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Abstract   

In the medical field, identifying various pathological conditions poses a crucial 

challenge because it requires an invasive and contact-based data extraction technique. 

Therefore, non-invasive and non-contact forms of vital data, such as speech signals, can be 

used to identify various pathological conditions. Speech signals have distinguishing phonetic 

characteristics that change when a pathological condition occurs in the human body. By using 

these changes, various pathological signals can be classified by training machine learning and 

deep learning models with the acoustic features of speech signals. This work proposes the 

acoustic spectrogram transformer, where all the layers in the transformer are trained using 

acoustic characteristics extracted from the speech signals of voice and lung disease patients. 

Mel-frequency cepstral coefficients (MFCCs), Mel spectrograms, and spectral variables like 

centroid, bandwidth, roll-off, and zero-crossing rate are used for feature extraction from the 

voice and lung dataset. These acoustic features train the transformer blocks and depth-adaptive 

parameters, enabling the model to capture complex patterns for effective signal classification. 

Along with this architecture, the model consists of frequency-focused attention mechanisms 

used to extract spectral characteristics that are most indicative of pathological conditions. 

Meanwhile, multiple pooling strategies are employed for the effective aggregation of temporal 

information. Due to this targeted design, the system serves as an effective clinical tool for 

classification, minimizing computational complexity and achieving an accuracy of about 83% 

in voice pathology classification and 99% in lung pathology classification.  

Keywords: Voice Pathology, Lung Pathology, Acoustic Spectrogram Transformer, Mel 

Spectrogram. 

 Introduction 

Voice disorders affect a significant section of the world's inhabitants, with rates 

commonly reported to be between 3-9% among general populations. They are more prevalent 

in verbally strenuous jobs such as teaching [1], singing, and call center operations. Similarly, 
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lung diseases affect individuals by causing difficulties during breathing and reducing the 

oxygen supply to the body, which may lead to premature death. These disorders greatly impact 

the quality of life, professional capabilities, and emotional well-being of individuals affected 

by voice and lung diseases.  

Voice and lung pathologies are often diagnosed through invasive examinations such as 

laryngoscopy or through perceptual methods involving subjectivity from clinicians [2]. For 

lung diseases, CT scans or ultrasounds are required. This diagnostic process is prone to 

variability and often overlooks the acoustic features essential for characterizing the early stages 

of disorders in voice and lung signals [3] [4]. The introduction of deep learning techniques [5] 

has revolutionized signal processing in various applications such as speech and audio analysis 

for early detection and explicit classification of voice and lung pathological signals in non-

invasive diagnostic tools [6]. Recently, voice pathological signals can be detected and classified 

using transformer-based architectures, which have shown impressive results in computer vision 

and natural language processing fields [7]. Through their self-attention processes, transformers, 

such as the Vision Transformer [8] [9], outperform conventional convolutional or recurrent 

neural network architectures in modeling local as well as global dependencies in sequential 

data. 

For voice and lung pathological classification, an Audio Spectrogram Transformer 

(AST) is proposed, with hyperparameters specially optimized to fit the model for pathological 

classification. The proposed model distinguishes signals from normal voices and pathological 

voices, such as dysphonia, laryngitis, laryngeal nerve palsy, bronchiectasis, COPD, and 

pneumonia. These illnesses pose a challenging multi-class prediction problem since they 

represent a wide range of vocal and lung abnormalities with unique changes in acoustic 

characteristics. The dataset used in this study consists of carefully chosen audio recordings 

from healthy subjects and their sick counterparts bearing those voice and lung abnormalities, 

providing a strong foundation for model development and evaluation [10] [11]. This work 

innovates in different critical areas of voice and lung pathology classification.  

To overcome the imbalance in voice and lung pathological data, an augmentation 

approach is used, which includes adding calibrated noise, pitch shifting, time stretching, and 

innovative sample mixing [12] [13] strategies that preserve the essential pathological 

characteristics while increasing training data diversity. Furthermore, a class-aware balancing 

strategy is employed that generates synthetic samples through targeted augmentation to ensure 

equivalent representation across all diagnostic categories, preventing the model from 

developing bias toward more prevalent conditions. Many feature extraction techniques have 

been used in early studies, such as Wav2Vec feature extraction, which utilizes a transformer 

technique to effectively extract acoustic features by converting signals into spectrogram 

transformers [14]. A pre-trained transformer model has been used to detect abnormal signals in 

patients with cleft lips [15]. Many transformer models have been developed for various 

pathological detections. This work proposes audio spectrogram transformers that classify voice 

and lung pathological signals from healthy signals using speech datasets. The complete 

workflow from raw signal to diagnosis is illustrated in Figure 3. The contributions of this 

research can be highlighted as follows:  

• To develop a dataset that is collected from various publicly available sources, 

which are gathered from the affected individuals. 
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• To extract the frequency characteristics from the acoustic input signal using the 

Mel-Frequency Cepstral Coefficients (MFCCs), Mel Spectrogram, and spectral 

variables like centroid, bandwidth, roll-off, and zero crossing rate. 

