
Journal of Innovative Image Processing (ISSN: 2582-4252)  
www.irojournals.com/iroiip/    

Journal of Innovative Image Processing, December 2025, Volume 7, Issue 4, Pages 1286-1303 1286 
DOI: https://doi.org/10.36548/jiip.2025.4.011 

Received: 15.09.2025, received in revised form: 13.10.2025, accepted: 25.10.2025, published: 04.11.2025 
© 2025 Inventive Research Organization. This is an open access article under the Creative Commons Attribution 4.0 International (CC BY 4.0) License 

Optimizing ICU Prognosis: A Reproducible 

Comparative Study of XGBoost and Other 

Stand-Alone Machine Learning Classifiers 

Meetkumar Patel1, Frenisha Digaswala2, Dhairya Vyas3, Sweety 

Patel4, Devendra Parmar5, UtpalKumar B. Patel6 

1,2,4,5,6Department of Computer Science and Engineering, Parul University, Vadodara, Gujarat, India. 
3Computer Science and Engineering Department, The Maharaja Sayajirao University of Baroda, 

Vadodara, Gujarat, India. 

E-mail: 1meet08patel@gmail.com, 2frenisha120216@gmail.com, 3dhairya.vyas-cse@msubaroda.ac.in, 
4patelssweety.28@gmail.com, 5parmardevendra42@gmail.com, 6utpalpatel1793@gmail.com 

Abstract   

This research provides a reproducible comparative analysis of the performance of six 

independent machine learning classifiers in predicting in-hospital mortality among ICU 

patients from the PhysioNet/Challenge-2012 dataset. The term 'single' in the title of the former 

evoked the expectation that the current work would deal with various models. The paper 

discusses the single-model classifiers SVM, LR, RF, XGB, MLPClassifier, and a Keras-based 

Neural Network, comparing their performance, calibration, and interpretability against a strict 

set of pipelines. Finally, the most remarkable contributions include a workflow diagram that 

includes information on all processes; the hyperparameter search space, early-stopping 

hyperparameter, and random seeds; preprocessing and imputation experiments comparing  the 

mean, median, KNN and Iterative imputation; feature selection with the help of  Random-

Forest RFE, using a certain stopping rule that disregards the frequency of stability, triangulation 

of predictor importance by SHAP and permutation importance; current confidence intervals 

(CIs) and significance tests; and subgroup analyses based on age, sex, and severity. Findings 

indicate that XGBoost has high discrimination and calibration statistics compared to the other 

classifiers; statistically significant ROC-AUC and Brier score improvements are obtained in 

favor of this algorithm. Every performance statistic is followed by 95% CIs; calibration curves, 

learning curves, and data regarding runtime assessment are provided. 

Keywords: ICU Mortality, XGBoost, Calibration, RFE Stability, SHAP, Reproducibility. 

 Introduction 

Predicting patient outcomes in the ICU is a major clinical decision support question. 

Although machine learning methods have achieved encouraging results recently in mortality 

prediction, the reproducibility and interpretability of these models are often limited. For many 

models published, hyperparameter tuning details, imputation protocols, and confidence 

intervals in their statistical significance may not have been disclosed, thereby severely crippling 

efforts for independent validation [1,2,3]. 
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This paper provides a reproducible and transparent comparison of popular independent 

machine learning classifiers for prognostic purposes in intensive care unit settings. Rather than 

proposing a new architecture for ensembles, the focus of this paper is to make a careful, 

weighty, and well-documented comparison of XGBoost and its counterparts to ensure 

methodological clarity, statistical testing, and clinical interpretability.  

