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Abstract   

The chest X-ray imaging (CXR) is a key diagnostic instrument in COVID-19 diagnosis, 

wherein more than 600,000 tests are performed worldwide annually and the misdiagnosis rate 

is estimated to be 15-20 percent, largely contributed by human error. Conventional manual 

reading of CXR images is time-consuming, labor-intensive, and heavily reliant on the skill of 

the radiologist, typically resulting in a series of uneven and sluggish diagnostic outcomes. To 

overcome these limitations, the current research introduces an innovative state-of-the-art CXR 

segmentation model based on rigorous preprocessing techniques in combination with the 

optimisation of deep-learning algorithms to obtain precise lung parenchyma and pathological 

lesion outlines. Block-matching 3D filtering (BM3D) was applied to suppress noise without 

loss of anatomical details following curation of the COVID-19 CXR Dataset. The Optimization 

U-Net (OU-Net) architecture, which served as the backbone of the proposed approach, was 

carefully designed with adaptive encoder-decoder paths and strengthened skip connections to 

better subdivide real lung regions and manifestations of diseases. Additionally, the training 

schedule utilizes Modified Grey Wolf Optimization (MGWO) for the optimization of network 

parameters, and this accelerates convergence and enhances segmentation accuracy. Empirical 

results confirm that the OU-Net with MGWO is superior to conventional and standard deep-

learning models, as the suggested approach enhances accuracy by 4.58%, sensitivity by 5.22%, 

specificity by 4.60%, precision by 4.85%, recall by 1.78%, F1-score by 5.07%, Jaccard index 

by 5.23%, and Dice score by 5.31%. 

Keywords: Block-matching and 3D Filtering, COVID-19, Chest X-Ray, Grey Wolf 

Optimization, Optimal U-Net, Segmentation. 

 Introduction 

Over 777 million confirmed COVID-19 cases and 7.1 million deaths were reported 

globally by mid-May 2025, translating to a global fatality rate of about 0.91% of confirmed 

infections [1].  Although many studies indicate much higher excess mortality, perhaps more 

than twice the reported amount, these figures represent the official counts [2].  Although some 

resurgence has been observed in parts of Asia and the Middle East, test positivity rates and 

reported new cases have decreased in recent months in many regions [3].  It is essential to 

accurately segment the lung regions in CXRs to identify abnormalities related to COVID-19, 

such as consolidations and ground-glass opacities [4]. Segmentation enables Artificial 
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Intelligence (AI) models to focus on areas that signal infection, by isolating the relevant 

pulmonary structures and addressing artifacts caused by confounding anatomical structures. 

This technique of refining methodology results in an effective and dependable process of 

analysis in the event of an epidemic surge, when swift triage and diagnosis can significantly 

affect patient outcomes [5]. 

Several companies have increased the creation of AI programs to analyze chest images 

to support the diagnosis of COVID-19. RADLogics has deployed a Deep Learning (DL) 

application that generates a disease-severity score (also known as the Corona score) for CT and 

CXR scans in Chinese, Russian, and Italian hospitals [6]. The DAMO Academy of Alibaba 

presented an AI model, which provides a diagnosis within 20 seconds with an accuracy of 96 

percent in 26 Chinese hospitals. The system has already been implemented, and has processed 

more than 30,000 cases [7]. South Korean based Lunit has also made its AI-assisted CXR 

analysis software available free of charge, facilitating triage activities at COVID-19 centers in 

South Korea and implementing the technology in one of the largest hospital systems in Brazil 

[8]. 

Various hospital chains have embraced the use of AI to enhance the screening and flow 

of patients. The Zhongnan Hospital in Wuhan used an AI system created by InferVision that 

was trained on thousands of cases of COVID- [9] and utilized across 34 hospitals that scanned 

over 32,000 patients to quickly prioritize potentially infected patients. South Australian 

Medical Imaging employed the Annalise.ai AI technology in six metropolitan and four regional 

hospitals in South Australia [10]. The system identifies areas of interest in CXRs in a similar 

way a spell-checker works thus allowing radiologist to be fast and accurate without adding 

extra costs to patients. The novel contributions of the work are as follows: 

• To integrate BM3D preprocessing with DL segmentation, effectively reducing 

noise while preserving fine lung and lesion structures of COVID-19. 

• To develop an OU-Net architecture with adaptive encoder-decoder layers and 

attention-guided skip connections, enhancing segmentation of both normal and 

pathological COVID-19 regions. 

• To employ MGWO for automatic tuning of OU-Net hyperparameters, improving 

convergence speed and segmentation accuracy beyond standard optimization 

techniques. 

This paper is structured into five key sections: Section 2 provides a comprehensive 

survey of existing studies, Section 3 details the proposed methodology with BM3D 

preprocessing, OU-Net segmentation, and MGWO optimization, Section 4 presents 

experimental results with detailed discussions, and Section 5 concludes with key findings and 

future research directions. 

 Related Work 

Bahroun [11] suggested a two-step Convolutional Auto-Encoder (CAE) model, which 

did not process images altogether but rather the segmented CT scans and CXR images 

independently and then combined the features obtained to identify COVID-19. The framework, 

nevertheless, made the computation more complex with dual path features processing. Orenc 

[12] introduced a better segmentation method that utilized several variants of U-Net and Ant 
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Colony Optimization (ACO) to optimize the encoder-decoder-based architectures and 

consequently generated fine-grained lung contours in CXR images. This approach, however, 

was incapable of maintaining strength with highly unbalanced data. Gtifa [13] presented a 

Cuckoo Search Optimized (CSO) multi-level thresholding scheme together with a 

Convolutional Neural Network (CNN), which optimized feature capture of CXR images to 

identify COVID-19 and associated lung diseases. Multi-level thresholding, on the other hand, 

was computationally appropriate but not as scalable to large datasets. 

Vinothini [14] suggested a more developed framework for segmentation and severity-

prediction, which used nnU-Net to extract lung regions and a faster region-based CNN with a 

gated joint selection algorithm to grade the severity. Mehta [15] proposed a MultiResUNet-

based DL model that can learn the multi-scale contextual features of the image to accurately 

segment the lungs in the CXR dataset, but their performance degraded when using CXRs with 

low contrast or high noise. Herng [16] suggested a segmentation scheme with variant k-means 

clustering algorithms, which segmented CXR images into optimal clusters to improve the 

localization of COVID19 lesions; the clustering scheme was sensitive to centroid selection, 

thus affecting stability. 

Kang [17] suggested a segmentation-aided fusion-based classification algorithm and 

used a combination of segmented CXR images and a complementary feature fusion to 

automatically analyse the image; however, high-quality segmentation masks were necessary, 

and the errors during the segmentation process were transferred to the analysis results. Din [18] 

introduced a DL network called CXR-Seg, which used a modified Deep Auto Encoder (DAE) 

optimised by the Whale Optimization Algorithm (WOA) to learn precise lung boundaries using 

CXR datasets, but the model required a large amount of labeled training data, which cannot be 

used in scenarios with scarce data. Biju [19] developed a DL-based segmentation method that 

identified infected lung areas of the CXR scan before subjecting the image to a classification 

process, which was less accurate when lesions blended with normal body features. 

