.6 as the
main programming language, accompanied by the necessary deep learning and image-
processing packages, including TensorFlow 2.0.0, OpenCV, Scikit-learn, Matplotlib, and
Pandas. This setup provides a solid environment for training the model and analyzing its
performance. The hardware setup included a minimum of an Intel Core i5 (8th Gen) processor,
16 GB of RAM, and a 512 GB SSD, which was sufficient to support computational capability
in processing CXRs as datasets and performing iterative optimization using MGWO. A 10-fold
cross-validation strategy was used to ensure reliability and unbiased performance evaluation;
it was segmented into ten folds, with 80 percent (train) and 20 percent (test) used within each
fold to maximize generalization and minimize overfitting.
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Table 3. Software and Hardware Environment with Cross-Validation

Category Specification Details
Software | Programming Language Python 3.7.6
Supporting Libraries TensorFlow 2.0.0, OpenCV, Scikit-learn,
Matplotlib, Pandas
Hardware | Processor (CPU) Minimum: Intel Core 15 (8th Gen)
RAM Minimum: 16 GB
Storage Minimum: 512 GB SSD
Cross- Strategy k-Fold Cross-Validation
Validation Number of Folds 10 folds (80% training, 20% testing per fold)

Table 4 displays the detailed comparison of the proposed MGWO and other meta-
heuristic algorithms, i.e., Random Search, Standard Genetic Algorithm (GA), Particle swarm
optimisation (PSO), and Standard GWO, in the optimisation of the OU-Net for lung
segmentation. The initial fitness of MGWO had the highest value of 0.72 which is better than
0.65 for Random Search and 0.70 for Standard GWO and it achieved, a better best fitness of
0.9859, indicating higher convergence accuracy than GA (0.93) and PSO (0.94). It completed
in fewer than 60 iterations and 25 minutes, which is considerably lower compared to Random
Search (100 iterations, 45 minutes). Exploration was enhanced with the use of an adaptive
nonlinear decay factor (2 to 0.2) and increased search dimensions (20) as opposed to linear
decay or reduced dimensions. In MGWO, the exploration coefficient was changed dynamically
to 1.0 (adaptive), making it more efficient in search. The learning rate (0.0008), batch size (32),
and dropout rate (0.25) were optimised to achieve balanced performance and the spatial
resolution was improved by minimising the kernel size to 3x 3. The encoder and bottleneck
filters had been optimised to 48 and 192 respectively which was more efficient in parameter
settings than 128 and 256 in PSO. The LeakyReLU (alpha = 0.1) activation performed better
in gradient transitions than ReLU or ELU. The regularisation was moderately greater (1.5 to
0.04) to keep over-fitting in check. Computationally, MGWO consumed 8 GB of memory and
120109 FLOPs, using less memory relative to GWO (65 percent) and PSO (75 percent). The
ultimate Dice loss was reduced to 0.018, indicating the presence of strong segmentation
accuracy and great smoothness of the loss landscape. In addition, the ability of MGWO to
smooth was very high, and its local minima avoidance was excellent compared to traditional
GA and PSO, which are only moderately good in smoothing and local minima avoidance, thus
making MGWO more stable in optimisation and generalisation in tasks involving the
segmentation of complex medical images.

Table 4. Comparative Optimization Performance of MGWO Against Other
Metaheuristic Algorithms

Parameter Random | Standard | Standard | Standard Proposed
Search GA PSO GWO MGWO
Initial Fitness 0.65 0.67 0.68 0.70 0.72
Best Fitness 0.91 0.93 0.94 0.965 0.9859
Achieved
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Iterations to 100 95 85 80 60
Convergence

Convergence Time 45 42 38 35 25
(minutes)

Nonlinear — Linear Linear Nonlinear Adaptive
Convergence decay decay decay nonlinear decay
Factor (2—0) (2—0.2)
Search Dimensions 5 8 10 15 20
Exploration 0.8 0.85 0.9 0.9 1.0 (adaptive)
Coefficient

Learning Rate le-4 3e-4 Se-4 6e-4 0.0008
Batch Size 64 64 64 48 32
Number of Filters 64 96 128 96 48 (optimized)
(Base Encoder)

Number of Filters 128 192 256 224 192
(Bottleneck Layer)