• To design the audio spectrogram transformer to classify various pathological 

signals from normal signals in the most efficient and effective form. 

• To evaluate the performance of the audio spectrogram transformer for multi-class 

classification tasks. 

The research paper is organized as follows: Section 2 discusses the recent work carried 

out in identifying voice and lung pathological conditions; Section 3 presents the dataset used, 

feature extraction techniques, and proposed audio spectrogram transformer model; Section 4 

shows the performance of the model in classifying voice and lung signals; and finally, Section 

5 concludes the work performed. 

 Related Work 

Audio spectrogram transformers are used for the classification of voice disorders by 

applying a transformer-based deep learning architecture. The multi-layer feature fusion and 

pooling combination is employed for sound classification by modifying the self-supervised 

audio spectrogram transformer [16]. A hybrid LSTM-transformer model is used for emotion 

recognition from audio speech signals [17]. For the classification of neurological disorders, 

vision transformers are utilized to classify human speech [18]. A transformer model combining 

convolution and transformation is used for heart sound classification to detect cardiovascular 

diseases [19]. Crying samples of infants are used to enhance pediatric healthcare using 

transformer-based approaches to diagnose pathological signals [7]. Lung sounds can be 

classified using audio spectrogram transformers by adaptively modifying the transformer 

model [20]. Swin transformers are employed for classifying dysarthria by capturing local 

features from the voice signal [21]. Voice pathological signals can be classified using optimized 

convolutional neural networks [22] and fast learning networks [23] by extracting MFCC and 

linear predictive coding (LPC) from real-time signals. 

  Materials and Methodology 

3.1   Dataset Description 

3.1.1   Voice Dataset 

SVD is a medical speech database that was developed in Saarbrücken, Germany, by the 

Institute of Phonetics at Saarland University [10]. It includes voice recordings from 2,000 

participants. These recordings were in WAV format and recorded with a sampling frequency 

of 50 kHz. Participants include healthy speakers and patients with various speech disorders. 

Data were gathered through a dual-channel recording: the electroglottographic (EGG) signal 

was recorded simultaneously using surface electrodes placed bilaterally around the participant's 

neck at the thyroid cartilage level, and the acoustic signal was recorded through a high-quality 

condenser microphone placed at a standard distance of 30 cm from the speaker's mouth. To 

maintain acoustic consistency, all recordings were made in a sound-attenuated booth with a 

background noise level of less than 40 dB. The recordings consist of running speech samples, 
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standardized text passages, and sustained vowels—exceptionally a, i, and u—at high, low, low-

high, and normal pitches. The acoustic signal includes recordings from both voice pathologies 

and healthy patients at a size of 194 KB in .wav format. The dataset comprises participants 

aged 18-75 years, with a distribution of 55% female and 45% male. For this study, 4,383 

recordings from healthy subjects and 3,647 recordings from pathological conditions were 

utilized. The pathological cases included 700 dysphonias, 900 laryngitis cases, and 2,047 cases 

of laryngeal nerve palsy. The classification of voice pathology was performed by two 

experienced speech-language pathologists with more than 5 years of clinical experience, and 

all recordings were evaluated using Grade, Roughness, Breathiness, Asthenia, and Strain 

(GRBAS) annotators.  

3.1.2   Respiratory Dataset 

The respiratory sound database consists of recordings of breathing sounds and 

respiratory audio data used for pulmonary disorder classification [11].  It was created at the 

2017 Respiratory Sound Database International Conference on Biomedical Health Informatics 

(ICBI). The database contains 920 annotated recordings obtained from 126 subjects, both 

healthy and with a wide variety of respiratory conditions.  Recordings were made using three 

standardized devices: (1) AKG C417L miniature condenser microphone for tracheal sounds, 

(2) 3M Littmann Classic II SE stethoscope for chest auscultation, and (3) WelchAllyn Meditron 