Kumari [20] proposed an Optimised K-Means Clustering (OKMC) segmentation model 

with a hybrid Visual Geometry Group (VGG19) Support Vector Machine (SVM) model to 

classify COVID-19. The k-means algorithm was used to divide the infected lung areas, and 

VGG19 was used to extract the features that were then classified using SVM, however, there 

was a drop in segmentation accuracy when there was low contrast and uneven intensity 

distribution in the images. Otair [21] suggested a locally adaptive thresholding algorithm, 

which optimally adjusted the threshold values to partition the inflicted lung areas of CXR 

images by COVID-19; the algorithm was not very robust to high inter-patient differences in 

lung textures. Slika [22] suggested a parallel framework based on Vision Mamba (VMamba) 

and Dragonfly Optimisation Attention (DAA) that combined lung segmentation and 

replacement augmentation to predict pneumonia severity using CXR; the parallel framework 

added complexity to the architecture, which made the minimisation of deployment challenging. 

Qi [23] proposed AO-TransUNet, a multi-attention optimization network that extended 

the conventional U-Net architecture with transformer-based modules. However, the 

transformer integration required high computational resources, limiting real-time applicability. 

Alaoui Abdalaoui Slimani [24] proposed an enhanced U-Net++ model that integrated discrete 

wavelet transforms with attention gate mechanisms for pathological lung segmentation in CXR. 

However, the model showed performance degradation on noisy datasets due to over-sensitivity 

in feature selection. Su [25] proposed COVSeg-VLM, a vision–language model that aligned 
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textual prompts with visual CXR features to segment COVID-19 infections. However, the 

reliance on prompt engineering reduced consistency across diverse clinical settings. 

 Proposed Work 

The algorithm described below includes a new synthesis of pre-processing, DL 

segmentation, and meta-heuristic optimization, specifically set up for COVID-19 CXR images. 

Figure 1 demonstrates the proposed system architecture. Finally, an OUNet with MGWO is 

utilized to automatically tune hyperparameters such as the learning rate, convolutional filter 

sizes, and batch normalization parameters, hence guaranteeing rapid convergence and high 

Dice coefficients. The combination of BM3D, OU-Net, and MGWO in a unified CXR 

segmentation process is a contribution that has yet to be mentioned in the existing literature. 

 Step 1: BM3D Preprocessing: BM3D filters were applied to each CXR image to 

remove noise without distorting the coarse anatomy of the pulmonary fields. This preprocessing 

step ensures that salient features required in the segmentation process are retained and improves 

further feature extraction. 

 

Figure 1. Proposed System Architecture 

Step 2: OU-Net Segmentation: Images processed by BM3D were used to train the 

OU-Net architecture. Its encoder-decoder architecture uses adjustable layers and attention-

based skip-connections that highlight the important areas. Dynamic feature weighting is applied 

to ensure that the network can pay attention to both the lung boundaries and the pathological 

structures therefore performing better in segmentation. 

Step 3: MGWO: The OU-Net hyper-parameters including convolutional kernel sizes, 

learning rate and dropout rates were optimised using the MGWO algorithm. Using the 
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hierarchical hunting behavior exhibited by grey wolves, MGWO exploits the parameter space 

more efficiently, with faster convergence as well as improved segmentation performance. 

Step 4: Segmentation Evaluation: The completed segmented images were assessed in 

terms of metrics such as the dice coefficient, sensitivity, and global accuracy. The comparison 

with traditional DL algorithms demonstrates the high performance of the OU-Net +MGWO 

method in performing automated and accurate segmentation of COVID-19. 

3.1   OU-Net Segmentation 

The OU-Net model is suggested with several structural changes compared to the 

traditional U-Net and the Attention U-Net, which are intended to strengthen the refinement of 

features and preserve spatial integrity when identifying infection regions in the lungs. OU-Net 

uses optimised up-sampling units with adaptive skip pathways that filter and fuse adaptive 

features to optimise redundant activations, unlike the regular U-Net which uses direct skip 

connections between encoder and decoder layers. Although maintaining the encoder-decoder 

depth of the Attention-U-Net, OU-Net uses hybrid convolutional blocks with channel 

recalibration modules, which do not require all-is-well encodings in channel recalibrations, as 

a result, they do not have this attribute offered. 

 

Figure 2. Proposed OU-Net System Architecture 



Adaptive Lung Segmentation Using Optimal U-Net and Grey Wolf Optimization for COVID-19 Chest X-Rays 

 

 

ISSN: 2582-4252  1268 

 

Figure 2 above is an optimised extension of the traditional U-Net model specifically 

designed to extract lung regions in COVID-19 patient CXR images introduced as the OU-Net 

segmentation model. It operates on an encoder-decoder design where hierarchical feature 

representations are extracted using the encoder, but their output is rebuilt accordingly to form 

spatial details to accurately outline lung boundaries using the decoder. Unlike the regular U-

Net, OU-Net also includes attention to refined convolutional blocks and optimized skip 

connections to maintain contextual information as well as increase the level of precision at the 

boundary. This design allows the model to resolve fine differences in the infected lung tissues, 

and it can cope with problems caused by low contrast and overlapping anatomies. Therefore, 

OU -Net provides credible segmentation of lung areas, which constitutes a foundational stage 

for downstream activities like detecting infections, assessing the disease, and automated 

diagnosis of COVID -19. 

The proposed OU-Net algorithm is provided in Table1. First, the notation of 𝐹𝑖,𝑗,𝑘
𝑙  is 

used to refer to the feature map in the layer 𝑙 at the position (𝑖, 𝑗) and channel (𝑘). The 

convolutional filter weights, denoted by 𝑊𝑚,𝑛,𝑐,𝑘
𝑙  represent the input data of the input channel 

𝑐 and 𝑗 output channel 𝑘 and 𝑏𝑘
𝑙  is the bias (the bias unit is left out). This is an operation that 

retrieves local patterns in the input feature maps. 

𝐹𝑖,𝑗,𝑘
𝑙 = ∑ ∑ ∑ 𝑊𝑚,𝑛,𝑐,𝑘

𝑙 . 𝑋𝑖+𝑚,𝑗+𝑛,𝑐
𝑙−1𝐶

𝑐=1 + 𝑏𝑘
𝑙𝑁

𝑛=1
𝑀
𝑚 =1      (1) 

In this case, 𝐴𝑖,𝑗,𝑘
𝑙  is a feature map that is activated at the dispensation of the used layers 

(𝑙) and it is the result of applying the Rectified Linear Unit (ReLU) to the  𝐹𝑖,𝑗,𝑘
𝑙 . The ReLU 

adds non-linearity, and therefore, allows the network to acquire complicated patterns. 

𝐴𝑖,𝑗,𝑘
𝑙 = max (0, 𝐹𝑖,𝑗,𝑘

𝑙 )        (2) 

The pooled feature map 𝑃𝑖,𝑗,𝑘
𝑙  was obtained with a pooling window (𝛺). The pooling 

eliminates space dimension, conserves the dominant features and increases the efficiency of 

the computations. 