Dropout Rate 0.65 0.55 0.45 0.35 0.25
Kernel Size 7x7 5%5 7x7 5%5 3x3
Activation ELU ReLU ReLU ReLU LeakyReLU (a
Function =0.1)
Regularization le-5 Se-5 le-4 1.2x10™* 1.5x10™*
Coefficient

Memory Usage 14 13 12 11 8

(GB)

FLOPs (x10°) 150 165 175 150 120
GPU Utilization 60 70 75 65 40

(%)

Final Dice Loss 0.102 0.084 0.068 0.045 0.018
Loss Landscape Low Moderate | Moderate High Very High
Smoothing

Local Minima Poor Moderate | Moderate Good Excellent
Avoidance

A detailed 10-fold cross-validation evaluation of the suggested OU-Net-MGWO model
for chest-radiograph segmentation in COVID-19 is presented in Table 5. The analysis not only
provides the average performance indicators but also includes the variability and statistical
confidence measures. The training accuracy was quite high in all ten folds (between 0.9837 and
0.9859), with an average value of 0.9847 £ 0.0007 and a standard deviation of 4.9 + 0.0007,
indicating that the results of the training subsets are very similar. The same consistency was
observed with the validation accuracy, which ranged from 0.9822 to 0.9859, with an average
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of 0.9835 and a standard deviation of 6.4 x 1077, demonstrating high generalization to unseen
data. The training and validation loss curves exhibited similar stability, with mean values of
0.0423 and 0.0499, and estimates of 1.4 x 10¢and 1.7 x 107¢, respectively. These findings are
supported by the 95 percent confidence intervals, indicating that the model is most likely to
evaluate within both intervals [0.9838 to 0.9856] for training and testing accuracy, and [0.9821-
0.9849] for validation accuracy, which shows the reliability of the model. The tight margins of
standard deviation, variance, and confidence intervals, in turn, testify to the strength,
consistency, and stability of the OU-Net to variation in data, ensuring extremely reliable
segmentation results in images of CXR COVID-19 across diverse clinical situations.

Table 5. 10-Fold Cross-Validation Results with Mean, SD, Variance, and CI

Fold Training Training Loss Validation Validation Loss
Accuracy (£SD) (£SD) Accuracy (£SD) (£SD)
1 0.9841 £ 0.0006 | 0.0432+0.0012 0.9826 + 0.0008 0.0511 +£0.0014
2 0.9853 £ 0.0005 | 0.0415+0.0010 0.9838 + 0.0007 0.0487 +0.0012
3 0.9837 +0.0007 | 0.0448 +0.0013 0.9822 £+ 0.0009 0.0523 £0.0015
4 0.9845 + 0.0006 | 0.0421 +£0.0011 0.9829 + 0.0008 0.0502 +£0.0013
5 0.9859 +0.0004 | 0.0403 +0.0010 0.9859 + 0.0005 0.0479 +0.0011
6 0.9840 + 0.0006 | 0.0436 £0.0012 0.9825 £+ 0.0009 0.0510+0.0014
7 0.9851 +£0.0005 | 0.0412+0.0010 0.9837 + 0.0007 0.0491 +0.0012
8 0.9846 += 0.0006 | 0.0427 +£0.0011 0.9831 + 0.0008 0.0500 +0.0013
9 0.9859 +0.0004 | 0.0398 + 0.0009 0.9859 + 0.0005 0.0476 +0.0010
10 0.9842 + 0.0006 | 0.0435+0.0012 0.9826 + 0.0008 0.0513 +£0.0014
Mean 0.9847 £0.0007 | 0.0423 £0.0012 0.9835 £ 0.0008 0.0499 +0.0013
Variance 4.9x1077 1.4x10°¢ 6.4x107 1.7x10°¢
95% CI | [0.9838 —0.9856] | [0.0408 —0.0438] | [0.9821 —0.9849] | [0.0483 —0.0515]

