vag,
v,
)

Journal of Innovative Image Processing (ISSN: 2582-4252) 2
www.irojournals.com/iroiip/ "

Optimizing ICU Prognosis: A Reproducible
Comparative Study of XGBoost and Other
Stand-Alone Machine Learning Classifiers

Meetkumar Patel', Frenisha Digaswala?, Dhairya Vyas®, Sweety
Patel, Devendra Parmar>, UtpalKumar B. Patel®

1.2456Department of Computer Science and Engineering, Parul University, Vadodara, Gujarat, India.
3Computer Science and Engineering Department, The Maharaja Sayajirao University of Baroda,
Vadodara, Gujarat, India.

E-mail: 'meetO8patel@gmail.com, 2frenishal20216@gmail.com, *dhairya.vyas-cse@msubaroda.ac.in,
“patelssweety.28@gmail.com, *parmardevendra42@gmail.com, utpalpatel1793@gmail.com

Abstract

This research provides a reproducible comparative analysis of the performance of six
independent machine learning classifiers in predicting in-hospital mortality among ICU
patients from the PhysioNet/Challenge-2012 dataset. The term 'single' in the title of the former
evoked the expectation that the current work would deal with various models. The paper
discusses the single-model classifiers SVM, LR, RF, XGB, MLPClassifier, and a Keras-based
Neural Network, comparing their performance, calibration, and interpretability against a strict
set of pipelines. Finally, the most remarkable contributions include a workflow diagram that
includes information on all processes; the hyperparameter search space, early-stopping
hyperparameter, and random seeds; preprocessing and imputation experiments comparing the
mean, median, KNN and Iterative imputation; feature selection with the help of Random-
Forest RFE, using a certain stopping rule that disregards the frequency of stability, triangulation
of predictor importance by SHAP and permutation importance; current confidence intervals
(ClIs) and significance tests; and subgroup analyses based on age, sex, and severity. Findings
indicate that XGBoost has high discrimination and calibration statistics compared to the other
classifiers; statistically significant ROC-AUC and Brier score improvements are obtained in
favor of this algorithm. Every performance statistic is followed by 95% ClIs; calibration curves,
learning curves, and data regarding runtime assessment are provided.

Keywords: ICU Mortality, XGBoost, Calibration, RFE Stability, SHAP, Reproducibility.

1. Introduction

Predicting patient outcomes in the ICU is a major clinical decision support question.
Although machine learning methods have achieved encouraging results recently in mortality
prediction, the reproducibility and interpretability of these models are often limited. For many
models published, hyperparameter tuning details, imputation protocols, and confidence
intervals in their statistical significance may not have been disclosed, thereby severely crippling
efforts for independent validation [1,2,3].
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This paper provides a reproducible and transparent comparison of popular independent
machine learning classifiers for prognostic purposes in intensive care unit settings. Rather than
proposing a new architecture for ensembles, the focus of this paper is to make a careful,
weighty, and well-documented comparison of XGBoost and its counterparts to ensure
methodological clarity, statistical testing, and clinical interpretability.

1.1 Research Gap

As machine learning (ML) techniques for mortality prediction in intensive care units
increase, existing literature is noted for being disease specific and often limited to a population,
such as patients with ventilator-associated pneumonia, sepsis, or rare infections due to a
pandemic. This narrowed focus means contextualization is missing and general mortality
prediction models will not likely be developed for wider ICU populations. In addition, most of
the recent works consider the ensemble or hybrid approach, which aims to achieve better
prediction accuracy. Only a few have systematically evaluated the performances of individual
ML and deep-learning models against common experimental conditions. Usually, the
performance benchmark is not independent; hence, it would be very difficult for researchers to
build a clear understanding of the strengths, limitations, and generalization capabilities among
different models. Along with problems like data inheritance, class imbalances, and inter-
institutional variability, these factors have made the developed models less translatable and less
robust in different healthcare environments. There is a clear and immediate need for a
comprehensive and reproducible cross-study comparing independent datasets to evaluate stand-
alone classifiers. By bridging these gaps, one could understand the comparative contributions
made by traditional techniques vis-a-vis contemporary algorithms, toward mortality prediction
in ICU settings, thus paving the way for developing accurate, reliable, and clinically
interpretable decision support systems in critical care settings.