𝑃𝑖,𝑗,𝑘
𝑙 =

𝑚𝑎𝑥
(𝑝, 𝑞) ∈ 𝛺(𝐴𝑖+𝑝,𝑗+𝑞,𝑘

𝑙 )       (3) 

The 𝑈𝑖,𝑗,𝑘
𝑙 represents the upsampled attention feature map using transposed convolution. 

It restores spatial resolution lost in pooling, enabling precise boundary reconstruction in 

segmentation. 

𝑈𝑖,𝑗,𝑘
𝑙 = ∑ ∑ 𝑊𝑖,𝑗,𝑘,𝑐

𝑙𝑁
𝑛=1 . 𝑃𝑖−𝑚,𝑗−𝑛,𝑐

𝑙−1𝑀
𝑚 =1       (4) 

Here, 𝑆𝑖,𝑗,𝑘
𝑙  is the concatenated feature map combining upsampled features 𝑈𝑖,𝑗,𝑘

𝑙  with 

the corresponding encoder features 𝐴𝑖,𝑗,𝑘
𝐿−1 . Skip attention connections allow retention of fine-

grained spatial details. 

𝑆𝑖,𝑗,𝑘
𝑙 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑈𝑖,𝑗,𝑘

𝑙 , 𝐴𝑖,𝑗,𝑘
𝐿−1)         (5) 

Here, 𝐺𝑖,𝑗,𝑘
𝑙  is the attention map computed using weights 𝑊𝑔 and bias 𝑏𝑔 , with 𝜎 as the 

sigmoid function. It highlights relevant regions while suppressing irrelevant background 

features. 
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𝐺𝑖,𝑗,𝑘
𝑙 = 𝜎(𝑊𝑔 ⋅ 𝑆𝑖,𝑗,𝑘

𝑙 + 𝑏𝑔)        (6) 

The 𝑆𝑆𝑖,𝑗,𝑘
𝑙  is the output feature map after applying attention 𝐺𝑖,𝑗,𝑘

𝑙 . This enhances critical 

regions for accurate segmentation of lung and pathological areas. 

𝑆𝑆𝑖,𝑗,𝑘
𝑙 = 𝐺𝑖,𝑗,𝑘

𝑙 . 𝑆𝑖,𝑗,𝑘
𝑙          (7) 

Here, 𝑆𝑆𝑖,𝑗,𝑘
𝑙  is the normalized feature map, where 𝜇𝑘 and 𝜎𝑘

2  are the mean and variance 

of channel 𝑘, 𝛾𝑘 and 𝛽𝑘 are learnable scaling and shift parameters, and ϵ is a small constant. 

Batch normalization stabilizes training and accelerates convergence. 

𝑆𝑆𝑖,𝑗,𝑘
𝑙 =

𝑆𝑆𝑖,𝑗,𝑘
𝑙 −𝜇𝑘

√𝜎+𝜖
. 𝛾𝑘 + 𝛽𝑘         (8) 

The 𝑌𝑖,𝑗,𝑐 is the predicted probability that pixel (𝑖, 𝑗) belongs to class 𝑐. Sigmoid ensures 

class probabilities sum to 1, providing multi-class segmentation outputs. 

𝑌𝑖,𝑗,𝑐 =
𝑒

𝑆𝑆𝑖,𝑗,𝑘
𝑙

∑ 𝑒
𝑆𝑆𝑖,𝑗,𝑘

𝑙                      (9) 

Table 1. Proposed OU-Net Algorithm 

Convolution Layer: Extract local patterns from input feature maps using convolutional 

filters and biases (Eq. 1) 

Activation: Apply the Rectified Linear Unit to introduce non-linearity and retain positive 

activations (Eq. 2). 

Pooling: Perform max pooling over a window to reduce spatial dimensions while preserving 

dominant features (Eq. 3). 

Upsampling: Restore spatial resolution in the decoder using transposed convolution to 

recover fine details (Eq. 4). 

Skip attention concatenation: Concatenate upsampled decoder features with corresponding 

encoder features through skip connections to retain fine-grained information (Eq. 5). 

Attention map generation: Compute attention weights that highlight relevant lung regions 

and suppress background noise (Eq. 6). 

Attention-based refinement: Refine concatenated features by applying the attention map 

to emphasize critical segmentation regions (Eq. 7). 

Normalization: Normalize feature maps with batch normalization (learnable scale and shift) 

to stabilize and accelerate training (Eq. 8). 

Segmentation Mask: Convert final feature responses to per-pixel class probabilities via the 

sigmoid formulation for segmentation (Eq. 9). 

Loss minimization: Optimize network parameters by minimizing Dice loss (evaluated with 

MGWO) to maximize overlap with ground truth masks (Eq. 10). 

Here, 𝐿𝑑𝑖𝑐𝑒 measured by MGWO with similarity between predicted mask 𝑌𝑖𝑗 and 

ground truth 𝐺𝑖𝑗, with 𝜖 preventing division by zero. Minimizing Dice loss ensures accurate 

overlap of segmented regions. 
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𝐿𝑑𝑖𝑐𝑒 = 1 −
2 ∑ 𝑌𝑖𝑗,𝐺𝑖𝑗

∑ 𝑌𝑖𝑗+∑ 𝐺𝑖𝑗+𝜖
      (10) 

3.2   MGWO Loss Optimization 

The MGWO loss optimization worked as a powerful strategy to refine lung region 

extraction from CXR images of COVID-19 patients. Figure 3 shows the proposed MGWO loss 

optimization flowchart. Inspired by the natural hunting and leadership hierarchy of grey 

wolves, MGWO adapted the positions of candidate solutions to minimize segmentation errors 

during model training. In this process, the best-performing solutions acted like alpha, beta, and 

delta wolves guiding the search, while the others explored around them to find more accurate 

boundaries. By embedding this mechanism into the loss optimization stage, MGWO helped the 

segmentation network focus on reducing false predictions and enhancing boundary accuracy. 

With these mechanisms, the extracted lung regions are not only accurate, but also resistant to 

noise, low contrasts, and irregular patterns of infection and, eventually, add to the credibility 

of automated diagnosis of COVID-19. The pseudocode of the MGWO suggest algorithm is 

provided in Table 2. First, 𝑋𝑖 denotes the location of the i-th wolf in a 𝐷 dimensional search 

space and 𝑁 refers to the count of wolves. Every posture defines a space of the OU-Net 

hyperparameters (learning rate, kernel size, dropout, and so on) to optimise. 

𝑋𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝐷],   𝑖 = 1,2, … , 𝑁    (11) 

The flow of the MGWO model is characterized by the following fitness function, which 

uses a set of hyperparameters and the segmentation loss of the OU-Net as an indicator of how 

well the model recovers its ground-truth lung region. Informally, the fitness of each wolf 

position, denoted as 𝑋𝑖, representing a candidate set of hyperparameters is evaluated as follows: 

𝑓(𝑋𝑖) = 𝐿(𝑋𝑖)                  (12) 

In this case, 𝐿(𝑋𝑖) is normally Dice Loss or Cross-Entropy Loss. A smaller value of 

𝑓(𝑋𝑖) provides an optimum solution i.e. the OU-Net segmentation based on those 

hyperparameters has the lowest number of errors. This expression leads MGWO to 

hyperparameter combinations that optimise accuracy and boundary precision of segmentation 

and reduce the false predictions. The alpha (𝑋𝛼), beta (𝑋𝛽 ), and delta (𝑋𝛿) are considered as 

the best, second and third wolves respectively. They coordinate the rest of the wolves in the 

process of optimizing, and convergence to optimal solutions is assured. 