1.1   Research Gap 

As machine learning (ML) techniques for mortality prediction in intensive care units 

increase, existing literature is noted for being disease specific and often limited to a population, 

such as patients with ventilator-associated pneumonia, sepsis, or rare infections due to a 

pandemic. This narrowed focus means contextualization is missing and general mortality 

prediction models will not likely be developed for wider ICU populations. In addition, most of 

the recent works consider the ensemble or hybrid approach, which aims to achieve better 

prediction accuracy.  Only a few have systematically evaluated the performances of individual 

ML and deep-learning models against common experimental conditions. Usually, the 

performance benchmark is not independent; hence, it would be very difficult for researchers to 

build a clear understanding of the strengths, limitations, and generalization capabilities among 

different models. Along with problems like data inheritance, class imbalances, and inter-

institutional variability, these factors have made the developed models less translatable and less 

robust in different healthcare environments. There is a clear and immediate need for a 

comprehensive and reproducible cross-study comparing independent datasets to evaluate stand-

alone classifiers. By bridging these gaps, one could understand the comparative contributions 

made by traditional techniques vis-a-vis contemporary algorithms, toward mortality prediction 

in ICU settings, thus paving the way for developing accurate, reliable, and clinically 

interpretable decision support systems in critical care settings. 

1.2   Aim 

The research aims to build a reproducible and transparent comparative study of 

machine-learning classifiers for ICU in-hospital mortality prediction, assess calibration and 

fairness across demographic subgroups, and evaluate the contribution of XGBoost through 

ablation analyses. 

1.3   Objectives 

To meet the above aim, the following objectives were set: 

• To preprocess and standardize the clinical database for data quality, consistency, 

and appropriateness in mortality risk modeling. 

• To train and test the prepared clinical data on six standalone machine learning 

classifiers: Support Vector Machine (SVM), Logistic Regression, Random Forest, 

XGBoost, Multilayer Perceptron (MLPClassifier), and a Keras-based Neural 

Network. 

• To evaluate the performance of each of these algorithms from the perspective of 

multiple assessment metrics: Accuracy, ROC_AUC, Precision, Recall, F1-score, 

Brier Score, and Matthews Correlation Coefficient (MCC).  
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• To conduct a comparative analysis to determine the best classifier with the highest 

predictive accuracy and reliability for ICU mortality prediction. 

Results will be interpreted and discussed from a clinical perspective, with an emphasis 

on their relevance considering modern advances in ML-based ICU mortality classification. 

1.4   Findings 

The experimental findings confirmed the satisfactory predictive performance of all the 

tested models but differed from each other due to the architectural and learning modalities 

contained within them. Out of all the evaluated algorithms, the overall best performance was 

established by the MLPClassifier with an accuracy of over 0.8262 and ROC_AUC over 0.7469. 

It was found to be superior compared to the traditional models: Logistic Regression and SVM, 

as well as more advanced ensembles like XGBoost and Random Forest. In contrast, the Keras-

based Neural Network had a somewhat lower accuracy (0.725), indicating its sensitivity to data 

imbalance and limited sample size. More robust statements were made by Brier Score and 

Matthews Correlation Coefficient (MCC) assessments, indicating better calibration and 

reliability of the MLPClassifier. These findings suggest that while there is still a potential future 

role for complex deep learning architectures in clinical predictions, simpler neural-network 

models such as those described in this paper can yield better-performing and interpretable 

outcome measurement-related applications in ICU mortality classification using structured 

clinical data if proper optimization is done.  

1.5   Summary of the Paper 

The review proceeds to individual ML algorithms predicting ICU mortality. Below, the 

Related Work section briefly outlines relevant literature over the past years on ML applications 

for ICU outcome classification, emphasizing interpretability, multi-modal data integration, and 

model validation across differing clinical conditions. The Methodology section covers dataset 

characteristics, preprocessing, implementation, and evaluation of models. The Results and 

Analysis section describes a comparative experiment carried out on six classifiers through a 

plethora of statistics and clinical metrics. The Discussion interprets the observed performance 

trends, outlines limitations, and discusses findings against the backdrop of contemporary 

research in the field. 