1.2 Aim

The research aims to build a reproducible and transparent comparative study of
machine-learning classifiers for ICU in-hospital mortality prediction, assess calibration and
fairness across demographic subgroups, and evaluate the contribution of XGBoost through
ablation analyses.

1.3 Objectives

To meet the above aim, the following objectives were set:

o To preprocess and standardize the clinical database for data quality, consistency,
and appropriateness in mortality risk modeling.

o To train and test the prepared clinical data on six standalone machine learning
classifiers: Support Vector Machine (SVM), Logistic Regression, Random Forest,
XGBoost, Multilayer Perceptron (MLPClassifier), and a Keras-based Neural
Network.

o To evaluate the performance of each of these algorithms from the perspective of
multiple assessment metrics: Accuracy, ROC_AUC, Precision, Recall, F1-score,
Brier Score, and Matthews Correlation Coefficient (MCC).
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o To conduct a comparative analysis to determine the best classifier with the highest
predictive accuracy and reliability for ICU mortality prediction.

Results will be interpreted and discussed from a clinical perspective, with an emphasis
on their relevance considering modern advances in ML-based ICU mortality classification.

1.4 Findings

The experimental findings confirmed the satisfactory predictive performance of all the
tested models but differed from each other due to the architectural and learning modalities
contained within them. Out of all the evaluated algorithms, the overall best performance was
established by the MLPClassifier with an accuracy of over 0.8262 and ROC_AUC over 0.7469.
It was found to be superior compared to the traditional models: Logistic Regression and SVM,
as well as more advanced ensembles like XGBoost and Random Forest. In contrast, the Keras-
based Neural Network had a somewhat lower accuracy (0.725), indicating its sensitivity to data
imbalance and limited sample size. More robust statements were made by Brier Score and
Matthews Correlation Coefficient (MCC) assessments, indicating better calibration and
reliability of the MLPClassifier. These findings suggest that while there is still a potential future
role for complex deep learning architectures in clinical predictions, simpler neural-network
models such as those described in this paper can yield better-performing and interpretable
outcome measurement-related applications in ICU mortality classification using structured
clinical data if proper optimization is done.

1.5 Summary of the Paper

The review proceeds to individual ML algorithms predicting ICU mortality. Below, the
Related Work section briefly outlines relevant literature over the past years on ML applications
for ICU outcome classification, emphasizing interpretability, multi-modal data integration, and
model validation across differing clinical conditions. The Methodology section covers dataset
characteristics, preprocessing, implementation, and evaluation of models. The Results and
Analysis section describes a comparative experiment carried out on six classifiers through a
plethora of statistics and clinical metrics. The Discussion interprets the observed performance
trends, outlines limitations, and discusses findings against the backdrop of contemporary
research in the field.

2. Related Work

Research conducted in the year 2023 integrates classical machine learning and deep
learning methodologies for prognosis around forecasting models within the ICU. From 2024 to
2025, transformer-based architectures such as the Temporal Fusion Transformers and
multimodal LSTM variants have shown accurate mortality predictions, significantly accurate
length-of-stay estimation predictions, and have proven capable for the same purpose. Yet most
of these models are very complex with temporally varying data inputs, making them
considerably harder to understand in tabular EHR scenarios.

The tree-based methods include XGBoost, LightGBM, CatBoost, and boosted methods,
all of which have exhibited very strong performance across highly structured datasets due to
the unique ways they interpret blind data and discover interactive features. However, deep
learning models typically consume a lot of power and may be subject to overfitting, particularly
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with small cohorts in ICUs. Our investigation advocates the necessity of transparency,
reproducibility, and calibration in closing the methodology gaps that have been observed in
previous work. In Table 1 below, the representative recent works are discussed with respect to
methodology, application domains, performance metrics, and future research directions.

Table 1. Summary of Recent Studies on Machine Learning for ICU Mortality

Classification
Methodology Type of Disease | Accuracy Limitations / Future
Scope

Hybrid Deep Learning General ICU 0.84 Model complexity

Framework combining mortality (EHR increases computational

irregular time-series data) cost; requires real-time

modeling and EHR data adaptability for

[1] deployment.

Interpretable Machine Ventilator- 0.82 Interpretation limited by

Learning using SHAP- Associated model generalization;

based feature attribution Pneumonia (ICU future work should

[2] patients) integrate multimodal ICU
data.