Master Elite Electronic Stethoscope for digital sound capture. Recordings were taken at each 

participant's anterior, posterior, and lateral chest position, following a standardized protocol 

and taking 10-20 seconds per recording position. Single-channel and multi-channel recording 

configurations were employed based on the research objective. The acoustic signals are stored 

in WAV format with an average file size of 2.52 MB per recording, sampled at 44.1 kHz with 

16-bit resolution. The acoustic signal is a recording from voice pathologies and healthy patients 

at the 2.52 MB size in .wav format.  The cohort includes participants aged 6-90 years, with a 

distribution of 58% male and 42% female. For pulmonary disorder classification, this study 

utilized 35 recordings from healthy participants and 846 recordings from patients with 

respiratory pathologies, including 16 cases of bronchiectasis, 793 cases of chronic obstructive 

pulmonary disease (COPD), and 37 cases of pneumonia.   

 

Figure 1. 3D t-SNE of Voice Dataset Distribution After Augmentation 
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Figure 2. 3D t-SNE of Lung Dataset Distribution After Augmentation 

To balance the dataset the augmentation technique such as adding noise, changing pitch, 

and stretching was employed [12] [13].  Gaussian noise with a small variance of 0.01 was used 

for noise addition in augmented data generation. The change pitch technique was used to 

generate the augmented signal were achieved by amplitude scaling of 2 while preserving timing 

without altering the vocal characteristics and lung capacity. Changes in temporal characteristics 

by means of speeding up or slowing down at a rate of 0.8 without affecting pitch, generated 

using stretching augmentation techniques.  The dataset distribution across the classes after 

applying the augmentation technique is illustrated in Figures 1 and 2 in 3D t-SNE (t-Distributed 

Stochastic Neighbor Embedding). 

3.2   Feature Extraction  

In this work, to extract comprehensive acoustic information from audio files, classical 

parameters are used: Mel-Frequency Cepstral Coefficients, Mel Spectrogram, and spectral 

variables such as centroid, bandwidth, roll-off, and zero crossing rate [24]. The mel-frequency 

scale has particular use in the speech signal analysis domain due to its mimicry of the human 

auditory system, providing a reduced resolution at higher frequencies and improved frequency 

resolution at lower frequencies. Feature extraction begins with preprocessing to ensure 

regularized and robust analysis. First, audio signals are loaded with a sampling rate of 22.05 

kHz, which is a good trade-off between frequency resolution for speech analysis and 

computational efficiency. Noise reduction is achieved through amplitude thresholding, where 

signals with an amplitude of less than 0.005 are set to zero, thus removing low-level background 

noise. Audio length normalization ensures that all recordings are at least one second long, 

which is sufficient for speech analysis while keeping it under ten seconds for relevant speech 

segments. 

The principal feature set includes 26-dimensional MFCC [25] [26] vectors extracted 

with a frame size of 2007 samples to preserve temporal dynamics that are important for 

pathological classification.  Alongside MFCCs, mel-spectrogram features are extracted using 

80 mel-frequency bands spanning 80 Hz to 8000 Hz, corresponding to the main speech 

frequency domain.  The mel-spectrogram is converted to a decibel scale so that it correlates to 

logarithmic human auditory perception.  Spectral features such as spectral centroid, bandwidth 
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and roll off are extracted to characterize voice quality aspects directly related to pathological 

conditions.  Some temporal features including the zero-crossing rate (ZCR) measure the rate at 

which an audio signal crosses zero amplitude [27]. Features have all been extracted consistently 

with uniform parameters across all dataset members, impacting reproducibility and 

comparability. While established MFCC coefficients are considered proven and reliable in their 

own right, the extra spectral and temporal features would further cement pathology detection.  

In MFCC, first and second order temporal derivatives are used to capture dynamic information 

to avoid the redundancy of higher order statistics and it uses 26 MFCC coefficients and 80 mel 

bands for noise reduction. The mel spectrogram uses the speech computation range of 80 – 

8000Hz to eliminate frequency redundancy.   In cases of spectral variable non overlapping 

spectral extraction, methods are used to eliminate redundant frequencies from multiple 

correlated spectral descriptors.    