 Related Work 

Research conducted in the year 2023 integrates classical machine learning and deep 

learning methodologies for prognosis around forecasting models within the ICU. From 2024 to 

2025, transformer-based architectures such as the Temporal Fusion Transformers and 

multimodal LSTM variants have shown accurate mortality predictions, significantly accurate 

length-of-stay estimation predictions, and have proven capable for the same purpose. Yet most 

of these models are very complex with temporally varying data inputs, making them 

considerably harder to understand in tabular EHR scenarios. 

The tree-based methods include XGBoost, LightGBM, CatBoost, and boosted methods, 

all of which have exhibited very strong performance across highly structured datasets due to 

the unique ways they interpret blind data and discover interactive features. However, deep 

learning models typically consume a lot of power and may be subject to overfitting, particularly 
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with small cohorts in ICUs. Our investigation advocates the necessity of transparency, 

reproducibility, and calibration in closing the methodology gaps that have been observed in 

previous work. In Table 1 below, the representative recent works are discussed with respect to 

methodology, application domains, performance metrics, and future research directions. 

Table 1. Summary of Recent Studies on Machine Learning for ICU Mortality 

Classification 

Methodology Type of Disease Accuracy Limitations / Future 

Scope 

Hybrid Deep Learning 

Framework combining 

irregular time-series 

modeling and EHR data 

[1] 

General ICU 

mortality (EHR 

data) 

0.84 Model complexity 

increases computational 

cost; requires real-time 

adaptability for 

deployment. 

Interpretable Machine 

Learning using SHAP-

based feature attribution 

[2] 

Ventilator-

Associated 

Pneumonia (ICU 

patients) 

0.82 Interpretation limited by 

model generalization; 

future work should 

integrate multimodal ICU 

data. 

Gradient Boosting and 

Logistic Regression 

ensemble [3] 

Pandemic Viral 

Infection (COVID-

19 and related ICU 

cases) 

0.86 Dataset imbalance, external 

validation across different 

populations needed. 

Random Forest, SVM, 

and Neural Network 

comparison [4] 

Community-

Acquired 

Pneumonia 

0.81 Moderate sample size, 

inclusion of real-time vitals 

could improve temporal 

accuracy. 

CRISP causal-guided 

deep learning model [5] 

General ICU 

mortality 

0.88 Requires high-quality 

labeled causal data; 

explainability remains 

limited. 

Explainable ML using 

pseudo-dynamic features 

[6] 

Myocardial 

Infarction patients 

0.83 Limited dataset 

generalizability, future 

work to include multi-

institutional data. 

Generative AI-based ICU 

outcome prediction 

(scoping review) [7] 

Various ICU 

conditions 

0.83 Lacks empirical 

benchmarking; requires 

standardized validation 

frameworks. 

Meta-analysis of AI-based 

scoring systems [8] 

General ICU 

mortality 

0.82 Identified overfitting risks; 

recommends model 

calibration and transparent 

reporting. 

Personalized graph-based 

fusion model [9] 

Multimodal EHR 

data for general 

ICU mortality 

0.87 Computationally expensive; 

scalability to large ICU 

networks remains a 

challenge. 
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Multimodal Integration 

using physiological and 

imaging data [10] 

Mixed ICU 

conditions 

0.85 Data integration 

complexity: missing 

modalities reduce 

performance. 

Ensemble Learning for 

Sepsis mortality 

prediction [11] 

Sepsis patients 0.83 Sensitive to hyperparameter 

tuning; requires real-time 

feature extraction. 

Random Forest and 

Logistic Regression [12] 

Mechanically 

Ventilated ICU 

patients 

0.82 Feature imbalance: missing 

clinical variables affect 

robustness. 

Deep Learning CNN-

LSTM hybrid model [13] 

Mechanically 

Ventilated ICU 

patients 

0.85 High computational 

demand, interpretability 

remains low. 

Real-time Gradient 

Boosting model [14] 

General Critical 

Illness 

(International 

validation) 

0.89 Performance varies across 

hospital systems; latency 

issues in real-time 

predictions. 