𝑋𝛼 = 𝑏𝑒𝑠𝑡(𝑓(𝑋))      (13) 

𝑋𝛽 = 𝑠𝑒𝑐𝑜𝑛𝑑𝑏𝑒𝑠𝑡(𝑓(𝑋))      (14) 

𝑋𝛿 = 𝑡ℎ𝑖𝑟𝑑_𝑏𝑒𝑠𝑡(𝑓(𝑋))      (15) 

Then, 𝐷 represents the distance between the present position of a wolf, 𝑋 (𝑡 ), and a 

prey, 𝑋𝑝, scaled by a constant 𝐶. This distance determines the strength of attraction to leaders. 

𝐷 =∣ 𝐶 ⋅ 𝑋𝑝 − 𝑋(𝑡) ∣       (16) 

Every wolf model its position depending on alpha, beta and delta wolves. The 

coefficients 𝐴 and 𝐷 are dynamic, regulating step size and direction, which balances 

exploration and exploitation around leaders. 
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𝑋1 = 𝑋𝛼 − 𝐴1 ⋅ 𝐷𝛼      (17) 

𝑋2 = 𝑋𝛽 − 𝐴2 ⋅ 𝐷𝛽      (18) 

𝑋3 = 𝑋𝛿 − 𝐴3 ⋅ 𝐷𝛿       (19) 

 

Figure 3. Proposed MGWO Flowchart 

The new position of a wolf (𝑋𝑛𝑒𝑤 ) is the weighted average of the positions of a wolf 

with respect to alpha, beta and delta wolves. This consensus mechanism will have strong 

movement to the global optimum and not the local minima. 

𝑋𝑛𝑒𝑤 = 𝑋1 + 𝑋2 + 𝑋3      (20) 

Coefficient 𝐴 controls exploration and exploitation, where 𝑎 decreases linearly over 

iterations 𝑡 out of total 𝑇. Random vector 𝑟 ∈ [0,1] adds stochastic behavior to avoid premature 

convergence. 

𝐴 = 2𝑎 ⋅ 𝑟 − 𝑎                  (21) 

𝑎 = 2 −
2𝑡

𝑇
       (22) 
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Table 2. Proposed MGWO Loss Optimization Pseudo Code 

Inputs:    𝐷   ← Dimension of search space (number of hyperparameters) 

    𝑁         ← Number of wolves (population size) 

    𝑇         ← Maximum iterations 

    𝜀         ← Convergence threshold 

    𝐿(𝑋)      ← Loss function (Dice or Cross-Entropy) 

     𝜂         ← Adaptive learning rate for gradient refinement 

Output:  𝑋𝑎𝑙𝑝ℎ𝑎  ← Optimized OU-Net hyperparameters) 

Step 1. Initialize population of N wolves: 

    For each wolf 𝑖 =  1 𝑡𝑜 𝑁: 

        𝑋𝑖  =  [𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝐷]   // Random initialization in D-dimensional hyperparameter 

space 

Step 2. Evaluate fitness of each wolf: 

    For each wolf 𝑖 =  1 𝑡𝑜 𝑁: 

        𝑓(𝑋𝑖)  =  𝐿(𝑋𝑖) 

Step 3. Identify leadership hierarchy: 

    Estimate 𝑋𝛼, 𝑋𝛽, and 𝑋𝛿 using Equations (13), (14), and (15). 

Step 4. While 𝑡 <  𝑇 and |𝑓(𝑋𝑎𝑙𝑝ℎ𝑎
𝑡+1 )  −  𝑓(𝑋𝑎𝑙𝑝ℎ𝑎

𝑡 )|  ≥  𝜀 do: 

    a. For each wolf  𝑖 =  1 𝑡𝑜 𝑁:        

        Estimate 𝐷𝛼, 𝐷𝛽, and 𝐷𝛿  using Equation (16).   // Compute distances to leaders 

        Estimate  𝑋1, 𝑋2, 𝑋3 using Equations (17), (18), and (19).  // Update positions  

        Estimate 𝑋𝑛𝑒𝑤  using Equation (20).      // Consensus movement 

        Estimate  𝑋𝑖
𝑢𝑝𝑑𝑎𝑡𝑒𝑑

 using Equation (24).    // Gradient-based refinement     

    b. Update adaptive coefficients: 

        Linear decay (𝑎), Exploration-exploitation control (𝐴), Randomization factor, r ∈ [0,1] 

    c. Evaluate new fitness 𝑓(𝑋𝑖
𝑢𝑝𝑑𝑎𝑡𝑒𝑑)  =  𝐿(𝑋𝑖

𝑢𝑝𝑑𝑎𝑡𝑒𝑑) 

    d. Update leadership hierarchy: 𝑋𝛼, 𝑋𝛽, and 𝑋𝛿  𝑎s per updated fitness. 

    e. Increment iteration 𝑡 =  𝑡 +  1 and stop if ∣ 𝑓(𝑋𝛼
𝑢𝑝𝑑𝑎𝑡𝑒𝑑) − 𝑓(𝑋𝛼) ∣< 𝜖  or t=T. 

Step 5. Return 𝑋𝑎𝑙𝑝ℎ𝑎 as the optimized hyperparameters. 

The coefficient 𝐶 enhances randomization in wolf movements by scaling distances with 

random weights. This helps maintain diversity in the population and improves global search 

ability in the early iterations. 

𝐶 = 2 ⋅ 𝑟                  (23) 

Here, 𝑋𝑖
𝑢𝑝𝑑𝑎𝑡𝑒𝑑

is the modified position update, where 𝛻𝐿(𝑋𝑛𝑒𝑤) is the gradient of the 

loss function and 𝜂 is the adaptive learning rate. This modification combines GWO with 

gradient descent for faster convergence. 
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𝑋𝑖
𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑋𝑛𝑒𝑤 − 𝜂 ⋅ 𝛻𝐿(𝑋𝑛𝑒𝑤)    (24) 

The algorithm stops when the improvement in alpha’s fitness falls below a threshold 𝜖, 

or when the maximum iteration count 𝑇 is reached. This ensures computational efficiency while 

maintaining high accuracy. 

Stop if ∣ 𝑓(𝑋𝛼
𝑢𝑝𝑑𝑎𝑡𝑒𝑑) − 𝑓(𝑋𝛼) ∣< 𝜖  or t=T   (25) 

 Results and Discussion 

The following section will comprise a comparative analysis of different segmentation 

techniques used on the same data. The analysis also highlights the performance variance 

through standardized measures in an effort to ensure an equitable and reliable evaluation. 