3.3   Acoustic Spectrogram Transformer 

This Acoustic Spectrogram Transformer [7] is a highly sophisticated transformer-based 

architecture designed for voice and lung pathology detection, processing audio features and 

classifying normal voices and pathological ones such as dysphonia, laryngitis, laryngeal nerve 

palsy, Bronchiectasis, COPD and Pneumonia.  The model begins with dual-pathway feature 

embedding where two parallel dense networks with different complexities process the input, 

followed by a learnable gating mechanism that intelligently combines both pathways to create 

optimal initial representations. Learnable positional encodings are added to provide temporal 

sequence information, crucial for audio analysis, followed by layer normalization for training 

stability.  The core architecture consists of 6 transformer encoder blocks with progressive 

complexity scaling, where deeper layers have more attention heads, larger dimensions, and 

higher dropout rates to capture increasingly complex patterns as shown in Figure 3.  

 

Figure 3. Workflow from Raw Signal to Diagnosis Using Acoustic Spectrogram 

Transformer Architecture 

Each transformer block uses pre-layer normalization, 8-head multi-head attention with 

64-dimensional keys, extensive batch normalization, and a two-stage feed-forward network that 

expands from 128 to 256 dimensions before projecting back. Residual connections occur both 

within blocks and between every two blocks to maintain gradient flow and enable learning of 
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local and global patterns. After transformer processing, the model employs sophisticated 

feature aggregation through frequency attention that learns importance weights from different 

sequence parts, combined with three pooling strategies: attention-weighted sum, global average 

and max pooling.  In these multi-pooling strategies, the attention weighted sum focuses on 

salient frequency bands to capture the pathological information, global average pooling 

provides robust overall acoustic characteristics resistant to noise and global max pooling 

captures peak anomalies like voice breaks and tremors in pitch. A frequency focused attention 

mechanism is used to incorporate the frequency domain to operate in the spatial or temporal 

domain and Fourier transformer is used to capture patterns and global dependencies in the 

frequency domain.  The multi-head attention mechanism allows the model to simultaneously 

focus on multiple acoustic aspects such as pitch, energy and timbre at different time scales, 

which is essential for distinguishing between normal and pathological voice. Additionally, the 

transformer's global context modelling capability outperforms CNNs limited receptive fields 

and RNNs' sequential processing bottlenecks, while the integrated frequency attention 

mechanism and multiple pooling strategies provide more sophisticated feature extraction 

specifically suited for pathology detection. A squeeze and excitation block further enhances 

features by learning channel-wise attention weights, reducing dimensionality before expanding 

back with sigmoid gating. The classification head uses progressive dimensionality reduction 

through three dense layers with extensive batch normalization, Swish activation, and dropout, 

culminating in a softmax output layer. 

Table 1. Various Parameters of Audio Spectrogram Transformer 

Component Parameter Value 

Embedding system – stream 1 Dense units 128 

Key dimension 64 

L2 Regularization 0.0001 

Embedding system – stream 2 First dense layer units 64 

Second dense layer units 128 

Activation LeakyReLU 

Dropout Spatial dropout rate 0.2 

Transformer backbone Number of encoder blocks 6 

Attention heads (early layers) 8 

Attention heads (deep layers) 11 

Key dimension (early layers) 64 

Key dimension (deep layers) 85 

Feed-forward dimensions (early) 256 
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Feed-forward dimensions (deep) 384 

Dropout rate 0.3 

Classification head First layer units 256 

Second layer units 128 

Third layer units 64 

L2 Regularization 0.0002 

Optimizer (Adam) Learning rate 0.0001 

Beta 1 0.9 

Beta 2 0.999 

Gradient Clipping Norm 1.0 

The classification head implements a bottleneck architecture, reducing dimensions from 

256 to 128 to 64 units before the final softmax layer, with L2 regularization increasing to 0.0002 

in these critical layers. The Adam optimizer operates with a learning rate of 0.00025, beta 

values of 0.9 and 0.999, and implements gradient clipping at a norm of 1.0 to prevent exploding 

gradients as shown in Table 1.    The parameters used in this model are selected using an 

ablation study, where the model shows less overfitting when adding layer normalization and 

L2 regularization.  The model achieves 78% accuracy with attention heads in the early layer 

and by adding the deep attention head layer, the model shows higher accuracy.    

Table 2. Optimization Parameter of Voice and Lung Model 

Training configuration Grid search range Value 

Multi head attention 4 to 16 8 

Dropout rate 0.1 to 0.5 0.3 

Optimizer Adam, AdamW and RMSprop AdamW 

Learning rate 0.001-0.0001 0.0001 

Batch size 16 and 32 32 

The algorithm is optimized using 8 multi head attention, a dropout rate of 0.3, AdamW 

with a learning rate 0.0001, gradient clipping, early stopping, and learning rate of scheduling, 

specifically designed to handle the temporal nature of audio features while maintaining both 

regional temporal patterns and global voice characteristics essential for precise pathology 

detection as shown in Table 2. The hyperparameters of the acoustic spectrogram transformer 

are optimally selected using the high test accuracy and minimal test loss.  Training was 

conducted on an Intel Core i7-13700 system, with the entire evaluation process taking 
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approximately 0.54 seconds for testing. This architecture combines transformer attention 

mechanisms with domain-specific optimizations for robust voice analysis, utilizing 

comprehensive regularization strategies including batch normalization, progressive dropout, 

and L2 regularization to ensure stable training and prevent overfitting in medical classification 

tasks.  

