vag,
v,
)

Journal of Innovative Image Processing (ISSN: 2582-4252) 2
www.irojournals.com/iroiip/ "

Detection of Voice and Lung Pathological
Signal Using Acoustic Spectrogram
Transformers

Revathi S.!, Mohana Sundaram K.2, Padmini Sharma’, Manjusha
Silas*

L2Department of Electrical and Electronics Engineering, KPR Institute of Engineering and
Technology, Coimbatore, India.

3Department of Electrical and Electronics Engineering, CSIT, Durg, Chhattisgarh, India.
“Department of Electrical Engineering, Christian College of Engineering and Technology, Bhilai,
India.

E-mail: 'revaviji23@gmail.com, ’kumohanasundaram@gmail.com, *padminisharma@csitdurg.in, “m.silas@ccetbhilai.ac.in

Abstract

In the medical field, identifying various pathological conditions poses a crucial
challenge because it requires an invasive and contact-based data extraction technique.
Therefore, non-invasive and non-contact forms of vital data, such as speech signals, can be
used to identify various pathological conditions. Speech signals have distinguishing phonetic
characteristics that change when a pathological condition occurs in the human body. By using
these changes, various pathological signals can be classified by training machine learning and
deep learning models with the acoustic features of speech signals. This work proposes the
acoustic spectrogram transformer, where all the layers in the transformer are trained using
acoustic characteristics extracted from the speech signals of voice and lung disease patients.
Mel-frequency cepstral coefficients (MFCCs), Mel spectrograms, and spectral variables like
centroid, bandwidth, roll-off, and zero-crossing rate are used for feature extraction from the
voice and lung dataset. These acoustic features train the transformer blocks and depth-adaptive
parameters, enabling the model to capture complex patterns for effective signal classification.
Along with this architecture, the model consists of frequency-focused attention mechanisms
used to extract spectral characteristics that are most indicative of pathological conditions.
Meanwhile, multiple pooling strategies are employed for the effective aggregation of temporal
information. Due to this targeted design, the system serves as an effective clinical tool for
classification, minimizing computational complexity and achieving an accuracy of about 83%
in voice pathology classification and 99% in lung pathology classification.

Keywords: Voice Pathology, Lung Pathology, Acoustic Spectrogram Transformer, Mel
Spectrogram.

1. Introduction

Voice disorders affect a significant section of the world's inhabitants, with rates
commonly reported to be between 3-9% among general populations. They are more prevalent
in verbally strenuous jobs such as teaching [1], singing, and call center operations. Similarly,
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lung diseases affect individuals by causing difficulties during breathing and reducing the
oxygen supply to the body, which may lead to premature death. These disorders greatly impact
the quality of life, professional capabilities, and emotional well-being of individuals affected
by voice and lung diseases.

Voice and lung pathologies are often diagnosed through invasive examinations such as
laryngoscopy or through perceptual methods involving subjectivity from clinicians [2]. For
lung diseases, CT scans or ultrasounds are required. This diagnostic process is prone to
variability and often overlooks the acoustic features essential for characterizing the early stages
of disorders in voice and lung signals [3] [4]. The introduction of deep learning techniques [5]
has revolutionized signal processing in various applications such as speech and audio analysis
for early detection and explicit classification of voice and lung pathological signals in non-
invasive diagnostic tools [6]. Recently, voice pathological signals can be detected and classified
using transformer-based architectures, which have shown impressive results in computer vision
and natural language processing fields [7]. Through their self-attention processes, transformers,
such as the Vision Transformer [8] [9], outperform conventional convolutional or recurrent
neural network architectures in modeling local as well as global dependencies in sequential
data.