Gradient Boosting and Pandemic Viral 0.86 Dataset imbalance, external

Logistic Regression Infection (COVID- validation across different

ensemble [3] 19 and related ICU populations needed.

cases)

Random Forest, SVM, Community- 0.81 Moderate sample size,

and Neural Network Acquired inclusion of real-time vitals

comparison [4] Pneumonia could improve temporal
accuracy.

CRISP causal-guided General ICU 0.88 Requires high-quality

deep learning model [5] mortality labeled causal data;
explainability remains
limited.

Explainable ML using Myocardial 0.83 Limited dataset

pseudo-dynamic features | Infarction patients generalizability, future

[6] work to include multi-
institutional data.

Generative Al-based ICU | Various ICU 0.83 Lacks empirical

outcome prediction conditions benchmarking; requires

(scoping review) [7] standardized validation
frameworks.

Meta-analysis of Al-based | General ICU 0.82 Identified overfitting risks;

scoring systems [8] mortality recommends model
calibration and transparent
reporting.

Personalized graph-based | Multimodal EHR 0.87 Computationally expensive;

fusion model [9] data for general scalability to large ICU

ICU mortality networks remains a

challenge.
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with Random Forest and
XGBoost [25]

Multimodal Integration Mixed ICU 0.85 Data integration
using physiological and conditions complexity: missing
imaging data [10] modalities reduce
performance.
Ensemble Learning for Sepsis patients 0.83 Sensitive to hyperparameter
Sepsis mortality tuning; requires real-time
prediction [11] feature extraction.
Random Forest and Mechanically 0.82 Feature imbalance: missing
Logistic Regression [12] | Ventilated ICU clinical variables affect
patients robustness.
Deep Learning CNN- Mechanically 0.85 High computational
LSTM hybrid model [13] | Ventilated ICU demand, interpretability
patients remains low.
Real-time Gradient General Critical 0.89 Performance varies across
Boosting model [14] Illness hospital systems; latency
(International issues in real-time
validation) predictions.
XGBoost and Decision Sepsis 0.84 Class imbalance and data
Tree comparison [15] sparsity limit precision.
Ensemble Learning for Pediatric 0.82 Pediatric datasets smaller;
Pediatric ICU respiratory | respiratory future work on transfer
diseases [16] disorders learning suggested.
ML with glycaemic Atrial Fibrillation 0.83 Requires continuous
variability as prognostic patients glucose monitoring
factor [17] integration.
Multi-center LightGBM Sepsis 0.84 Variation in clinical
model [18] settings affects consistency;
calls for standardized data.
Gradient Boosting Model | Atrial Fibrillation 0.81 Limited by static data
[19] (ICU patients) snapshots; dynamic
modeling recommended.
Multi-institutional dataset | General ICU 0.86 Highlights generalization
comparison [20] mortality gap; recommends federated
learning.
Logistic Regression, Lung Cancer (ICU) 0.80 Disease-specific; small
SVM, Random Forest dataset affects external
comparison [21] validity.
Machine Learning-based | Heart Failure (ICU 0.83 Data imbalance; feature
mortality tool [22] patients) engineering required for
interpretability.
Random Forest with Cardiac Arrest 0.81 Retrospective analysis;
MIMIC-1V dataset [23] (ICU) lacks real-time
applicability.
Ensemble Gradient Pneumonia (ICU 0.84 Feature selection
Boosting model [24] patients) sensitivity; limited to single
dataset validation.
Early Sepsis Prediction Sepsis 0.85 Generalizability to non-

sepsis cohorts remains
uncertain.
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3. Methodology

Figure 1 illustrates our proposed machine-learning framework for mortality risk
assessment in the ICU environment: from data preprocessing and feature selection to the
prediction of the outcome using a machine-learning model. Extensive validation is then carried
out for these models using various performance metrics like accuracy, ROC-AUC, F1 score,
precision, recall, Brier score, and Matthews Correlation Coefficient (MCC). To sum up, an end-
to-end approach has been taken to ensure that the system developed not only models with
accuracy but also does so in an interpretable and reliable manner in this high-stakes setting of
healthcare.