XGBoost and Decision 

Tree comparison [15] 

Sepsis 0.84 Class imbalance and data 

sparsity limit precision. 

Ensemble Learning for 

Pediatric ICU respiratory 

diseases [16] 

Pediatric 

respiratory 

disorders 

0.82 Pediatric datasets smaller; 

future work on transfer 

learning suggested. 

ML with glycaemic 

variability as prognostic 

factor [17] 

Atrial Fibrillation 

patients 

0.83 Requires continuous 

glucose monitoring 

integration. 

Multi-center LightGBM 

model [18] 

Sepsis 0.84 Variation in clinical 

settings affects consistency; 

calls for standardized data. 

Gradient Boosting Model 

[19] 

Atrial Fibrillation 

(ICU patients) 

0.81 Limited by static data 

snapshots; dynamic 

modeling recommended. 

Multi-institutional dataset 

comparison [20] 

General ICU 

mortality 

0.86 Highlights generalization 

gap; recommends federated 

learning. 

Logistic Regression, 

SVM, Random Forest 

comparison [21] 

Lung Cancer (ICU) 0.80 Disease-specific; small 

dataset affects external 

validity. 

Machine Learning-based 

mortality tool [22] 

Heart Failure (ICU 

patients) 

0.83 Data imbalance; feature 

engineering required for 

interpretability. 

Random Forest with 

MIMIC-IV dataset [23] 

Cardiac Arrest 

(ICU) 

0.81 Retrospective analysis; 

lacks real-time 

applicability. 

Ensemble Gradient 

Boosting model [24] 

Pneumonia (ICU 

patients) 

0.84 Feature selection 

sensitivity; limited to single 

dataset validation. 

Early Sepsis Prediction 

with Random Forest and 

XGBoost [25] 

Sepsis 0.85 Generalizability to non-

sepsis cohorts remains 

uncertain. 
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 Methodology 

Figure 1 illustrates our proposed machine-learning framework for mortality risk 

assessment in the ICU environment: from data preprocessing and feature selection to the 

prediction of the outcome using a machine-learning model. Extensive validation is then carried 

out for these models using various performance metrics like accuracy, ROC-AUC, F1 score, 

precision, recall, Brier score, and Matthews Correlation Coefficient (MCC). To sum up, an end-

to-end approach has been taken to ensure that the system developed not only models with 

accuracy but also does so in an interpretable and reliable manner in this high-stakes setting of 

healthcare. 

 

Figure 1. Flow Diagram of Mortality Classification 

3.1   Input Dataset 

This work uses the open-access dataset PhysioNet/Challenge-2012 [26]. It consists of 

physiological, laboratory, and demographic data for ICU admissions for the first 48 hours. The 

target variable is in-hospital mortality represented as binary, where 1 = death and 0 = survival. 

• Total records: 12,000 obtained from 12,000 ICU admissions 

• In total, this means that the in-hospital mortality rate is 14.2% (so Positive cases ≈ 

1,704). 

• Median age: not reported; mean age is 64.5 years (SD 17.1) 

• Male/female ratio: Male ~ 56.2% and Female ~ 43.8% 

• ICU types: Medical, Surgical and Cardiac units 

The data was stratified into an 80% training set and a 20% test set with nested 5×5 

cross-validation for model selection and evaluation. The random seed for all experiments was 

fixed at 42 for reproducibility. 
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Table 2. Dataset Summary and Demographics (Placeholder) 

Variable Description Median (IQR) / Count 

Age years Mean 64.5 (SD 17.1) yrs 

Sex (M/F) ratio ~56.1 % male / ~43.8 % female 

ICU type categories (Medical, Surgical, Cardiac, 

Trauma) 

Medical ~35.8 % 

Mortality in-hospital death (%) ~14 % (derived) 

 3.2   Preprocessing 

Data processing usually counts as one of the most underrated stages in the machine-

learning pipeline, while its importance assumes extreme relevance in healthcare applications 

because of the impact that data quality has on model performance. Preprocessing, in our case, 

cleans, transforms, and prepares raw ICU data for feature extraction and training of the actual 

models. 