For voice and lung pathological classification, an Audio Spectrogram Transformer
(AST) is proposed, with hyperparameters specially optimized to fit the model for pathological
classification. The proposed model distinguishes signals from normal voices and pathological
voices, such as dysphonia, laryngitis, laryngeal nerve palsy, bronchiectasis, COPD, and
pneumonia. These illnesses pose a challenging multi-class prediction problem since they
represent a wide range of vocal and lung abnormalities with unique changes in acoustic
characteristics. The dataset used in this study consists of carefully chosen audio recordings
from healthy subjects and their sick counterparts bearing those voice and lung abnormalities,
providing a strong foundation for model development and evaluation [10] [11]. This work
innovates in different critical areas of voice and lung pathology classification.

To overcome the imbalance in voice and lung pathological data, an augmentation
approach is used, which includes adding calibrated noise, pitch shifting, time stretching, and
innovative sample mixing [12] [13] strategies that preserve the essential pathological
characteristics while increasing training data diversity. Furthermore, a class-aware balancing
strategy is employed that generates synthetic samples through targeted augmentation to ensure
equivalent representation across all diagnostic categories, preventing the model from
developing bias toward more prevalent conditions. Many feature extraction techniques have
been used in early studies, such as Wav2Vec feature extraction, which utilizes a transformer
technique to effectively extract acoustic features by converting signals into spectrogram
transformers [14]. A pre-trained transformer model has been used to detect abnormal signals in
patients with cleft lips [15]. Many transformer models have been developed for various
pathological detections. This work proposes audio spectrogram transformers that classify voice
and lung pathological signals from healthy signals using speech datasets. The complete
workflow from raw signal to diagnosis is illustrated in Figure 3. The contributions of this
research can be highlighted as follows:

o To develop a dataset that is collected from various publicly available sources,
which are gathered from the affected individuals.
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o To extract the frequency characteristics from the acoustic input signal using the
Mel-Frequency Cepstral Coefficients (MFCCs), Mel Spectrogram, and spectral
variables like centroid, bandwidth, roll-off, and zero crossing rate.

o To design the audio spectrogram transformer to classify various pathological
signals from normal signals in the most efficient and effective form.

o To evaluate the performance of the audio spectrogram transformer for multi-class
classification tasks.

The research paper is organized as follows: Section 2 discusses the recent work carried
out in identifying voice and lung pathological conditions; Section 3 presents the dataset used,
feature extraction techniques, and proposed audio spectrogram transformer model; Section 4
shows the performance of the model in classifying voice and lung signals; and finally, Section
5 concludes the work performed.

2. Related Work

Audio spectrogram transformers are used for the classification of voice disorders by
applying a transformer-based deep learning architecture. The multi-layer feature fusion and
pooling combination is employed for sound classification by modifying the self-supervised
audio spectrogram transformer [16]. A hybrid LSTM-transformer model is used for emotion
recognition from audio speech signals [17]. For the classification of neurological disorders,
vision transformers are utilized to classify human speech [18]. A transformer model combining
convolution and transformation is used for heart sound classification to detect cardiovascular
diseases [19]. Crying samples of infants are used to enhance pediatric healthcare using
transformer-based approaches to diagnose pathological signals [7]. Lung sounds can be
classified using audio spectrogram transformers by adaptively modifying the transformer
model [20]. Swin transformers are employed for classifying dysarthria by capturing local
features from the voice signal [21]. Voice pathological signals can be classified using optimized
convolutional neural networks [22] and fast learning networks [23] by extracting MFCC and
linear predictive coding (LPC) from real-time signals.