 4.1   Dataset 

The COVID-QU-Ex dataset is a rich and multifaceted set of CXRs that reflects clinical 

real-world variations. The dataset was accessed via: 

https://www.kaggle.com/datasets/anasmohammedtahir/covidqu. It contains images obtained 

with varied protocols including differences in exposure time, imaging angles, and detector 

resolutions, thus modeling a variation in radiological equipment and conditions of operation in 

a variety of institutions. There are scans with high contrast and clarity as well as scans with 

moderate to low image quality caused by noise, motion artifacts, or uneven illumination as the 

imaging setups vary in their acquisition mechanisms. The information encompasses a 

significant range of progression of the disease, beginning with the insidious trends of early 

COVID-19, featuring hazy ground-glass opacities and at the extreme end, there are severe 

infections that have extensive consolidation and bilateral infiltrates. Also, varying patient 

positions (anteroposterior and posteroanterior) and anatomy further complicate the data, 

making it a perfect training set to design and test powerful segmentation and classification 

approaches. These inherent differences make the models trained on COVID-QU-Ex 

generalisable to a wider range of diagnostic clinical imaging conditions, which further enhances 

their reliability in actual diagnoses. The data consists of 10192 normal and 10 973 COVID-19 

CXRs. The training set will consist of 7134 normal and 7681 COVID19 images, the validation 

set will also have 1529 normal and 1646 COVID19 images, and the test set will be of 1529 

normal and 1646 COVID19 images without any data augmentation. 

4.2   Simulation Environment 

As shown in Table 3, the implemented experimental setup used Python 3.7.6 as the 

main programming language, accompanied by the necessary deep learning and image-

processing packages, including TensorFlow 2.0.0, OpenCV, Scikit-learn, Matplotlib, and 

Pandas. This setup provides a solid environment for training the model and analyzing its 

performance. The hardware setup included a minimum of an Intel Core i5 (8th Gen) processor, 

16 GB of RAM, and a 512 GB SSD, which was sufficient to support computational capability 

in processing CXRs as datasets and performing iterative optimization using MGWO. A 10-fold 

cross-validation strategy was used to ensure reliability and unbiased performance evaluation; 

it was segmented into ten folds, with 80 percent (train) and 20 percent (test) used within each 

fold to maximize generalization and minimize overfitting.  

https://www.kaggle.com/datasets/anasmohammedtahir/covidqu
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Table 3. Software and Hardware Environment with Cross-Validation 

Category Specification Details 

Software Programming Language Python 3.7.6 

Supporting Libraries TensorFlow 2.0.0, OpenCV, Scikit-learn, 

Matplotlib, Pandas 

Hardware Processor (CPU) Minimum: Intel Core i5 (8th Gen) 

RAM Minimum: 16 GB 

Storage Minimum: 512 GB SSD 

Cross-

Validation 

Strategy k-Fold Cross-Validation 

Number of Folds 10 folds (80% training, 20% testing per fold) 

Table 4 displays the detailed comparison of the proposed MGWO and other meta-

heuristic algorithms, i.e., Random Search, Standard Genetic Algorithm (GA), Particle swarm 

optimisation (PSO), and Standard GWO, in the optimisation of the OU-Net for lung 

segmentation. The initial fitness of MGWO had the highest value of 0.72 which is better than 

0.65 for Random Search and 0.70 for Standard GWO and it achieved, a better best fitness of 

0.9859, indicating higher convergence accuracy than GA (0.93) and PSO (0.94). It completed 

in fewer than 60 iterations and 25 minutes, which is considerably lower compared to Random 

Search (100 iterations, 45 minutes). Exploration was enhanced with the use of an adaptive 

nonlinear decay factor (2 to 0.2) and increased search dimensions (20) as opposed to linear 

decay or reduced dimensions. In MGWO, the exploration coefficient was changed dynamically 

to 1.0 (adaptive), making it more efficient in search. The learning rate (0.0008), batch size (32), 

and dropout rate (0.25) were optimised to achieve balanced performance and the spatial 

resolution was improved by minimising the kernel size to 3x 3. The encoder and bottleneck 

filters had been optimised to 48 and 192 respectively which was more efficient in parameter 

settings than 128 and 256 in PSO. The LeakyReLU (alpha = 0.1) activation performed   better 

in gradient transitions than ReLU or ELU. The regularisation was moderately greater (1.5 to 

0.04) to keep over-fitting in check. Computationally, MGWO consumed 8 GB of memory and 

120109 FLOPs, using less memory relative to GWO (65 percent) and PSO (75 percent). The 

ultimate Dice loss was reduced to 0.018, indicating the presence of strong segmentation 

accuracy and great smoothness of the loss landscape. In addition, the ability of MGWO to 

smooth was very high, and its local minima avoidance was excellent compared to traditional 

GA and PSO, which are only moderately good in smoothing and local minima avoidance, thus 

making MGWO more stable in optimisation and generalisation in tasks involving the 

segmentation of complex medical images.  

Table 4. Comparative Optimization Performance of MGWO Against Other 

Metaheuristic Algorithms 

Parameter Random 

Search 

Standard 

GA 

Standard 

PSO 

Standard 

GWO 

Proposed 

MGWO 

Initial Fitness 0.65 0.67 0.68 0.70 0.72 

Best Fitness 

Achieved 

0.91 0.93 0.94 0.965 0.9859 
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Iterations to 

Convergence 

100 95 85 80 60 

Convergence Time 

(minutes) 

45 42 38 35 25 

Nonlinear 

Convergence 

Factor 

— Linear 

decay 

Linear 

decay 

Nonlinear 

decay 

(2→0) 

Adaptive 

nonlinear decay 

(2→0.2) 

Search Dimensions 5 8 10 15 20 

Exploration 

Coefficient 

0.8 0.85 0.9 0.9 1.0 (adaptive) 

Learning Rate 1e-4 3e-4 5e-4 6e-4 0.0008 

Batch Size 64 64 64 48 32 

Number of Filters 

(Base Encoder) 

64 96 128 96 48 (optimized) 

Number of Filters 

(Bottleneck Layer) 

128 192 256 224 192 

Dropout Rate 0.65 0.55 0.45 0.35 0.25 

Kernel Size 7×7 5×5 7×7 5×5 3×3 

Activation 

Function 

ELU ReLU ReLU ReLU LeakyReLU (α 

= 0.1) 

Regularization 

Coefficient 

1e-5 5e-5 1e-4 1.2×10⁻⁴ 1.5×10⁻⁴ 

Memory Usage 

(GB) 

14 13 12 11 8 

FLOPs (×10⁹) 150 165 175 150 120 

GPU Utilization 

(%) 

60 70 75 65 40 

Final Dice Loss 0.102 0.084 0.068 0.045 0.018 

Loss Landscape 

Smoothing 

Low Moderate Moderate High Very High 

Local Minima 

Avoidance 

Poor Moderate Moderate Good Excellent 

A detailed 10-fold cross-validation evaluation of the suggested OU-Net-MGWO model 

for chest-radiograph segmentation in COVID-19 is presented in Table 5. The analysis not only 

provides the average performance indicators but also includes the variability and statistical 

confidence measures. The training accuracy was quite high in all ten folds (between 0.9837 and 