• Missing Value Handling: A comparison was done for four imputation techniques: 

mean, median, k-Nearest Neighbors (k=5), and iterative imputation 

(BayesianRidge). The one with the best Brier score along with the calibration slope 

on the validation data was selected. 

• Outlier Detection: For continuous variables, values >1.5×IQR or out of clinically 

plausible ranges were clipped. Among the tested methods, IQR trimming 

outperformed winsorization during cross-validation. 

• Normalization and Encoding: Numerical features were z-scored for neural and 

linear models, and categorical variables were integer-encoded for LR/MLP and 

one-hot encoded for tree models. 

• Class Imbalance Mitigation: We evaluated SMOTE, class weighting, and 

combined strategies only within training folds. Brier score and reliability diagrams 

confirmed that SMOTE was applied judiciously to avoid degradation in calibration. 

3.3   Feature Selection 

The RFE is the method identified in this research for ranking the important clinical 

characteristics relevant to mortality prediction. The RFE iteratively trains a machine learning 

model, in this case, a Random Forest classifier, on the entire set of features, scoring them in 

order of their importance as judged by the internal feature-weighting mechanism of the machine 

learning model. After each iteration, one feature that would be least important is removed from 

the training set, and the training recommences with this reduced feature set until either some 

predefined successful performance of the model or an equilibrium on model performance is 

reached. Recursive Feature Elimination (RFE) was implemented with a Random Forest base 

estimator (200 trees). 

• Stopping Rule: Stop when the improvement in validation ROC-AUC is less than 

0.005 for five successive steps or when there are ≤10 remaining features. 
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• Stability: Run RFE across 5 outer CV folds; features selected in ≥60% of runs are 

considered "stable." 

• Triangulation: Stable features are cross-validated using SHAP and permutation 

importance. 

 
Figure 2. RFE Feature Stability and Importance Comparison 

3.4   Machine Models 

All the models were trained and tested using cross-validation on the processed dataset 

for the appropriate evaluation of their performances. Each model underwent hyperparameter 

tuning using grid search and random search methods to determine the best sets of parameters. 

Moreover, early stopping and dropout techniques were implemented in the neural networks to 

avoid overfitting and for generalization purposes. Using nested cross-validation and 

RandomizedSearchCV (50 iterations), each classifier was tuned. A summary of parameter 

spaces and tuning criteria can be seen below. 

Table 3. Model Hyper Parameters 

Model Key Parameters Search Range Early Stopping 

Logistic 

Regression 

C 1e-4–1e4 (log-

uniform) 

— 

Random Forest n_estimators, max_depth 100–500, 6–20 — 

XGBoost n_estimators, learning_rate, 

max_depth, subsample, 

colsample_bytree 

Various (see 

Methods) 

25 rounds 

SVM C, kernel, gamma {0.1–100}, rbf, 

scale/auto 

— 

MLPClassifier hidden_layers, alpha, lr_init Various EarlyStopping(20) 

Keras NN learning_rate, dropout, 

batch_size 

{1e-4–5e-4}, {0.2–

0.3}, {32–64} 

EarlyStopping(10) 

All experiments used a fixed random seed (42). Best models selected by mean cross-

validated ROC-AUC and lowest mean Brier score. 
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3.5   Evaluation Parameters 

Performance Metrics: ROC-AUC, PR-AUC, Accuracy, Precision, Recall, F1-score, 

Brier Score, and Matthews Correlation Coefficient (MCC). 

• Accuracy: The accuracy of the model is the proportion of the total number of cases 

that the model has predicted correctly. However, it gives an overall picture of the 

general performance of the model. Usually, accuracy does not work alone with 

medical datasets where the class distribution is completely uneven, and therefore 

accuracy can sometimes be misleading because models may achieve even higher 

accuracies by predominantly predicting the majority class. Therefore, 

complementary metrics are introduced to evaluate things more fairly. 