 Result and discussion 

The proposed transformer model is used to classify normal and pathological signals in 

various multi-pathological classifications. During the training phase of the transformer model, 

the voice model achieves 83% accuracy and shows less overfitting. Figure 4a shows the training 

and validation accuracy of the acoustic spectrogram transformer. Validation and training 

accuracy rise with increasing epochs until they reach the maximum epochs, and Figure 4b 

illustrates the statistical decline in training and validation loss over the epochs.  

 

(a)                                                                  (b) 

Figure 4. a) Training and Validation Accuracy Curve b) Training and Validation Loss 

Curve 

Table 3. Performance Analysis of Voice Pathological Signal 

Voice signal Precision Recall F1-Score 

Laryngeal nerve palsy 0.83 0.77 0.80 

Laryngitis 0.86 0.89 0.88 

Dysphonia 0.82 0.95 0.88 

Normal 0.80 0.70 0.75 

Table 3 illustrates the model's performance by displaying the acoustic spectrogram 

transformer's precision, recall, and F1-score for the vocal pathological categorization of normal 

to pathological signals, which include dysphonia, laryngeal nerve palsy, and laryngitis. The 

model shows about 83% accuracy during the training and testing phases of the acoustic 
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spectrogram transformer. Figure 5 represents the confusion matrix, which demonstrates the 

voice classification model's performance across four distinct categories: laryngeal nerve palsy, 

laryngitis, dysphonia, and normal voice conditions.  

 

Figure 5. Confusion Matrix for Vocal Signal Classification 

The model exhibits strong overall performance with high diagonal values, indicating 

effective discrimination between different voice pathologies.  The model specifically shows 

remarkable classification accuracy rates for pathological diseases, with dysphonia exhibiting 

the best classification accuracy at 95%, closely followed by laryngitis at 89%, and laryngeal 

nerve palsy at 76%.  However, the classification of normal voices presents a notable challenge, 

with only 69% accuracy in this category.  The acoustic spectrogram transformer will work on 

classifying the respiratory diseases bronchiectasis, COPD and pneumonia by using wheezes 

and crackles occurring during the respiratory cycle.  Figure 6 a) depicts the training and 

validation accuracy of the model on the lung signal classification.  The training and validation 

accuracy curve doesn’t show any deviation and it increases over the number of epochs.  Figure 

6 b) shows the loss curve for the model in decreasing order.   

 

(a)                                                                  (b) 

Figure 6. a) Training and Validation Accuracy for Lung Signal Classification b) 

Training and Validation Loss Curve for Lung Signal Classification 
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Table 4. Performance Analysis of Lung Pathological Signal 

Lung signal Precision Recall F1-Score 

Bronchiectasis 0.98 1.00 0.99 

COPD 1.00 0.94 0.97 

Pneumonia 0.97 1.00 0.98 

Healthy 1.00 1.00 1.00 

Table 4 illustrates the model's performance by displaying the acoustic spectrogram 

transformer's precision, recall, and F1-score for the lung pathological categorization of normal 

to pathological signals, which include Bronchiectasis, COPD, Pneumonia, and Healthy. The 

model shows 99% accuracy in classifying lung signals for respiratory disease identification, as 

illustrated in Figure 7. The confusion matrix presents the performance analysis of lung diseases 

in classifying normal and various pathological signals such as Bronchiectasis, COPD, and 

Pneumonia. The model obtained a 95% confidence interval for the given input to both the vocal 

and lung datasets for the acoustic spectrogram transformer model, as given in Table 5, and the 

p-value is equal to zero upon testing the model for statistical validation.  