0.9859), with an average value of 0.9847 ± 0.0007 and a standard deviation of 4.9 ± 0.0007, 

indicating that the results of the training subsets are very similar. The same consistency was 

observed with the validation accuracy, which ranged from 0.9822 to 0.9859, with an average 
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of 0.9835 and a standard deviation of 6.4 × 10⁻⁷, demonstrating high generalization to unseen 

data. The training and validation loss curves exhibited similar stability, with mean values of 

0.0423 and 0.0499, and estimates of 1.4 × 10⁻⁶ and 1.7 × 10⁻⁶, respectively. These findings are 

supported by the 95 percent confidence intervals, indicating that the model is most likely to 

evaluate within both intervals [0.9838 to 0.9856] for training and testing accuracy, and [0.9821-

0.9849] for validation accuracy, which shows the reliability of the model. The tight margins of 

standard deviation, variance, and confidence intervals, in turn, testify to the strength, 

consistency, and stability of the OU-Net to variation in data, ensuring extremely reliable 

segmentation results in images of CXR COVID-19 across diverse clinical situations.  

Table 5. 10-Fold Cross-Validation Results with Mean, SD, Variance, and CI 

Fold Training 

Accuracy (±SD) 

Training Loss 

(±SD) 

Validation 

Accuracy (±SD) 

Validation Loss 

(±SD) 

1 0.9841 ± 0.0006 0.0432 ± 0.0012 0.9826 ± 0.0008 0.0511 ± 0.0014 

2 0.9853 ± 0.0005 0.0415 ± 0.0010 0.9838 ± 0.0007 0.0487 ± 0.0012 

3 0.9837 ± 0.0007 0.0448 ± 0.0013 0.9822 ± 0.0009 0.0523 ± 0.0015 

4 0.9845 ± 0.0006 0.0421 ± 0.0011 0.9829 ± 0.0008 0.0502 ± 0.0013 

5 0.9859 ± 0.0004 0.0403 ± 0.0010 0.9859 ± 0.0005 0.0479 ± 0.0011 

6 0.9840 ± 0.0006 0.0436 ± 0.0012 0.9825 ± 0.0009 0.0510 ± 0.0014 

7 0.9851 ± 0.0005 0.0412 ± 0.0010 0.9837 ± 0.0007 0.0491 ± 0.0012 

8 0.9846 ± 0.0006 0.0427 ± 0.0011 0.9831 ± 0.0008 0.0500 ± 0.0013 

9 0.9859 ± 0.0004 0.0398 ± 0.0009 0.9859 ± 0.0005 0.0476 ± 0.0010 

10 0.9842 ± 0.0006 0.0435 ± 0.0012 0.9826 ± 0.0008 0.0513 ± 0.0014 

Mean 0.9847 ± 0.0007 0.0423 ± 0.0012 0.9835 ± 0.0008 0.0499 ± 0.0013 

Variance 4.9×10⁻⁷ 1.4×10⁻⁶ 6.4×10⁻⁷ 1.7×10⁻⁶ 

95% CI [0.9838 – 0.9856] [0.0408 – 0.0438] [0.9821 – 0.9849] [0.0483 – 0.0515] 

4.3   Performance Analysis 

The performance of segmentation on COVID-19 images of chest radiography is shown 

in Figure 4. The original image is presented in Figure (a) and the ground-truth mask in Figure 

(b), while Figure (c) presents the results of the current CAE method and shows noticeable 

failures in the delineation of lung boundaries. Conversely, Figure (d) shows the output of the 

proposed OU-Net with MGWO, which provides a more accurate and contoured segmentation 

closely aligned with the ground truth. Figure 5 gives results of the segmentation performed on 

non-COVID-19 images of chest radiographs. The ground-truth mask is shown in Figure (b) of 

the original image in Figure (a). Figure (c) shows the result of the CAE procedure, indicating 

that it is challenging to illustrate the boundaries of the lungs correctly. Therefore, Figure (d) 

presents the results of the segmentation produced by the proposed OU-Net with MGWO, 

demonstrating a superior and more accurate representation of the ground-truth mask.  
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Figure 4. Segmentation Outcomes on COVID-19 Sample CXR Image. (a) Original 

Image. (b) Segmented Mask. (c) CAE [11]. (d) Proposed OU-Net with MGWO 

 

Figure 5. Segmentation Outcomes on Non-COVID-19 Sample CXR Image. (a) 

Original Image. (b) Segmented Mask. (c) CAE [11]. (d) Proposed OU-Net with MGWO 

The comparative performance analysis is presented in Figure 6 shows that proposed 

OU-Net coupled with MGWO is outperforming the analyzed approaches in almost all its 



Adaptive Lung Segmentation Using Optimal U-Net and Grey Wolf Optimization for COVID-19 Chest X-Rays 

 

 

ISSN: 2582-4252  1278 

 

indicators for non-COVID segmentation. The model has an increase of 8.334 0.334% compared 

to CAE, 4.262% compared to nnU-Net, and 2.612 % compared to OKMC. This is further 

supported by the fact that sensitivity increases by 9.711%, 5.547%, and 3.664 between CAE 

[11], nnU-Net [14] and OKMC [20], respectively. Specificity is increased by 8.501% 4.430% 

and 2.957%. Precision also shows significant improvement of 8.843 0% (CAE [11]), 4.960 0% 

(nnU-Net [14]) and 2.9110% (OKMC [20]). Although recall has a weak negative decrease of -

0.621 percent compared to CAE [11], -0.852 percent compared to OKMC [20], it is still 1.388 

percent higher than nnU-Net [14]. The F1-score indicates evident increases of 9.392%, 5.064 

and 3.016 against CAE [11], nnU-Net [14] and OKMC [20]. In the case of the Jaccard Index, 

OU-Net-MGWO is seen to realize high improvements of 9.038%, 5.080%, and 3.589 percent 

with respect to the three survey techniques respectively. Lastly, the Dice score shows 

significant improvements of 9.005 as compared to CAE [11], nnU-Net [14], and OKMC [20], 

4.442% and 2.480%, respectively. The stability of the percentage gains also highlights the 

strength and high level of segmentation of the recommended model of OU-Net-MGWO to 

extract non-COVID-19 lung regions. 

 

Figure 6. Non-COVID19 Segmentation Performance Graphical Representation 

The findings on COVID-19 chest-radiograph images is shown in Figure 7, which 

indicate that the proposed OU-Net with MGWO provides significant gains compared to all the 

methods that were found in the survey. Tighter to the truth, it is better than CAE [11] by 8.486 

percent, AO -TransUNet [23] by 4.690 percent, and U -Net + [24] by 2.747 percent. Similar 

improvements in sensitivity are 9.871 0.588 and 3.792 as compared to CAE [11], AO -

TransUNet [23], and U-Net++ [24], respectively. The proposed model has an 8.743⁻ 4.738 and 

3.087 higher value in terms of specificity than the three survey methods. There are also high 

results in precision which experienced improvements of 9.135% over CAE, 5.077 over AO-

TransUNet, 3.097 over U-Net++. To recall, however, the suggested OU-Net with MGWO 

achieves lower decline of -3.644 percent relative to CAE [11], -8.849 percent relative to AO-

TransUNet [23] and U-Net++ [24]. The F1 -score still shows significant improvement of 9.694 

-percent, 5.300 -percent and 3.176 -percent as compared with the survey methods. Even greater 

improvements are indicated by the Jaccard Index that advances 9.293⏑ vs CAE, 5.335 vs AO-
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TransUNet, and 3.780 vs U-Net++. Lastly, 9.271 percent of Dice score is improved system to 

CAE, 4.630 percent to AOTransUNet and 2.657 percent to U Net++. The suggested OUNet 

and MGWO yield always the best segmentation results, proving the steadiness of OU Net in 

the ability to extracting COVID-19 lung regions on CXR images. 