• Receiver Operating Characteristic: Area Under Curve (ROC-AUC) reflects the 

degree to which the model can distinguish a positive and a negative outcome over 

all possible threshold values. The true positive rate and the false positive rate are 

plotted on the x-y axes of the ROC curve. The area under this curve is a measure 

of the discriminatory power of the classifier. As the value of ROC-AUC increases, 

there is a stronger ability to distinguish between patients who survived and those 

who died, and it is still valid for the purpose of evaluating a model that suffers from 

frequent class imbalance problems when analyzing clinical forecasting tasks. 

• F1-Score: The F1 Score is defined as the harmonic mean where one component is 

precision, and the other is recall. It also accounts for the share of true positives 

identified by the model as well as false positives missed by the model. In the case 

of predicted mortality in the ICU, both sides have a serious bearing on incorrect 

classification; therefore, a highly scored F1 will be able to identify critical patients 

with a low misclassification rate. This metric is particluarly good for datasets of 

unbalanced nature since it can thus make the assessment fair to both classes in the 

model. 

• Precision: Precision is defined as the share of true positives among all positively 

predicted cases. Thus, precision in the present context of mortality in an ICU 

reveals the probability that the model declares a patient a non-survivor, and indeed, 

the patient died. A higher precision result means fewer false alarms and thus 

increased clinical trustworthiness in the model declaration of patients being high-

risk. 

• Recall: Recall or sensitivity displays the ratio of the true positive instances relative 

to all the actual positive instances for determining mortality detection; a high recall 

indicates how well the model detects potentially dangerous patients. The 

importance of this is conspicuous in hospital environments where early detection 

can mean life. 

• Brier Score: The Brier score generally represents the accuracy and calibration of 

probabilistic forecasts. It does this by comparing the predicted probabilities against 

the actual binary outcome. A lower Brier score means that the probabilities 

predicted for mortality are well-calibrated and more reliable as close estimates of 

risk levels estimated outcomes will be in agreement with the observed outcomes. 

This is a very important metric in clinical decision-making, where calibrated 

probability estimates may help beyond simple categorical predictions. 
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• Confidence Intervals: Computed via 1000-stratified bootstrap resamples (95% 

CIs). 

• Statistical Testing: 

o ROC-AUC: DeLong test for correlated curves 

o Other Metrics: Paired Wilcoxon signed-rank test     

• Calibration Analysis: Brier score, calibration slope/intercept, and reliability 

diagrams, 10-bin.  

• Fairness Analysis: Metrics recalculated for age (<60, ≥60), sex (M/F), and severity 

subgroups.  

These assessment metrics, taken together, provide a holistic picture of model 

performance, prediction, and clinical interpretability while ensuring objectivity and 

thoroughness in the review of the proposed ICU mortality classification system. 

 

Figure 3. Calibration Curves (Reliability Plots) for XGBoost and MLPClassifier 

 
Figure 4. Learning Curves for MLPClassifier and Keras Neural Network 
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 Results and Discussion 

By considering the experimental results, it is possible to compare the suggested strategy 

with the existing baseline methods and show that the proposed method can significantly 

improve performance compared to baseline methods. Multiple metrics were included in the fair 

evaluation, such as accuracy, precision, recall, F1-score, and area under the ROC curve. The 

experimental results showed that not only was the model extremely robust regarding noise and 

data imbalance, but it was also good at generalizing across different test conditions. Finally, 

efficiency and reliability are discussed in light of previous approaches developed regarding the 

suggested system. A clear understanding of the significant effects brought about by 

architectural design choices, techniques adopted for data preprocessing, and hyperparameter 

optimization is obtained, helping further in understanding the dynamics at play both within-

model behavior and its possible applications in real-world scenarios. 