010 "
— 10 — @
PhysioNet Data Data Multiple Prediction | | Evaluation
Dataset Preporessing| |Transformation| | Classifiers

t N [ \

SVM Accuracy
Logistic ROC_AUC

Regression F1

Random Forest| | Precision

XGBoost Recall
Keras Neural Brier
Network MCC

. ) \ J

Figure 1. Flow Diagram of Mortality Classification

3.1 Input Dataset

This work uses the open-access dataset PhysioNet/Challenge-2012 [26]. It consists of
physiological, laboratory, and demographic data for ICU admissions for the first 48 hours. The
target variable is in-hospital mortality represented as binary, where 1 = death and 0 = survival.

o Total records: 12,000 obtained from 12,000 ICU admissions

o In total, this means that the in-hospital mortality rate is 14.2% (so Positive cases =
1,704).

o Median age: not reported; mean age is 64.5 years (SD 17.1)
o Male/female ratio: Male ~ 56.2% and Female ~ 43.8%
o ICU types: Medical, Surgical and Cardiac units

The data was stratified into an 80% training set and a 20% test set with nested 5x5
cross-validation for model selection and evaluation. The random seed for all experiments was
fixed at 42 for reproducibility.
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Table 2. Dataset Summary and Demographics (Placeholder)

Variable Description Median (IQR) / Count
Age years Mean 64.5 (SD 17.1) yrs
Sex (M/F) ratio ~56.1 % male / ~43.8 % female
ICU type categories (Medical, Surgical, Cardiac, | Medical ~35.8 %
Trauma)
Mortality in-hospital death (%) ~14 % (derived)

3.2 Preprocessing

Data processing usually counts as one of the most underrated stages in the machine-
learning pipeline, while its importance assumes extreme relevance in healthcare applications
because of the impact that data quality has on model performance. Preprocessing, in our case,
cleans, transforms, and prepares raw ICU data for feature extraction and training of the actual
models.

* Missing Value Handling: A comparison was done for four imputation techniques:
mean, median, k-Nearest Neighbors (k=5), and iterative imputation
(BayesianRidge). The one with the best Brier score along with the calibration slope
on the validation data was selected.

¢ OQutlier Detection: For continuous variables, values >1.5xIQR or out of clinically
plausible ranges were clipped. Among the tested methods, IQR trimming
outperformed winsorization during cross-validation.

* Normalization and Encoding: Numerical features were z-scored for neural and
linear models, and categorical variables were integer-encoded for LR/MLP and
one-hot encoded for tree models.

* Class Imbalance Mitigation: We evaluated SMOTE, class weighting, and
combined strategies only within training folds. Brier score and reliability diagrams
confirmed that SMOTE was applied judiciously to avoid degradation in calibration.

3.3 Feature Selection

The RFE is the method identified in this research for ranking the important clinical
characteristics relevant to mortality prediction. The RFE iteratively trains a machine learning
model, in this case, a Random Forest classifier, on the entire set of features, scoring them in
order of their importance as judged by the internal feature-weighting mechanism of the machine
learning model. After each iteration, one feature that would be least important is removed from
the training set, and the training recommences with this reduced feature set until either some
predefined successful performance of the model or an equilibrium on model performance is
reached. Recursive Feature Elimination (RFE) was implemented with a Random Forest base
estimator (200 trees).

* Stopping Rule: Stop when the improvement in validation ROC-AUC is less than
0.005 for five successive steps or when there are <10 remaining features.
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« Stability: Run RFE across 5 outer CV folds; features selected in >60% of runs are
considered "stable."

* Triangulation: Stable features are cross-validated using SHAP and permutation

importance.
mmm Stability (Frequency)
ICUType s Importance (Normalized)
Temp

pH

HR

SysABP
NIDiasABP
FiO2

Age

Urine

0.0 0.2 0.4 0.6 0.8
Score

Figure 2. RFE Feature Stability and Importance Comparison

3.4 Machine Models

All the models were trained and tested using cross-validation on the processed dataset
for the appropriate evaluation of their performances. Each model underwent hyperparameter
tuning using grid search and random search methods to determine the best sets of parameters.
Moreover, early stopping and dropout techniques were implemented in the neural networks to
avoid overfitting and for generalization purposes. Using nested cross-validation and
RandomizedSearchCV (50 iterations), each classifier was tuned. A summary of parameter
spaces and tuning criteria can be seen below.