4.3 Performance Analysis

The performance of segmentation on COVID-19 images of chest radiography is shown
in Figure 4. The original image is presented in Figure (a) and the ground-truth mask in Figure
(b), while Figure (c) presents the results of the current CAE method and shows noticeable
failures in the delineation of lung boundaries. Conversely, Figure (d) shows the output of the
proposed OU-Net with MGWO, which provides a more accurate and contoured segmentation
closely aligned with the ground truth. Figure 5 gives results of the segmentation performed on
non-COVID-19 images of chest radiographs. The ground-truth mask is shown in Figure (b) of
the original image in Figure (a). Figure (c) shows the result of the CAE procedure, indicating
that it is challenging to illustrate the boundaries of the lungs correctly. Therefore, Figure (d)
presents the results of the segmentation produced by the proposed OU-Net with MGWO,
demonstrating a superior and more accurate representation of the ground-truth mask.
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Figure 4. Segmentation Outcomes on COVID-19 Sample CXR Image. (a) Original
Image. (b) Segmented Mask. (¢) CAE [11]. (d) Proposed OU-Net with MGWO
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Figure 5. Segmentation Outcomes on Non-COVID-19 Sample CXR Image. (a)
Original Image. (b) Segmented Mask. (c) CAE [11]. (d) Proposed OU-Net with MGWO

The comparative performance analysis is presented in Figure 6 shows that proposed
OU-Net coupled with MGWO is outperforming the analyzed approaches in almost all its
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indicators for non-COVID segmentation. The model has an increase of 8.334 0.334% compared
to CAE, 4.262% compared to nnU-Net, and 2.612 % compared to OKMC. This is further
supported by the fact that sensitivity increases by 9.711%, 5.547%, and 3.664 between CAE
[11], nnU-Net [14] and OKMC [20], respectively. Specificity is increased by 8.501% 4.430%
and 2.957%. Precision also shows significant improvement of 8.843 0% (CAE [11]), 4.960 0%
(nnU-Net [14]) and 2.9110% (OKMC [20]). Although recall has a weak negative decrease of -
0.621 percent compared to CAE [11], -0.852 percent compared to OKMC [20], it is still 1.388
percent higher than nnU-Net [14]. The F1-score indicates evident increases of 9.392%, 5.064
and 3.016 against CAE [11], nnU-Net [14] and OKMC [20]. In the case of the Jaccard Index,
OU-Net-MGWO is seen to realize high improvements of 9.038%, 5.080%, and 3.589 percent
with respect to the three survey techniques respectively. Lastly, the Dice score shows
significant improvements of 9.005 as compared to CAE [11], nnU-Net [14], and OKMC [20],
4.442% and 2.480%, respectively. The stability of the percentage gains also highlights the
strength and high level of segmentation of the recommended model of OU-Net-MGWO to
extract non-COVID-19 lung regions.

1
0.98
0.96
0.94
0.92
0.9
0.88
0.86
0.84
0.82
0.8
Accuracy Sensitivity Specificity Precision Recall F1-Score Jaccard  Dice Score
Index
ECAE[11] ®nnU-Net[14] OKMC [20] Proposed OU-Net with MGWO

Figure 6. Non-COVID19 Segmentation Performance Graphical Representation

The findings on COVID-19 chest-radiograph images is shown in Figure 7, which
indicate that the proposed OU-Net with MGWO provides significant gains compared to all the
methods that were found in the survey. Tighter to the truth, it is better than CAE [11] by 8.486
percent, AO -TransUNet [23] by 4.690 percent, and U -Net + [24] by 2.747 percent. Similar
improvements in sensitivity are 9.871 0.588 and 3.792 as compared to CAE [11], AO -
TransUNet [23], and U-Net++ [24], respectively. The proposed model has an 8.743~4.738 and
3.087 higher value in terms of specificity than the three survey methods. There are also high
results in precision which experienced improvements of 9.135% over CAE, 5.077 over AO-
TransUNet, 3.097 over U-Net++. To recall, however, the suggested OU-Net with MGWO
achieves lower decline of -3.644 percent relative to CAE [11], -8.849 percent relative to AO-
TransUNet [23] and U-Net++ [24]. The F1 -score still shows significant improvement of 9.694
-percent, 5.300 -percent and 3.176 -percent as compared with the survey methods. Even greater

improvements are indicated by the Jaccard Index that advances 9.293+ vs CAE, 5.335 vs AO-
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TransUNet, and 3.780 vs U-Net++. Lastly, 9.271 percent of Dice score is improved system to
CAE, 4.630 percent to AOTransUNet and 2.657 percent to U Net++. The suggested OUNet
and MGWO vyield always the best segmentation results, proving the steadiness of OU Net in
the ability to extracting COVID-19 lung regions on CXR images.