3. Materials and Methodology

3.1 Dataset Description
3.1.1 Voice Dataset

SVD is a medical speech database that was developed in Saarbriicken, Germany, by the
Institute of Phonetics at Saarland University [10]. It includes voice recordings from 2,000
participants. These recordings were in WAV format and recorded with a sampling frequency
of 50 kHz. Participants include healthy speakers and patients with various speech disorders.
Data were gathered through a dual-channel recording: the electroglottographic (EGG) signal
was recorded simultaneously using surface electrodes placed bilaterally around the participant's
neck at the thyroid cartilage level, and the acoustic signal was recorded through a high-quality
condenser microphone placed at a standard distance of 30 cm from the speaker's mouth. To
maintain acoustic consistency, all recordings were made in a sound-attenuated booth with a
background noise level of less than 40 dB. The recordings consist of running speech samples,
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standardized text passages, and sustained vowels—exceptionally a, 1, and u—at high, low, low-
high, and normal pitches. The acoustic signal includes recordings from both voice pathologies
and healthy patients at a size of 194 KB in .wav format. The dataset comprises participants
aged 18-75 years, with a distribution of 55% female and 45% male. For this study, 4,383
recordings from healthy subjects and 3,647 recordings from pathological conditions were
utilized. The pathological cases included 700 dysphonias, 900 laryngitis cases, and 2,047 cases
of laryngeal nerve palsy. The classification of voice pathology was performed by two
experienced speech-language pathologists with more than 5 years of clinical experience, and
all recordings were evaluated using Grade, Roughness, Breathiness, Asthenia, and Strain
(GRBAS) annotators.

3.1.2 Respiratory Dataset

The respiratory sound database consists of recordings of breathing sounds and
respiratory audio data used for pulmonary disorder classification [11]. It was created at the
2017 Respiratory Sound Database International Conference on Biomedical Health Informatics
(ICBI). The database contains 920 annotated recordings obtained from 126 subjects, both
healthy and with a wide variety of respiratory conditions. Recordings were made using three
standardized devices: (1) AKG C417L miniature condenser microphone for tracheal sounds,
(2) 3M Littmann Classic II SE stethoscope for chest auscultation, and (3) WelchAllyn Meditron
Master Elite Electronic Stethoscope for digital sound capture. Recordings were taken at each
participant's anterior, posterior, and lateral chest position, following a standardized protocol
and taking 10-20 seconds per recording position. Single-channel and multi-channel recording
configurations were employed based on the research objective. The acoustic signals are stored
in WAV format with an average file size of 2.52 MB per recording, sampled at 44.1 kHz with
16-bit resolution. The acoustic signal is a recording from voice pathologies and healthy patients
at the 2.52 MB size in .wav format. The cohort includes participants aged 6-90 years, with a
distribution of 58% male and 42% female. For pulmonary disorder classification, this study
utilized 35 recordings from healthy participants and 846 recordings from patients with
respiratory pathologies, including 16 cases of bronchiectasis, 793 cases of chronic obstructive
pulmonary disease (COPD), and 37 cases of pneumonia.

tSNE 3

Figure 1. 3D t-SNE of Voice Dataset Distribution After Augmentation
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Figure 2. 3D t-SNE of Lung Dataset Distribution After Augmentation

To balance the dataset the augmentation technique such as adding noise, changing pitch,
and stretching was employed [12] [13]. Gaussian noise with a small variance of 0.01 was used
for noise addition in augmented data generation. The change pitch technique was used to
generate the augmented signal were achieved by amplitude scaling of 2 while preserving timing
without altering the vocal characteristics and lung capacity. Changes in temporal characteristics
by means of speeding up or slowing down at a rate of 0.8 without affecting pitch, generated
using stretching augmentation techniques. The dataset distribution across the classes after
applying the augmentation technique is illustrated in Figures 1 and 2 in 3D t-SNE (t-Distributed
Stochastic Neighbor Embedding).

3.2 Feature Extraction

In this work, to extract comprehensive acoustic information from audio files, classical
parameters are used: Mel-Frequency Cepstral Coefficients, Mel Spectrogram, and spectral
variables such as centroid, bandwidth, roll-off, and zero crossing rate [24]. The mel-frequency
scale has particular use in the speech signal analysis domain due to its mimicry of the human
auditory system, providing a reduced resolution at higher frequencies and improved frequency
resolution at lower frequencies. Feature extraction begins with preprocessing to ensure
regularized and robust analysis. First, audio signals are loaded with a sampling rate of 22.05
kHz, which is a good trade-off between frequency resolution for speech analysis and
computational efficiency. Noise reduction is achieved through amplitude thresholding, where
signals with an amplitude of less than 0.005 are set to zero, thus removing low-level background
noise. Audio length normalization ensures that all recordings are at least one second long,
which is sufficient for speech analysis while keeping it under ten seconds for relevant speech
segments.