Table 5. Metric Comparison of Confidence Intervals for Vocal and Lung Model 

 Vocal model Lung model 

Metric Mean Confidence Intervals Mean Confidence Intervals 

Accuracy 0.824 [0.811, 0.836] 0.987 [0.986, 0.988] 

Precision 0.823 [0.810, 0.836] 0.989 [0.988, 0.990] 

Recall 0.824 [0.812, 0.836] 0.990 [0.986, 0.992] 

F1 0.821 [0.808, 0.833] 0.988 [0.986, 0.988] 

 

Figure 7. Confusion Matrix for Lung Signal Classification 
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 Discussion 

The developed acoustic spectrogram transformer is used to classify voice and lung 

pathological conditions from speech data. The model shows the best results in classifying the 

pathological conditions. For the voice dataset, the model yields 83% accuracy, and it achieves 

99% accuracy for lung signal classification. Various transformers and deep learning models, 

such as the audio spectrogram transformer [7], vision transformer [18], swim transformer [21], 

and convolutional neural network [22], are used to compare the results; among them, the 

proposed model shows the highest performance in categorizing the pathological signals, as 

shown in Table 6. The proposed acoustic spectrogram transformer demonstrates close tracking 

between training and validation accuracy, which indicates that the model does not show any 

signs of overfitting.  

Table 6. Comparative Analysis of Proposed Work with the Existing Transformer 

Model for the Voice and Lung Dataset 

Ref Mode

l 

Voice model Lung model 

 Prec

ision 

Rec

all 

F1-

Scor

e 

 Prec

ision 

Reca

ll 

F1-

Sco

re 

[7] Audio 

spectr

ogram 

transf

ormer 

Laryngeal 

nerve palsy 

0.31 0.30 0.40 Bronchiectasis 0.57 0.58 0.53 

Laryngitis 0.29 0.31 0.43 COPD 0.50 0.59 0.55 

Dysphonia 0.30 0.32 0.47 Pneumonia 0.57 0.60 0.58 

normal 0.32 0.29 0.40 Healthy 0.55 0.50 0.51 

[18] Visio

n 

transf

ormer 

Laryngeal 

nerve palsy 

0.80 0.79 0.85 Bronchiectasis 0.99 0.99 0.97 

Laryngitis 0.83 0.80 0.80 COPD 0.98 0.96 1.00 

Dysphonia 0.79 0.84 0.87 Pneumonia 0.95 0.96 0.95 

normal 0.80 0.83 0.80 Healthy 1.00 0.99 0.99 

[21] Swin 

transf

ormer 

Laryngeal 

nerve palsy 

0.74 0.72 0.71 Bronchiectasis 0.85 0.84 0.86 

Laryngitis 0.73 0.75 0.75 COPD 0.90 0.89 0.91 

Dysphonia 0.69 0.67 0.68 Pneumonia 0.89 0.91 0.88 

normal 0.70 0.73 0.73 Healthy 0.89 0.9 0.91 
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[22] Conv

olutio

nal 

neural 

netwo

rk 

Laryngeal 

nerve palsy 

0.78 0.79 0.78 Bronchiectasis 0.95 0.97 0.97 

Laryngitis 0.81 0.80 0.80 COPD 0.91 0.94 1.00 

Dysphonia 0.78 0.82 0.80 Pneumonia 0.90 0.97 0.93 

normal 0.79 0.79 0.79 Healthy 0.98 0.99 0.97 

Proposed 

Work 

Laryngeal 

nerve palsy 

0.83 0.77 0.80 Bronchiectasis 0.98 1.00 0.99 

Laryngitis 0.86 0.89 0.88 COPD 1.00 0.94 0.97 

Dysphonia 0.82 0.95 0.88 Pneumonia 0.97 1.00 0.98 

normal 0.80 0.70 0.75 Healthy 1.00 1.00 1.00 

 Conclusion 

This paper presents the performance of an Acoustic Spectrogram Transformer in the 

multi-class classification of pathologies and achieves very impressive results for voice and lung 

pathology detection. The contribution of the work relies mainly on the architectural design and 

deep feature extraction strategy. Mel-frequency cepstral coefficients and Mel spectrograms are 

successfully leveraged to capture temporal and spectral features relevant to disease 

classification tasks. The effectiveness of our strategy is supported by experimental results that 

show impressive accuracy rates of 99% for lung pathology classification and roughly 83% for 

voice pathological classification.  These metrics demonstrate the model's clinical viability and 

suitability for medical applications. The high accuracy obtained for the task of lung pathology 

detection, in particular, underlines the versatility of the AST framework for solving various 

acoustic pathology detection challenges. The proposed framework could be extended to other 

pathology conditions, and its cross-lingual performance for a variety of patient populations may 

be studied. Additionally, it can be integrated into real-time clinical decision support systems.   
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