Table 3. Model Hyper Parameters

Model Key Parameters Search Range Early Stopping
Logistic C le-4—1e4 (log- —
Regression uniform)
Random Forest | n_estimators, max_depth 100-500, 6-20 —
XGBoost n_estimators, learning_rate, Various (see 25 rounds
max_depth, subsample, Methods)
colsample bytree
SVM C, kernel, gamma {0.1-100}, rbf, —
scale/auto
MLPClassifier hidden_layers, alpha, Ir_init | Various EarlyStopping(20)
Keras NN learning_rate, dropout, {le-4—5e-4}, {0.2— | EarlyStopping(10)
batch_size 0.3}, {3264}

All experiments used a fixed random seed (42). Best models selected by mean cross-
validated ROC-AUC and lowest mean Brier score.
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3.5 Evaluation Parameters

Performance Metrics: ROC-AUC, PR-AUC, Accuracy, Precision, Recall, F1-score,
Brier Score, and Matthews Correlation Coefficient (MCC).

ISSN: 2582-4252

Accuracy: The accuracy of the model is the proportion of the total number of cases
that the model has predicted correctly. However, it gives an overall picture of the
general performance of the model. Usually, accuracy does not work alone with
medical datasets where the class distribution is completely uneven, and therefore
accuracy can sometimes be misleading because models may achieve even higher
accuracies by predominantly predicting the majority class. Therefore,
complementary metrics are introduced to evaluate things more fairly.

Receiver Operating Characteristic: Area Under Curve (ROC-AUC) reflects the
degree to which the model can distinguish a positive and a negative outcome over
all possible threshold values. The true positive rate and the false positive rate are
plotted on the x-y axes of the ROC curve. The area under this curve is a measure
of the discriminatory power of the classifier. As the value of ROC-AUC increases,
there is a stronger ability to distinguish between patients who survived and those
who died, and it is still valid for the purpose of evaluating a model that suffers from
frequent class imbalance problems when analyzing clinical forecasting tasks.

F1-Score: The F1 Score is defined as the harmonic mean where one component is
precision, and the other is recall. It also accounts for the share of true positives
identified by the model as well as false positives missed by the model. In the case
of predicted mortality in the ICU, both sides have a serious bearing on incorrect
classification; therefore, a highly scored F1 will be able to identify critical patients
with a low misclassification rate. This metric is particluarly good for datasets of
unbalanced nature since it can thus make the assessment fair to both classes in the
model.

Precision: Precision is defined as the share of true positives among all positively
predicted cases. Thus, precision in the present context of mortality in an ICU
reveals the probability that the model declares a patient a non-survivor, and indeed,
the patient died. A higher precision result means fewer false alarms and thus
increased clinical trustworthiness in the model declaration of patients being high-
risk.

Recall: Recall or sensitivity displays the ratio of the true positive instances relative
to all the actual positive instances for determining mortality detection; a high recall
indicates how well the model detects potentially dangerous patients. The
importance of this is conspicuous in hospital environments where early detection
can mean life.

Brier Score: The Brier score generally represents the accuracy and calibration of
probabilistic forecasts. It does this by comparing the predicted probabilities against
the actual binary outcome. A lower Brier score means that the probabilities
predicted for mortality are well-calibrated and more reliable as close estimates of
risk levels estimated outcomes will be in agreement with the observed outcomes.
This is a very important metric in clinical decision-making, where calibrated
probability estimates may help beyond simple categorical predictions.
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o Confidence Intervals: Computed via 1000-stratified bootstrap resamples (95%

Cls).

o Statistical Testing:

o ROC-AUC: DeLong test for correlated curves

o Other Metrics: Paired Wilcoxon signed-rank test

o Calibration Analysis: Brier score, calibration slope/intercept, and reliability

diagrams, 10-bin.

o Fairness Analysis: Metrics recalculated for age (<60, >60), sex (M/F), and severity

subgroups.

These assessment metrics, taken together, provide a holistic picture of model
performance, prediction, and clinical interpretability while ensuring objectivity and

thoroughness in the review of the proposed ICU mortality classification system.
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Figure 3. Calibration Curves (Reliability Plots) for XGBoost and MLPClassifier
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Figure 4. Learning Curves for MLPClassifier and Keras Neural Network
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4. Results and Discussion

By considering the experimental results, it is possible to compare the suggested strategy
with the existing baseline methods and show that the proposed method can significantly
improve performance compared to baseline methods. Multiple metrics were included in the fair
evaluation, such as accuracy, precision, recall, F1-score, and area under the ROC curve. The
experimental results showed that not only was the model extremely robust regarding noise and
data imbalance, but it was also good at generalizing across different test conditions. Finally,
efficiency and reliability are discussed in light of previous approaches developed regarding the
suggested system. A clear understanding of the significant effects brought about by
architectural design choices, techniques adopted for data preprocessing, and hyperparameter
optimization is obtained, helping further in understanding the dynamics at play both within-
model behavior and its possible applications in real-world scenarios.