The principal feature set includes 26-dimensional MFCC [25] [26] vectors extracted
with a frame size of 2007 samples to preserve temporal dynamics that are important for
pathological classification. Alongside MFCCs, mel-spectrogram features are extracted using
80 mel-frequency bands spanning 80 Hz to 8000 Hz, corresponding to the main speech
frequency domain. The mel-spectrogram is converted to a decibel scale so that it correlates to
logarithmic human auditory perception. Spectral features such as spectral centroid, bandwidth
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and roll off are extracted to characterize voice quality aspects directly related to pathological
conditions. Some temporal features including the zero-crossing rate (ZCR) measure the rate at
which an audio signal crosses zero amplitude [27]. Features have all been extracted consistently
with uniform parameters across all dataset members, impacting reproducibility and
comparability. While established MFCC coefficients are considered proven and reliable in their
own right, the extra spectral and temporal features would further cement pathology detection.
In MFCC, first and second order temporal derivatives are used to capture dynamic information
to avoid the redundancy of higher order statistics and it uses 26 MFCC coefficients and 80 mel
bands for noise reduction. The mel spectrogram uses the speech computation range of 80 —
8000Hz to eliminate frequency redundancy. In cases of spectral variable non overlapping
spectral extraction, methods are used to eliminate redundant frequencies from multiple
correlated spectral descriptors.

3.3 Acoustic Spectrogram Transformer

This Acoustic Spectrogram Transformer [7] is a highly sophisticated transformer-based
architecture designed for voice and lung pathology detection, processing audio features and
classifying normal voices and pathological ones such as dysphonia, laryngitis, laryngeal nerve
palsy, Bronchiectasis, COPD and Pneumonia. The model begins with dual-pathway feature
embedding where two parallel dense networks with different complexities process the input,
followed by a learnable gating mechanism that intelligently combines both pathways to create
optimal initial representations. Learnable positional encodings are added to provide temporal
sequence information, crucial for audio analysis, followed by layer normalization for training
stability. The core architecture consists of 6 transformer encoder blocks with progressive
complexity scaling, where deeper layers have more attention heads, larger dimensions, and
higher dropout rates to capture increasingly complex patterns as shown in Figure 3.

L T
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“ f Dual Embedding stre ) \
Feature extraction ‘ s Jol s
Asoust:c . MFCC mptiyer |- ¥ Direct Embedding _) Posit;o.nal
signa . Mel spectrogram ‘ Deep Embedding Combination encoding
+ Softmax | ‘
Transformer Encoder Blocks
Multi head | | |Feed forward | || Residual
| attention network connections
| N
Attention pooling
e Multi strategy pooling
Classification Head i =
. Frequency Attention ‘ Attention Pooling |
m— « Dense layer  <— T
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Figure 3. Workflow from Raw Signal to Diagnosis Using Acoustic Spectrogram
Transformer Architecture