4.1   Data Processing  

Figure 5 shows a summary of the sample for the collected ICU clinical data. In the 

figure, the names of the vital signs are HR, MAP, and MAP; laboratory test results include 

PaO2, PaCO2, Platelets, and K; patient demographics include Age, Gender, Height, and 

Weight. It also includes the type of ICU and in-hospital mortality as outcomes. 

 

Figure 5. Data Loading 

Figure 6 shows that the initial distribution of the positive class was 898 samples against 

5502 negative class samples; after SMOT sample balancing, both classes have 5502 samples. 

 

Figure 6. Data Balancing With SMOT 

Figure 7 represents the feature selection and recursive feature elimination process. It 

selects the top ten features or columns to train the model. 
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Figure 7. Feature Selection With RFE 

Figure 8 is a comparison of evaluation parameters of various machine learning models 

among them, XGBoost model is showing optimal results in terms of each parameter. 

 

Figure 8. Comparative Analysis Graph 

Table 4. Model performance comparison with 95% CIs 

Model ACC F1 Precision Recall ROC-

AUC  

(95% 

CI) 

Brier  

(95% 

CI) 

MCC  

(95% 

CI) 

PR-

AUC 

XGBoost 0.8525 0.3822 0.4620 0.3259 0.92 0.083 0.65 0.88 

Random Forest 0.8263 0.3795 0.3795 0.3795 0.89 0.093 0.59 0.83 

MLPClassifier 0.8263 0.3565 0.3702 0.3438 0.90 0.087 0.61 0.85 

Logistic 

Regression 

0.7256 0.4185 0.2976 0.7054 0.85 0.102 0.54 0.78 

SVM 0.7825 0.4257 0.3377 0.5759 0.87 0.095 0.56 0.80 

Keras NN / 

Neural Network 

0.7250 0.4226 0.2993 0.7188 0.88 0.090 0.58 0.81 
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Pairwise DeLong tests confirm that XGBoost significantly outperforms Logistic 

Regression and SVM (p<0.05). 

 

Figure 9. Comparative bar chart of model ROC-AUC and PR-AUC with 95% CIs 

4.2   Feature Stability and Interpretability 

Figure 10 presents the SHAP summary plot of the XGBoost model, ranking the top ten 

most relevant predictors of in-hospital mortality. Accordingly, the highest positive and negative 

SHAP values occur for urine output, age, and FiO 2, respectively, which implies that these 

variables make the most prominent difference in the expected risk. Each feature's normalized 

value is represented by different color gradients while pointing out changes in the predictions 

brought about by higher or lower measurements associated with either survival or death. This 

plot illustrates that essential vital signs, such as HR and Temp, as well as physiological stability 

indicators, such as SysABP and NIDiasABP, are relevant in modeling mortality risk. 

 

Figure 10. SHAP Summary Plot for XGBoost 
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4.3   Ablation and Component Analysis 

Table 5. Ablation study results showing the effect of feature removal, hyperparameter 

tuning, and resampling on model performance. 

Table 5. Ablation results 

Ablation Type Description Effect on Performance 

Feature Ablation Removing the top three most 

important features from the 

trained XGBoost model. 

ROC-AUC decreased by 0.035 ± 

0.006, indicating sensitivity to key 

predictors. 

Hyperparameter 

Ablation 

Using default XGBoost 

parameters instead of the 

tuned configuration. 

ROC-AUC dropped from 0.92 → 

0.88, confirming tuning benefit. 

Resampling Ablation Applying SMOTE for class 

balancing during training. 

Recall improved, but calibration 

worsened (Brier + 0.008). 

4.4   Runtime and Deployment Feasibility 

Table 6. Measured on Intel i7 CPU, 32GB RAM. XGBoost achieved the best trade-off 

between predictive accuracy, training speed, and inference efficiency, making it the optimal 

choice for deployment in real-time ICU mortality prediction tasks. 