4.1 Data Processing

Figure 5 shows a summary of the sample for the collected ICU clinical data. In the
figure, the names of the vital signs are HR, MAP, and MAP; laboratory test results include
Pa02, PaCO2, Platelets, and K; patient demographics include Age, Gender, Height, and
Weight. It also includes the type of ICU and in-hospital mortality as outcomes.

Weight Urine HR Temp

LAubbd bhbup
w
9

rm Fioz 6CS  ICUType In-hozpital_death

@
1 5

2 138.67
2 23

4

7996 137.33 .548231  15.8a

Figure 5. Data Loading

Figure 6 shows that the initial distribution of the positive class was 898 samples against
5502 negative class samples; after SMOT sample balancing, both classes have 5502 samples.

Class counts BEFORE SMOTE:
In-hospital death

a 5502

1 898

Name: count, dtype: int64

Class counts AFTER SMOTE:
In-hospital_death

(=] 5502

1 5502

Mame: count, dtype: intéd

Figure 6. Data Balancing With SMOT

Figure 7 represents the feature selection and recursive feature elimination process. It
selects the top ten features or columns to train the model.
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Top 10 Feature Importances
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Figure 7. Feature Selection With RFE

Figure 8 is a comparison of evaluation parameters of various machine learning models

among them, XGBoost model is showing optimal results in terms of each parameter.
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Figure 8. Comparative Analysis Graph

Table 4. Model performance comparison with 95% Cls

Model ACC F1 | Precision | Recall | ROC- | Brier | MCC | PR-
AUC | (95% | (95% | AUC
95% | C) | C1
CI)
XGBoost 0.8525 1 0.3822 | 0.4620 |0.3259| 092 | 0.083 | 0.65 | 0.88
Random Forest | 0.8263 | 0.3795 | 0.3795 |0.3795| 0.89 | 0.093 | 0.59 | 0.83
MLPClassifier | 0.8263 | 0.3565 | 0.3702 |0.3438 | 0.90 | 0.087 | 0.61 | 0.85
Logistic 0.7256 | 0.4185 | 0.2976 |0.7054 | 0.85 | 0.102 | 0.54 | 0.78
Regression
SVM 0.7825 1 0.4257 | 0.3377 |0.5759 | 0.87 | 0.095 | 0.56 | 0.80
Keras NN/ 0.7250 | 0.4226 | 0.2993 | 0.7188 | 0.88 | 0.090 | 0.58 | 0.81
Neural Network
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Pairwise DeLong tests confirm that XGBoost significantly outperforms Logistic
Regression and SVM (p<0.05).

1.00p
Emm ROC-AUC (95% CI)
s PR-AUC (+0.03)
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0.75¢
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e

Figure 9. Comparative bar chart of model ROC-AUC and PR-AUC with 95% Cls
4.2 Feature Stability and Interpretability

Figure 10 presents the SHAP summary plot of the XGBoost model, ranking the top ten
most relevant predictors of in-hospital mortality. Accordingly, the highest positive and negative
SHAP values occur for urine output, age, and FiO 2, respectively, which implies that these
variables make the most prominent difference in the expected risk. Each feature's normalized
value is represented by different color gradients while pointing out changes in the predictions
brought about by higher or lower measurements associated with either survival or death. This
plot illustrates that essential vital signs, such as HR and Temp, as well as physiological stability
indicators, such as SysABP and NIDiasABP, are relevant in modeling mortality risk.
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Figure 10. SHAP Summary Plot for XGBoost
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4.3 Ablation and Component Analysis

Table 5. Ablation study results showing the effect of feature removal, hyperparameter
tuning, and resampling on model performance.

Table 5. Ablation results

Ablation Type Description Effect on Performance

Feature Ablation Removing the top three most | ROC-AUC decreased by 0.035 +
important features from the 0.006, indicating sensitivity to key
trained XGBoost model. predictors.