Each transformer block uses pre-layer normalization, 8-head multi-head attention with
64-dimensional keys, extensive batch normalization, and a two-stage feed-forward network that
expands from 128 to 256 dimensions before projecting back. Residual connections occur both
within blocks and between every two blocks to maintain gradient flow and enable learning of
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local and global patterns. After transformer processing, the model employs sophisticated
feature aggregation through frequency attention that learns importance weights from different
sequence parts, combined with three pooling strategies: attention-weighted sum, global average
and max pooling. In these multi-pooling strategies, the attention weighted sum focuses on
salient frequency bands to capture the pathological information, global average pooling
provides robust overall acoustic characteristics resistant to noise and global max pooling
captures peak anomalies like voice breaks and tremors in pitch. A frequency focused attention
mechanism is used to incorporate the frequency domain to operate in the spatial or temporal
domain and Fourier transformer is used to capture patterns and global dependencies in the
frequency domain. The multi-head attention mechanism allows the model to simultaneously
focus on multiple acoustic aspects such as pitch, energy and timbre at different time scales,
which is essential for distinguishing between normal and pathological voice. Additionally, the
transformer's global context modelling capability outperforms CNNs limited receptive fields
and RNNs' sequential processing bottlenecks, while the integrated frequency attention
mechanism and multiple pooling strategies provide more sophisticated feature extraction
specifically suited for pathology detection. A squeeze and excitation block further enhances
features by learning channel-wise attention weights, reducing dimensionality before expanding
back with sigmoid gating. The classification head uses progressive dimensionality reduction
through three dense layers with extensive batch normalization, Swish activation, and dropout,
culminating in a softmax output layer.

Table 1. Various Parameters of Audio Spectrogram Transformer

Component Parameter Value
Embedding system — stream 1 Dense units 128
Key dimension 64
L2 Regularization 0.0001
Embedding system — stream 2 First dense layer units 64
Second dense layer units 128
Activation LeakyReLU
Dropout Spatial dropout rate 0.2
Transformer backbone Number of encoder blocks 6
Attention heads (early layers) 8
Attention heads (deep layers) 11
Key dimension (early layers) 64
Key dimension (deep layers) 85
Feed-forward dimensions (early) 256
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Feed-forward dimensions (deep) 384
Dropout rate 0.3
Classification head First layer units 256
Second layer units 128
Third layer units 64
L2 Regularization 0.0002
Optimizer (Adam) Learning rate 0.0001
Beta 1 0.9
Beta 2 0.999
Gradient Clipping Norm 1.0

The classification head implements a bottleneck architecture, reducing dimensions from
256 to 128 to 64 units before the final softmax layer, with L2 regularization increasing to 0.0002
in these critical layers. The Adam optimizer operates with a learning rate of 0.00025, beta
values of 0.9 and 0.999, and implements gradient clipping at a norm of 1.0 to prevent exploding
gradients as shown in Table 1.  The parameters used in this model are selected using an
ablation study, where the model shows less overfitting when adding layer normalization and
L2 regularization. The model achieves 78% accuracy with attention heads in the early layer
and by adding the deep attention head layer, the model shows higher accuracy.

Table 2. Optimization Parameter of Voice and Lung Model

Training configuration Grid search range Value
Multi head attention 4to 16 8
Dropout rate 0.1t00.5 0.3
Optimizer Adam, AdamW and RMSprop AdamW
Learning rate 0.001-0.0001 0.0001
Batch size 16 and 32 32

The algorithm is optimized using 8 multi head attention, a dropout rate of 0.3, AdamW
with a learning rate 0.0001, gradient clipping, early stopping, and learning rate of scheduling,
specifically designed to handle the temporal nature of audio features while maintaining both
regional temporal patterns and global voice characteristics essential for precise pathology
detection as shown in Table 2. The hyperparameters of the acoustic spectrogram transformer
are optimally selected using the high test accuracy and minimal test loss. Training was
conducted on an Intel Core 17-13700 system, with the entire evaluation process taking
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approximately 0.54 seconds for testing. This architecture combines transformer attention
mechanisms with domain-specific optimizations for robust voice analysis, utilizing
comprehensive regularization strategies including batch normalization, progressive dropout,
and L2 regularization to ensure stable training and prevent overfitting in medical classification
tasks.