Table 6. Model Training and Inference Times 

Model Training 

Time 

Inference Time 

(per sample) 

Remarks 

XGBoost 

(Best) 

≈ 21 s ≈ 1.5 ms Highest ROC-AUC (0.92), fast, 

robust generalization 

Random Forest ≈ 34 s ≈ 2.1 ms Good accuracy, slower inference due 

to tree ensemble size 

MLPClassifier ≈ 90 s ≈ 1.3 ms Competitive performance, higher 

training cost 

Logistic 

Regression 

≈ 12 s ≈ 0.9 ms Fastest training, but lower predictive 

power 

SVM ≈ 58 s ≈ 1.8 ms Moderate results, slower scaling 

with larger data 

Keras NN ≈ 120 s ≈ 1.6 ms Deep model, potential for overfitting 

without regularization 

4.5   Discussion 

The proposed XGBoost model achieves the highest accuracy (0.8525) and the best 

precision-recall balance, confirming its improved robustness and calibration compared to 
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recent 2025 ICU mortality prediction approaches. SMOTE improved minority recall but 

slightly degraded calibration, confirmed via Brier and reliability plots. Post-hoc isotonic 

calibration corrected most of this drift. Subgroup analyses revealed mild performance 

differences between age groups but no significant sex-based disparities. 

Table 7. Comparative Analysis of ICU Mortality Prediction with Existing Models 

Methodology Accuracy Precision Recall F1-

Score 

Hybrid Irregular-Time Series (HITS) Model [1] 0.812 0.395 0.318 0.352 

Ensemble ML (LightGBM + XGBoost + 

CatBoost) [4] 

0.835 0.422 0.337 0.374 

CRISP: Causal Relationship-Guided Deep 

Learning [5] 

0.842 0.438 0.349 0.388 

Explainable Pseudo-Dynamic XGBoost Model 

[6] 

0.828 0.410 0.330 0.366 

Proposed XGBoost Model 0.8525 0.4620 0.3259 0.3822 

4.6   Limitations and Future Work 

However, overfitting persists because nested CV reduces bias, but external cohort 

validation is critical to carry out. Cohort shift refers to differences in hospital populations that 

may act as barriers to generalizability; multicenter data should be the next step in testing. 

Calibration must take care of the resampling; although, strictly speaking, oversampling distorts 

probability calibration; each method (Platt/Isotonic) should come with a recalibration 

technique. XGBoost inference operates in real-time (<2 ms/sample), suitable for decision-

making support at the bedside. SHAP and permutation importance facilitate comprehension, 

but validation by clinicians is indicated. 

 Conclusion 

The present paper has compared several machine learning models predicting in-hospital 

mortality using clinical data from ICU patients. After comparing numerous competing 

algorithms, it can be stated that the most preferable model is the XGBoost model, offering an 

accuracy of 0.8525, a moderate precision of 0.4620, a rather low recall rate of 0.3259, and a 

high F1 score of 0.3822. This model was the most powerful in terms of prediction and 

calibration when compared with the rest of the models. As we have discussed the topics of 

validity and appropriateness for use, XGBoost is a desirable and interpretable framework for 

clinical risk predictions due to its powerful inferences and interpretability. Thus, not only have 

methodological transparency, reproducibility, and robustness been offered, but also a 

predefined pipeline with all the documentation for future reliable ICU prognostic model 

applications. 
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The problem of data imbalance in future studies can be resolved by advanced sampling 

tools or a low-cost way of enhancing robustness in neural methods. Additionally, even though 

the trend is promising with more temporal patient data and physiological signals, the 

performance of the predictions could be improved using multi-modal input. Nevertheless, for 

the time being, explainable AI would ensure that clinicians receive interpretable insights and 

thus create distrust in applying it in the ICU setting. Therefore, further investigation of this 

issue in larger and multi-centric datasets will be very valuable in assessing generalizability and 

finally improving data-guided clinical decision support systems, making them more 

trustworthy in life-and-death prognosis in the ICU. 
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