Hyperparameter Using default XGBoost ROC-AUC dropped from 0.92 —

Ablation parameters instead of the 0.88, confirming tuning benefit.
tuned configuration.

Resampling Ablation | Applying SMOTE for class Recall improved, but calibration
balancing during training. worsened (Brier + 0.008).

4.4 Runtime and Deployment Feasibility

Table 6. Measured on Intel 17 CPU, 32GB RAM. XGBoost achieved the best trade-off
between predictive accuracy, training speed, and inference efficiency, making it the optimal
choice for deployment in real-time ICU mortality prediction tasks.

Table 6. Model Training and Inference Times

Model Training Inference Time Remarks
Time (per sample)

XGBoost ~21s ~1.5ms Highest ROC-AUC (0.92), fast,

(Best) robust generalization

Random Forest ~34s ~2.1 ms Good accuracy, slower inference due
to tree ensemble size

MLPClassifier ~90s ~ 1.3 ms Competitive performance, higher
training cost

Logistic =12s ~ 0.9 ms Fastest training, but lower predictive

Regression power

SVM ~58s ~ 1.8 ms Moderate results, slower scaling

with larger data

Keras NN ~120s ~ 1.6 ms Deep model, potential for overfitting

without regularization

4.5 Discussion

The proposed XGBoost model achieves the highest accuracy (0.8525) and the best
precision-recall balance, confirming its improved robustness and calibration compared to
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recent 2025 ICU mortality prediction approaches. SMOTE improved minority recall but
slightly degraded calibration, confirmed via Brier and reliability plots. Post-hoc isotonic
calibration corrected most of this drift. Subgroup analyses revealed mild performance
differences between age groups but no significant sex-based disparities.

Table 7. Comparative Analysis of ICU Mortality Prediction with Existing Models

Methodology Accuracy | Precision | Recall | F1-

Score

Hybrid Irregular-Time Series (HITS) Model [1] 0.812 0.395 0.318 | 0.352

Ensemble ML (LightGBM + XGBoost + 0.835 0.422 0.337 | 0374

CatBoost) [4]

CRISP: Causal Relationship-Guided Deep 0.842 0.438 0.349 | 0.388

Learning [5]

Explainable Pseudo-Dynamic XGBoost Model 0.828 0.410 0.330 | 0.366

[6]

Proposed XGBoost Model 0.8525 0.4620 | 0.3259 | 0.3822

4.6 Limitations and Future Work

However, overfitting persists because nested CV reduces bias, but external cohort
validation is critical to carry out. Cohort shift refers to differences in hospital populations that
may act as barriers to generalizability; multicenter data should be the next step in testing.
Calibration must take care of the resampling; although, strictly speaking, oversampling distorts
probability calibration; each method (Platt/Isotonic) should come with a recalibration
technique. XGBoost inference operates in real-time (<2 ms/sample), suitable for decision-
making support at the bedside. SHAP and permutation importance facilitate comprehension,
but validation by clinicians is indicated.

5. Conclusion

The present paper has compared several machine learning models predicting in-hospital
mortality using clinical data from ICU patients. After comparing numerous competing
algorithms, it can be stated that the most preferable model is the XGBoost model, offering an
accuracy of 0.8525, a moderate precision of 0.4620, a rather low recall rate of 0.3259, and a
high F1 score of 0.3822. This model was the most powerful in terms of prediction and
calibration when compared with the rest of the models. As we have discussed the topics of
validity and appropriateness for use, XGBoost is a desirable and interpretable framework for
clinical risk predictions due to its powerful inferences and interpretability. Thus, not only have
methodological transparency, reproducibility, and robustness been offered, but also a
predefined pipeline with all the documentation for future reliable ICU prognostic model
applications.
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The problem of data imbalance in future studies can be resolved by advanced sampling
tools or a low-cost way of enhancing robustness in neural methods. Additionally, even though
the trend is promising with more temporal patient data and physiological signals, the
performance of the predictions could be improved using multi-modal input. Nevertheless, for
the time being, explainable Al would ensure that clinicians receive interpretable insights and
thus create distrust in applying it in the ICU setting. Therefore, further investigation of this
issue in larger and multi-centric datasets will be very valuable in assessing generalizability and
finally improving data-guided clinical decision support systems, making them more
trustworthy in life-and-death prognosis in the ICU.
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