4. Result and discussion

The proposed transformer model is used to classify normal and pathological signals in
various multi-pathological classifications. During the training phase of the transformer model,
the voice model achieves 83% accuracy and shows less overfitting. Figure 4a shows the training
and validation accuracy of the acoustic spectrogram transformer. Validation and training
accuracy rise with increasing epochs until they reach the maximum epochs, and Figure 4b
illustrates the statistical decline in training and validation loss over the epochs.
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Figure 4. a) Training and Validation Accuracy Curve b) Training and Validation Loss

Curve

Table 3. Performance Analysis of Voice Pathological Signal

Voice signal Precision | Recall F1-Score
Laryngeal nerve palsy 0.83 0.77 0.80
Laryngitis 0.86 0.89 0.88
Dysphonia 0.82 0.95 0.88
Normal 0.80 0.70 0.75

Table 3 illustrates the model's performance by displaying the acoustic spectrogram
transformer's precision, recall, and F1-score for the vocal pathological categorization of normal
to pathological signals, which include dysphonia, laryngeal nerve palsy, and laryngitis. The
model shows about 83% accuracy during the training and testing phases of the acoustic
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spectrogram transformer. Figure 5 represents the confusion matrix, which demonstrates the
voice classification model's performance across four distinct categories: laryngeal nerve palsy,

laryngitis, dysphonia, and normal voice conditions.
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Figure 5. Confusion Matrix for Vocal Signal Classification

The model exhibits strong overall performance with high diagonal values, indicating
effective discrimination between different voice pathologies. The model specifically shows
remarkable classification accuracy rates for pathological diseases, with dysphonia exhibiting
the best classification accuracy at 95%, closely followed by laryngitis at 89%, and laryngeal
nerve palsy at 76%. However, the classification of normal voices presents a notable challenge,
with only 69% accuracy in this category. The acoustic spectrogram transformer will work on
classifying the respiratory diseases bronchiectasis, COPD and pneumonia by using wheezes

and crackles occurring during the respiratory cycle.

Figure 6 a) depicts the training and

validation accuracy of the model on the lung signal classification. The training and validation
accuracy curve doesn’t show any deviation and it increases over the number of epochs. Figure
6 b) shows the loss curve for the model in decreasing order.
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Figure 6. a) Training and Validation Accuracy for Lung Signal Classification b)
Training and Validation Loss Curve for Lung Signal Classification
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Table 4. Performance Analysis of Lung Pathological Signal

Lung signal Precision Recall F1-Score
Bronchiectasis 0.98 1.00 0.99
COPD 1.00 0.94 0.97
Pneumonia 0.97 1.00 0.98
Healthy 1.00 1.00 1.00

Table 4 illustrates the model's performance by displaying the acoustic spectrogram
transformer's precision, recall, and F1-score for the lung pathological categorization of normal
to pathological signals, which include Bronchiectasis, COPD, Pneumonia, and Healthy. The
model shows 99% accuracy in classifying lung signals for respiratory disease identification, as
illustrated in Figure 7. The confusion matrix presents the performance analysis of lung diseases
in classifying normal and various pathological signals such as Bronchiectasis, COPD, and
Pneumonia. The model obtained a 95% confidence interval for the given input to both the vocal
and lung datasets for the acoustic spectrogram transformer model, as given in Table 5, and the
p-value is equal to zero upon testing the model for statistical validation.

Table 5. Metric Comparison of Confidence Intervals for Vocal and Lung Model
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Figure 7. Confusion Matrix for Lung Signal Classification

1314



Revathi S., Mohana Sundaram K., Padmini Sharma, Manjusha Silas

5. Discussion

The developed acoustic spectrogram transformer is used to classify voice and lung
pathological conditions from speech data. The model shows the best results in classifying the
pathological conditions. For the voice dataset, the model yields 83% accuracy, and it achieves
99% accuracy for lung signal classification. Various transformers and deep learning models,
such as the audio spectrogram transformer [7], vision transformer [18], swim transformer [21],
and convolutional neural network [22], are used to compare the results; among them, the
proposed model shows the highest performance in categorizing the pathological signals, as
shown in Table 6. The proposed acoustic spectrogram transformer demonstrates close tracking
between training and validation accuracy, which indicates that the model does not show any
signs of overfitting.