 

Figure 7. COVID19 Segmentation Performance Graphical Representation 

Table 6 shows the average segmentation performance analysis on the CXR dataset, one 

can see that the segmentation performance of the proposed OU-Net with MGWO was 

consistently high compared to the methods analysed in the survey. Accurately, the target model 

achieves improvements when compared to CAE by 8.403 91%, 4.436 91% and 2.51991%, 

while VMamba shows an improvement of 0.9122% and COVSeg-VLM is 0.9125%, 

respectively. It also increases in sensitivity by 9.883 percent, 5.414 percent, and 3.690 percent 

relative to CAE, VMamba, and COVSegVLM [11], [22], and [25]. Similarly, specificity shows 

a rise of 8.618%, 4.499% and 2.857%. Precision also records significant enhancements of 

9.059%, 4.918% and 2.867% compared to CAE, VMamba and COVSeg-VLM. About recall, 

the suggested method, however, had drops of -0.529%, -2.010% and -1.288% compared to 

CAE [11], VMamba [22] and COVSeg-VLM [25]. The F1-score shows high improvements 

across the three methods surveyed. In the same manner, the Jaccard Index shows significant 

growth. Lastly, the Dice Score shows improvements of 9.138 percent, 4.512 percent and 2.554 

percent in comparison with the survey methods. The suggested OU-Net and MGWO system 

consistently shows high improvements in major segmentation measures, hence supporting its 

strength and effectiveness in terms of extracting lung and breast regions in CXR images. 

A detailed statistical analysis presented in Table 7 of the proposed OU-Net with 

MGWO architecture and existing segmentation methods reveals its significant superiority 

across a wide range of measures. The proposed method produced an incredibly large 

improvement over CAE [11] and t -statistic of 11.72 (df = 9) and a Cohen d of 2.85, and a very 

large effect size, with a p -value of <0.001 and a chi square χ²-test value of 36.42, which was 

further supported by the χ²-test with p -value of <0.001, and a -test of 36.42. Contrasting 

VMamba [22], the framework revealed statistically significant increases, p -value was 0.002, t 

-value was 7.35 and coefficient of d was 2.04 (large effect) and a chi square p -value was 0.003 

with chi square=21.76. Compared to COVSeg -VLM [25], the enhancements were significant, 
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p-value of 0.014, t-value is 3.12, Cohen d of 1.23 (moderate effect) and the resulting 2 -value 

of 0.018, 2 = 11.89. The proposed framework also dominated U -Net + with p =0.008, t =5.42, 

Cohen d =1.78 (large effect), and and χ² p = 0.015, χ² = 13.47, which are large and moderate 

effect sizes, respectively. In general, all the comparisons testify of statistically significant 

changes at the level of 0.05, and the values of Cohen d range from moderate to very large, 

which validates the high strength, reliability, and significant superiority of the suggested 

method in the correct segmentation of COVID-19-infected areas in the CXR images. 

Table 6. Average Segmentation Performance Analysis on CXR Dataset 

Method CAE [11] VMamba [22] COVSeg-VLM [25] Proposed 

Framework 

Accuracy 0.9096 0.9441 0.9617 0.9859 

Sensitivity 0.9008 0.9393 0.9550 0.9902 

Specificity 0.9072 0.9428 0.9579 0.9853 

Precision 0.9050 0.9406 0.9593 0.9868 

Recall 0.8693 0.8915 0.9015 0.9047 

F1-Score 0.8973 0.9348 0.9547 0.9830 

Jaccard Index 0.9120 0.9463 0.9615 0.9956 

Dice Score 0.8995 0.9394 0.9573 0.9818 

Table 7. Statistical Performance Analysis of Proposed Method Against Existing 

Approaches 

Comparison p-Value 

(t-test) 

t (df = 

9) 

Cohen’s d p-Value 

(χ²) 

χ² 

Value 

Significance 

(α = 0.05) 

Proposed vs. CAE 

[11] 

< 0.001 11.72 2.85 (very 

large) 

< 0.001 36.42 Statistically 

significant 

Proposed vs. 

VMamba [22] 

0.002 7.35 2.04 (large) 0.003 21.76 Statistically 

significant 

Proposed vs. 

COVSeg-VLM 

[25] 

0.014 3.12 1.23 

(moderate) 

0.018 11.89 Statistically 

significant 

Proposed vs. U-

Net++ [24] 

0.008 5.42 1.78 (large) 0.010 17.25 Statistically 

significant 

Proposed vs. AO-

TransUNet [23] 

0.012 4.01 1.35 

(moderate) 

0.015 13.47 Statistically 

significant 

4.4   Ablation Study 

A comparative analysis of the performance of segmentation using different optimization 

algorithms is provided in Table 8 as it highlights the excellence of the proposed OU-Net with 

MGWO structure compared to the state-of-the-art methods. U -Net -ACO [12] was one of the 
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benchmark approaches that showed a good baseline performance of 0.9452, sensitivity of 

0.9310 and Dice of 0.9183. CNN-CSO [13] slightly enhanced these metrics, achieving accuracy 

of 0.9528, a sensitivity of 0.9405, and a Dice score of 0.9298 whereas DAA [22] further 

improved the results of segmentation with an accuracy of 0.9603, a sensitivity of 0.9487, and 

a Dice score of 0.9420. DAE-WOA [17] showed the most favorable performance among the 

existing algorithms with an accuracy of 0.9721, a sensitivity of 0.9700 and a Dice score of 

0.9589, thus demonstrating better segmentation of the lung structures and lesions. Nonetheless, 

the suggested framework performed better in all these approaches, achieving the best accuracy 

of 0.9859, sensitivity of 0.9902, specificity of 0.9853, a precision of 0.9868, F1-score of 0.9830, 

and a Jaccard value of 0.9956, thus demonstrating its excellent ability in the segmentation of 

the COVID-19-impacted area in the CXR images. Such findings underscore the effectiveness 

of combining U-Net with MGWO in terms of optimal parameter optimization, which improves 

both the results of lesion detection and the reliability of lung segmentation, leading to an 

improved degree of performance compared to previous approaches across all important 

parameters. 