Dice Score

Jaccard Index

T
S core
N
Precision |y —
Specificity BEEEEE
Sensitivity B
Accuracy
0.8 0.85 09 0.95 I

OU-Net with MGWO ~ mU-Net++[24]  ®AO-TransUNet [23] ®CAE [11]

Figure 7. COVID19 Segmentation Performance Graphical Representation

Table 6 shows the average segmentation performance analysis on the CXR dataset, one
can see that the segmentation performance of the proposed OU-Net with MGWO was
consistently high compared to the methods analysed in the survey. Accurately, the target model
achieves improvements when compared to CAE by 8.403 91%, 4.436 91% and 2.51991%,
while VMamba shows an improvement of 0.9122% and COVSeg-VLM is 0.9125%,
respectively. It also increases in sensitivity by 9.883 percent, 5.414 percent, and 3.690 percent
relative to CAE, VMamba, and COVSegVLM [11], [22], and [25]. Similarly, specificity shows
a rise of 8.618%, 4.499% and 2.857%. Precision also records significant enhancements of
9.059%, 4.918% and 2.867% compared to CAE, VMamba and COVSeg-VLM. About recall,
the suggested method, however, had drops of -0.529%, -2.010% and -1.288% compared to
CAE [11], VMamba [22] and COVSeg-VLM [25]. The Fl-score shows high improvements
across the three methods surveyed. In the same manner, the Jaccard Index shows significant
growth. Lastly, the Dice Score shows improvements of 9.138 percent, 4.512 percent and 2.554
percent in comparison with the survey methods. The suggested OU-Net and MGWO system
consistently shows high improvements in major segmentation measures, hence supporting its
strength and effectiveness in terms of extracting lung and breast regions in CXR images.

A detailed statistical analysis presented in Table 7 of the proposed OU-Net with
MGWO architecture and existing segmentation methods reveals its significant superiority
across a wide range of measures. The proposed method produced an incredibly large
improvement over CAE [11] and t -statistic of 11.72 (df = 9) and a Cohen d of 2.85, and a very
large effect size, with a p -value of <0.001 and a chi square y>-test value of 36.42, which was
further supported by the y>-test with p -value of <0.001, and a -test of 36.42. Contrasting
VMamba [22], the framework revealed statistically significant increases, p -value was 0.002, t
-value was 7.35 and coefficient of d was 2.04 (large effect) and a chi square p -value was 0.003
with chi square=21.76. Compared to COVSeg -VLM [25], the enhancements were significant,
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p-value of 0.014, t-value is 3.12, Cohen d of 1.23 (moderate effect) and the resulting 2 -value
0f 0.018, 2 = 11.89. The proposed framework also dominated U -Net + with p =0.008, t =5.42,
Cohen d =1.78 (large effect), and and > p = 0.015, > = 13.47, which are large and moderate
effect sizes, respectively. In general, all the comparisons testify of statistically significant
changes at the level of 0.05, and the values of Cohen d range from moderate to very large,
which validates the high strength, reliability, and significant superiority of the suggested
method in the correct segmentation of COVID-19-infected areas in the CXR images.

Table 6. Average Segmentation Performance Analysis on CXR Dataset

Method CAE [11] | VMamba [22] | COVSeg-VLM [25] | Proposed
Framework
Accuracy 0.9096 0.9441 0.9617 0.9859
Sensitivity 0.9008 0.9393 0.9550 0.9902
Specificity 0.9072 0.9428 0.9579 0.9853
Precision 0.9050 0.9406 0.9593 0.9868
Recall 0.8693 0.8915 0.9015 0.9047
F1-Score 0.8973 0.9348 0.9547 0.9830
Jaccard Index 0.9120 0.9463 0.9615 0.9956
Dice Score 0.8995 0.9394 0.9573 0.9818
Table 7. Statistical Performance Analysis of Proposed Method Against Existing
Approaches
Comparison p-Value | t (df=| Cohen’sd | p-Value e Significance
(t-test) 9) o3 Value (0= 0.05)
Proposed vs. CAE | <0.001 | 11.72 | 2.85(very | <0.001 | 36.42 | Statistically
[11] large) significant
Proposed vs. 0.002 7.35 | 2.04 (large) 0.003 21.76 | Statistically
VMamba [22] significant
Proposed vs. 0.014 3.12 1.23 0.018 11.89 | Statistically
COVSeg-VLM (moderate) significant
[25]
Proposed vs. U- 0.008 542 | 1.78 (large) 0.010 17.25 | Statistically
Net++ [24] significant
Proposed vs. AO- 0.012 4.01 1.35 0.015 13.47 | Statistically
TransUNet [23] (moderate) significant