Table 6. Comparative Analysis of Proposed Work with the Existing Transformer
Model for the Voice and Lung Dataset

Ref | Mode Voice model Lung model
1
Prec | Rec | F1- Prec | Reca | F1-
ision | all | Scor ision 11 Sco
e re

[7] Audio | Laryngeal 0.31 | 0.30 | 0.40 | Bronchiectasis | 0.57 | 0.58 | 0.53
spectr | nerve palsy

ogram _
transf | Laryngitis 0.29 | 0.31 | 0.43 | COPD 0.50 | 0.59 | 0.55
OIMET | Dysphonia | 0.30 | 0.32 | 0.47 | Pneumonia 0.57 | 0.60 | 0.58
normal 0.32 | 0.29 | 0.40 | Healthy 0.55 | 0.50 | 0.51
[18] | Visio | Laryngeal 0.80 | 0.79 | 0.85 | Bronchiectasis | 0.99 | 0.99 | 0.97
n nerve palsy
transf _
ormer | Laryngitis 0.83 | 0.80 | 0.80 | COPD 0.98 | 0.96 | 1.00
Dysphonia | 0.79 | 0.84 | 0.87 | Pneumonia 0.95 | 0.96 | 0.95
normal 0.80 | 0.83 | 0.80 | Healthy 1.00 | 0.99 | 0.99

[21] | Swin | Laryngeal 0.74 | 0.72 | 0.71 | Bronchiectasis | 0.85 | 0.84 | 0.86
transf | nerve palsy

ormer
Laryngitis 0.73 | 0.75 | 0.75 | COPD 0.90 | 0.89 | 0.91
Dysphonia | 0.69 | 0.67 | 0.68 | Pneumonia 0.89 | 0.91 | 0.88
normal 0.70 | 0.73 | 0.73 | Healthy 0.89 | 09 |0.91
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[22] | Conv | Laryngeal 0.78 | 0.79 | 0.78 | Bronchiectasis | 0.95 | 0.97 | 0.97
olutio | nerve palsy
nal _
neura] | Laryngitis 0.81 | 0.80 | 0.80 | COPD 091 | 0.94 | 1.00
nlftwo Dysphonia | 0.78 | 0.82 | 0.80 | Pneumonia 0.90 | 0.97 | 0.93
r
normal 0.79 | 0.79 | 0.79 | Healthy 0.98 | 0.99 | 0.97
Proposed Laryngeal 0.83 | 0.77 | 0.80 | Bronchiectasis | 0.98 | 1.00 | 0.99
Work nerve palsy
Laryngitis 0.86 | 0.89 | 0.88 | COPD 1.00 | 0.94 | 0.97

Dysphonia | 0.82 | 0.95 | 0.88 | Pneumonia 0.97 | 1.00 | 0.98

normal 0.80 | 0.70 | 0.75 | Healthy 1.00 | 1.00 | 1.00

6. Conclusion

This paper presents the performance of an Acoustic Spectrogram Transformer in the
multi-class classification of pathologies and achieves very impressive results for voice and lung
pathology detection. The contribution of the work relies mainly on the architectural design and
deep feature extraction strategy. Mel-frequency cepstral coefficients and Mel spectrograms are
successfully leveraged to capture temporal and spectral features relevant to disease
classification tasks. The effectiveness of our strategy is supported by experimental results that
show impressive accuracy rates of 99% for lung pathology classification and roughly 83% for
voice pathological classification. These metrics demonstrate the model's clinical viability and
suitability for medical applications. The high accuracy obtained for the task of lung pathology
detection, in particular, underlines the versatility of the AST framework for solving various
acoustic pathology detection challenges. The proposed framework could be extended to other
pathology conditions, and its cross-lingual performance for a variety of patient populations may
be studied. Additionally, it can be integrated into real-time clinical decision support systems.
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