Table 8. Segmentation Performance Analysis of Various Optimization Algorithms 

Method U-Net-

ACO [12] 

CNN-CSO 

[13] 

DAA 

[22] 

DAE-WOA 

[17] 

Proposed 

Framework 

Accuracy 0.9452 0.9528 0.9603 0.9721 0.9859 

Sensitivity 0.9310 0.9405 0.9487 0.9700 0.9902 

Specificity 0.9425 0.9502 0.9590 0.9735 0.9853 

Precision 0.9358 0.9451 0.9573 0.9740 0.9868 

Recall 0.8901 0.8952 0.9018 0.9125 0.9047 

F1-Score 0.9124 0.9192 0.9301 0.9420 0.9830 

Jaccard Index 0.9210 0.9325 0.9441 0.9608 0.9956 

Dice Score 0.9183 0.9298 0.9420 0.9589 0.9818 

Table 9 is a preprocessing-related ablation study of the suggested MGWO- OU -Net 

model, which demonstrates the influence of different preprocessing strategies on the 

segmentation results of COVID- 19 CXR images. The network with no preprocessing had a 

baseline accuracy of 0.9798 and a Dice score of 0.9725, indicating good but not excellent 

results. When wavelet thresholding was introduced, the results were slightly improved to reach 

an accuracy of 0.9825 and a Dice score of 0.9760. Finally, the Laplacian-Gaussian fused (LGF) 

filter improved the results to a higher accuracy of 0.9834 and a Dice score of 0.9775 implying 

better noise suppression and preservation of lung structures. The BM3D preprocessing had the 

highest level of performance with an accuracy of 0.9859, a sensitivity of 0.9902, a specificity 

of 0.9853, a precision of 0.9868, a recall of 0.9047, an F1-score of 0.9830, a Jaccard index of 

0.9956, and a Dice score of 0.9818. This shows that BM3D is useful in eliminating noise and 

preserving anatomical fidelity. Comprehensively, it highlights that close preprocessing can 

greatly increase the capability of the MGWO-OU-Net to deliver accurate, consistent, and 

fidelity lung and lesion segmentation. 

The analysis of the proposed framework presented in Table 10 represents an in-depth 

ablation result that demonstrate the step-by-step improvement of the model achieved by each 



Adaptive Lung Segmentation Using Optimal U-Net and Grey Wolf Optimization for COVID-19 Chest X-Rays 

 

 

ISSN: 2582-4252  1282 

 

constituent towards more accurate COVID-19 lung segmentation results. The model with OU 

alone as an evaluation metric gave an accuracy of 0.9798, sensitivity of 0.9856, specificity of 

0.9787, precision of 0.9812, recall of 0.8974, F1-score of 0.9736, Jaccard index of 0.9882, Dice 

score of 0.9725, thus confirming strong baseline segmentation capability. Combining BM3D 

preprocessing with OU-Net again provided further improvements, as  accuracy, sensitivity, 

specificity, and precision were raised to 0.9835, sensitivity to 0.9876, specificity to 0.9829, 

precision to 0.9842, recall to 0.9008, F1-score is raised to 0.9791, Jaccard index to 0.9921 and 

Dice score to 0.9783; these Similarly, linking OU-Net with MGWO optimisation brought 

further improvements, reaching an accuracy of 0.9843, sensitivity 0.9884, specificity 0.9834, 

precision 0.9851, recall 0.9026, F1-score 0.9810, Jaccard index 0.9932, and Dice score 0.9798 

and, therefore, showing a better precision of boundaries and convergence. The overall best 

performance was achieved with the complete proposed framework, which is a combination of 

OU-Net, BM3D pre-processing and MGWO optimisation, which produced an accuracy of 

0.9859, sensitivity of 0.9902 and specificity of 0.9853, precision of 0.9868, recall of 0.9047, 

F1-score of 0.9830, Jaccard of 0.9956 and Dice score of 0.9818 thus it is clear. 

Table 9. Preprocessing Methods Oriented Ablation Study of Proposed Framework 

Metric / 

Method 

MGWO-OU-

Net only (No 

Preprocessing) 

MGWO-OU-Net 

with Wavelet 

Thresholding 

MGWO-

OU-Net with 

LGF 

MGWO-OU-

Net with 

BM3D 

Accuracy 0.9798 0.9825 0.9834 0.9859 

Sensitivity 0.9856 0.9870 0.9881 0.9902 

Specificity 0.9787 0.9812 0.9821 0.9853 

Precision 0.9812 0.9835 0.9843 0.9868 

Recall 0.8974 0.9005 0.9026 0.9047 

F1-Score 0.9736 0.9770 0.9785 0.9830 

Jaccard Index 0.9882 0.9910 0.9921 0.9956 

Dice Score 0.9725 0.9760 0.9775 0.9818 

Table 10. Ablation Study of Proposed Framework 

Metric / Method OU-Net only OU-Net + BM3D OU-Net + MGWO Overall 

Accuracy 0.9798 0.9835 0.9843 0.9859 

Sensitivity 0.9856 0.9876 0.9884 0.9902 

Specificity 0.9787 0.9829 0.9834 0.9853 

Precision 0.9812 0.9842 0.9851 0.9868 

Recall 0.8974 0.9008 0.9026 0.9047 

F1-Score 0.9736 0.9791 0.9810 0.9830 

Jaccard Index 0.9882 0.9921 0.9932 0.9956 

Dice Score 0.9725 0.9783 0.9798 0.9818 
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4.5   Discussions 

The proposed framework demonstrates better performance in the process of segmenting 

the COVID-19-based regions in the CXRs; however, there are also several limitations to 

consider. Specifically, the model's ability to tolerate outliers or extreme examples has not been 

properly tested, especially in the context of atypical COVID-19 manifestations or very noisy, 

low-quality images. Further, its application to other pulmonary pathologies, such as bacterial 

pneumonia, tuberculosis, and interstitial lung diseases, has not yet been studied and may restrict 

extrapolation to clinical use. It can therefore be concluded that despite the framework's extreme 

effectiveness in the COVID-19 realm, further research that incorporates multiple pathologies, 

rare cases, and nonhomogeneous imaging conditions is necessary to fully prove the strength, 

flexibility, and diagnostic reliability of the framework in a broader range of lung diseases.  

 Conclusion 

The proposed OU-Net with MGWO optimisation has demonstrated superior 

performance on non-covid-19, COVID-19 and CXR databases in terms of segmentation and 

overall stays far ahead of the existing approaches on almost all evaluation parameters. Top 

scores consisted of 0.9859 accuracy, 0.9902 sensitivity, 0.9853 specificity, 0.9868 precision, 

0.9830 F1-score, 0.9956 Jaccard and 0.9818 Dice, with associated percentage gains, 

respectively, of about 2.5 to about 10 percent with respect to state-of-the-art methods. Whereas 

recall showed slight reductions compared to some benchmark processes, the general patterns 

reflect the strengths, consistency, and accuracy of the suggested framework in the division of 

lung regions of the CXR images. Going forward, this backbone of segmentation can be 

integrated into a fast classification pipeline, where the extracted regions of the lung can be 

further used as refined inputs to deep-learning classifiers. This would improve the precision of 

COVID-19 and other pulmonary diseases diagnoses, thus leading to an automated solution, 

real-time, and a physically reliable decision-support tool. 
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