4.4 Ablation Study

A comparative analysis of the performance of segmentation using different optimization
algorithms is provided in Table 8 as it highlights the excellence of the proposed OU-Net with
MGWO structure compared to the state-of-the-art methods. U -Net -ACO [12] was one of the
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benchmark approaches that showed a good baseline performance of 0.9452, sensitivity of
0.9310 and Dice 0f 0.9183. CNN-CSO [13] slightly enhanced these metrics, achieving accuracy
of 0.9528, a sensitivity of 0.9405, and a Dice score of 0.9298 whereas DAA [22] further
improved the results of segmentation with an accuracy of 0.9603, a sensitivity of 0.9487, and
a Dice score of 0.9420. DAE-WOA [17] showed the most favorable performance among the
existing algorithms with an accuracy of 0.9721, a sensitivity of 0.9700 and a Dice score of
0.9589, thus demonstrating better segmentation of the lung structures and lesions. Nonetheless,
the suggested framework performed better in all these approaches, achieving the best accuracy
01 0.9859, sensitivity of 0.9902, specificity of 0.9853, a precision of 0.9868, F1-score 0f 0.9830,
and a Jaccard value of 0.9956, thus demonstrating its excellent ability in the segmentation of
the COVID-19-impacted area in the CXR images. Such findings underscore the effectiveness
of combining U-Net with MGWO in terms of optimal parameter optimization, which improves
both the results of lesion detection and the reliability of lung segmentation, leading to an
improved degree of performance compared to previous approaches across all important
parameters.

Table 8. Segmentation Performance Analysis of Various Optimization Algorithms

Method U-Net- CNN-CSO DAA DAE-WOA Proposed
ACO [12] [13] [22] [17] Framework
Accuracy 0.9452 0.9528 0.9603 0.9721 0.9859
Sensitivity 0.9310 0.9405 0.9487 0.9700 0.9902
Specificity 0.9425 0.9502 0.9590 0.9735 0.9853
Precision 0.9358 0.9451 0.9573 0.9740 0.9868
Recall 0.8901 0.8952 0.9018 0.9125 0.9047
F1-Score 0.9124 0.9192 0.9301 0.9420 0.9830
Jaccard Index 0.9210 0.9325 0.9441 0.9608 0.9956
Dice Score 0.9183 0.9298 0.9420 0.9589 0.9818

Table 9 is a preprocessing-related ablation study of the suggested MGWO- OU -Net
model, which demonstrates the influence of different preprocessing strategies on the
segmentation results of COVID- 19 CXR images. The network with no preprocessing had a
baseline accuracy of 0.9798 and a Dice score of 0.9725, indicating good but not excellent
results. When wavelet thresholding was introduced, the results were slightly improved to reach
an accuracy of 0.9825 and a Dice score of 0.9760. Finally, the Laplacian-Gaussian fused (LGF)
filter improved the results to a higher accuracy of 0.9834 and a Dice score of 0.9775 implying
better noise suppression and preservation of lung structures. The BM3D preprocessing had the
highest level of performance with an accuracy of 0.9859, a sensitivity of 0.9902, a specificity
of 0.9853, a precision of 0.9868, a recall of 0.9047, an F1-score of 0.9830, a Jaccard index of
0.9956, and a Dice score of 0.9818. This shows that BM3D is useful in eliminating noise and
preserving anatomical fidelity. Comprehensively, it highlights that close preprocessing can
greatly increase the capability of the MGWO-OU-Net to deliver accurate, consistent, and
fidelity lung and lesion segmentation.

The analysis of the proposed framework presented in Table 10 represents an in-depth
ablation result that demonstrate the step-by-step improvement of the model achieved by each
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constituent towards more accurate COVID-19 lung segmentation results. The model with OU
alone as an evaluation metric gave an accuracy of 0.9798, sensitivity of 0.9856, specificity of
0.9787, precision of 0.9812, recall of 0.8974, F1-score of 0.9736, Jaccard index of 0.9882, Dice
score of 0.9725, thus confirming strong baseline segmentation capability. Combining BM3D
preprocessing with OU-Net again provided further improvements, as accuracy, sensitivity,
specificity, and precision were raised to 0.9835, sensitivity to 0.9876, specificity to 0.9829,
precision to 0.9842, recall to 0.9008, F1-score is raised to 0.9791, Jaccard index to 0.9921 and
Dice score to 0.9783; these Similarly, linking OU-Net with MGWO optimisation brought
further improvements, reaching an accuracy of 0.9843, sensitivity 0.9884, specificity 0.9834,
precision 0.9851, recall 0.9026, F1-score 0.9810, Jaccard index 0.9932, and Dice score 0.9798
and, therefore, showing a better precision of boundaries and convergence. The overall best
performance was achieved with the complete proposed framework, which is a combination of
OU-Net, BM3D pre-processing and MGWO optimisation, which produced an accuracy of
0.9859, sensitivity of 0.9902 and specificity of 0.9853, precision of 0.9868, recall of 0.9047,
F1-score of 0.9830, Jaccard of 0.9956 and Dice score of 0.9818 thus it is clear.

Table 9. Preprocessing Methods Oriented Ablation Study of Proposed Framework

Metric / MGWO-OU- MGWO-OU-Net MGWO- MGWO-OU-
Method Net only (No with Wavelet OU-Net with Net with
Preprocessing) Thresholding LGF BM3D
Accuracy 0.9798 0.9825 0.9834 0.9859
Sensitivity 0.9856 0.9870 0.9881 0.9902
Specificity 0.9787 0.9812 0.9821 0.9853
Precision 0.9812 0.9835 0.9843 0.9868
Recall 0.8974 0.9005 0.9026 0.9047
F1-Score 0.9736 0.9770 0.9785 0.9830
Jaccard Index 0.9882 0.9910 0.9921 0.9956
Dice Score 0.9725 0.9760 0.9775 0.9818

Table 10. Ablation Study of Proposed Framework

Metric / Method | OU-Net only | OU-Net + BM3D | OU-Net + MGWO | Overall
Accuracy 0.9798 0.9835 0.9843 0.9859
Sensitivity 0.9856 0.9876 0.9884 0.9902
Specificity 0.9787 0.9829 0.9834 0.9853
Precision 0.9812 0.9842 0.9851 0.9868
Recall 0.8974 0.9008 0.9026 0.9047
F1-Score 0.9736 0.9791 0.9810 0.9830
Jaccard Index 0.9882 0.9921 0.9932 0.9956
Dice Score 0.9725 0.9783 0.9798 0.9818
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4.5 Discussions

The proposed framework demonstrates better performance in the process of segmenting
the COVID-19-based regions in the CXRs; however, there are also several limitations to
consider. Specifically, the model's ability to tolerate outliers or extreme examples has not been
properly tested, especially in the context of atypical COVID-19 manifestations or very noisy,
low-quality images. Further, its application to other pulmonary pathologies, such as bacterial
pneumonia, tuberculosis, and interstitial lung diseases, has not yet been studied and may restrict
extrapolation to clinical use. It can therefore be concluded that despite the framework's extreme
effectiveness in the COVID-19 realm, further research that incorporates multiple pathologies,
rare cases, and nonhomogeneous imaging conditions is necessary to fully prove the strength,
flexibility, and diagnostic reliability of the framework in a broader range of lung diseases.

5. Conclusion

The proposed OU-Net with MGWO optimisation has demonstrated superior
performance on non-covid-19, COVID-19 and CXR databases in terms of segmentation and
overall stays far ahead of the existing approaches on almost all evaluation parameters. Top
scores consisted of 0.9859 accuracy, 0.9902 sensitivity, 0.9853 specificity, 0.9868 precision,
0.9830 Fl-score, 0.9956 Jaccard and 0.9818 Dice, with associated percentage gains,
respectively, of about 2.5 to about 10 percent with respect to state-of-the-art methods. Whereas
recall showed slight reductions compared to some benchmark processes, the general patterns
reflect the strengths, consistency, and accuracy of the suggested framework in the division of
lung regions of the CXR images. Going forward, this backbone of segmentation can be
integrated into a fast classification pipeline, where the extracted regions of the lung can be
further used as refined inputs to deep-learning classifiers. This would improve the precision of
COVID-19 and other pulmonary diseases diagnoses, thus leading to an automated solution,
real-time, and a physically reliable decision-support tool.
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