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Abstract   

Due to the increasing prevalence of lung cancer and the urgent need for artificial 

intelligence technologies to support medical fields, there is an immediate demand for highly 

accurate and dependable automated diagnostic models for the segmentation of chest CT scans. 

Accurate segmentation will reduce clinicians' manual labor and improve diagnostic results. 

This paper proposes a new segmentation model, which combines an improved U-Net 

architecture with a squeeze-and-excitation mechanism. The model can utilize the loss in a 

multilevel fashion, thanks to the auxiliary classification at the bottleneck layer. Furthermore, 

the squeeze-and-excitation block focuses on the key characteristics extracted from 

convolutional layers. Experiments on the LUNA16 dataset were carried out to train and 

evaluate the model. The proposed approach outperformed many other segmentation methods 

and was very effective in defining the shape of lung nodules more precisely. On the LUNA16 

dataset, it achieved 98.42% DSC and 98.56% accuracy. It has been proven that the 

segmentation of lung nodules in chest CT scans using an auxiliary U-Net architecture together 

with a squeeze-and-excitation mechanism is highly efficient and cost-effective. High accuracy 

and Dice coefficient against the most advanced segmentation models demonstrate the 

possibility of clinical usage and provide accurate boundary detection, which is crucial for an 

accurate diagnosis and treatment. The proposed contraction and stimulation mechanism with 

an auxiliary U-Net architecture has achieved very effective yet inexpensive lung nodule 

segmentation on chest CT scans, compared to state-of-the-art segmentation models.  Accurate 

identification of the boundaries is of paramount importance for diagnosis and treatment 

planning, and the high Dice coefficient and accuracy support its use in clinical settings. 

Keywords: LUNA16, Lung Nodules, Segmentation, Auxiliary Loss, Squeeze and Excitation 

Block, U-Net. 
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 Introduction 

Lung cancer is one of the deadliest cancers, ranking second in cancer deaths among 

men and women, according to US cancer statistics [1], one of the earliest symptoms of lung 

cancer is lung nodules, which are detected by computed tomography (CT) scans.  

Several solutions for diagnosing lung nodules on CT have been presented recently [2], 

including detecting lung nodules from radiographic images using artificial intelligence, and 

classifying them [3]; [4]. There are several datasets that can be used in research aimed at 

analyzing and classifying lung nodules for early cancer detection, such as the LIDC-IDRI 

dataset [5] and LUNA16 dataset [6]. These two datasets are used to detect lung nodules, other 

datasets are also available for studying the progression of lung nodules, such as the NSL [7] 

and NELSON datasets [8]. 

Despite the advantages of the LUNA16 dataset, it is very large in size (about 65 GB), 

because each image consists of 121 slices. For processing in the 3D domain, this requires very 

large resources Moreover, most research has focused on segmenting lung nodules without 

addressing the importance of segmenting the lungs. Since most clinics and hospitals still use 

two-dimensional imaging for diagnosis due to its low cost—both financially and 

computationally and time efficiency, this research proposes a novel model for segmenting both 

the lungs and lung nodules in the two-dimensional domain, achieving high performance, 

practicality, economy, and speed.  

1.1   Available Resources 

In this research, the researchers use Google Colab, which provides resources (15 GB 

GPU, 127 GB RAM, and 70 GB hard disk) to implement the proposed model. As known, 

architectures like UNET require very large resources, especially recent versions like UNET++ 

and others. 

1.2   Limitation 

Due to limited resources, a set of operations was performed that could be modified if 

sufficient resources were available: 

1. Scaling images to 320x320 

2. Using images in 2D instead of 3D, and limiting the middle slice only 

3. Using separable convolution instead of traditional convolution. Not augmenting the 

dataset 

4. The dataset was divided into 90% for training (799 images) and 10% for validation 

(89 images) due to the small number of images and the inability to augment the 

dataset 

In this research, the researchers use accuracy and DSC to evaluate performance because 

accuracy alone is not sufficient to evaluate performance in cases of classes imbalance. DSC is 

the best metric to evaluate the performance of segmentation systems in case of class imbalance 

and is more sensitive to small details than other measures, so it is mainly used in medical 

systems. 
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 Literature Review 

This section delves deeply into several important studies in the field of lung nodule 

segmentation, which is a crucial step towards early lung cancer detection and improving 

diagnostic accuracy. 

One prominent study in this domain, conducted on the LUNA16 dataset, utilized a 3D-

Unet [9] for lung nodule segmentation. The 3D version of the U-Net architecture is particularly 

well-suited for volumetric data such as Computed Tomography (CT) scans, as it can process 

contextual information across all three axes (length, width, depth). This capability allows it to 

capture complex relationships between voxels within the nodules. The researchers in this study 

achieved a Dice Similarity Coefficient (DSC) of 7878%. The Dice coefficient is a widely used 

metric for evaluating segmentation accuracy, measuring the overlap between the predicted 

segmentation and the ground truth, with higher values indicating better performance. 

In a related context, other researchers in study [10] classified and segmented lung 

nodules using the pre-trained Segment Anything Model (SAM), a foundation model known for 

its general object segmentation capabilities This study demonstrates the effectiveness of pre-

trained models in specialized medical tasks, as they achieved a classification accuracy of 

9671% and a segmentation DSC of 9708% on the same LUNA16 dataset, this particularly high 

segmentation performance indicates the immense potential of large, broadly trained deep 

learning models in medical segmentation tasks, even when applied to a narrower scope. 

Furthermore, [11] aimed to develop a deep learning-based system for lung parenchyma 

nodule detection and segmentation, their proposed algorithm was split into two main stages: 

The first stage involved lung segmentation using the previously developed LungQuant 

algorithm to determine the Region of Interest (ROI) and reduce the volume of data requiring 

processing, the second stage focused on nodule segmentation itself, employing a specially 

designed and optimized Attention Res-Unet for this task Attention mechanisms are crucial in 

neural networks as they allow the model to selectively focus on the most important parts of an 

image, thereby enhancing segmentation accuracy Additionally, the study demonstrated the 

reliability of the proposed algorithm for clinical use by employing Grad-CAM, an Explainable 

AI (XAI) technique Grad-CAM enables clinicians and researchers to understand which parts 

of an image the model focuses on to make its decisions, increasing trust in the system, the 

average Dice Similarity Coefficient (DSC) for the LungQuant algorithm in the first phase was 

90%, while the DSC scores for nodule segmentation reached 81% on test sets Moreover, the 

model's average sensitivity and specificity measures were 086 and 092, respectively, which are 

important metrics for evaluating the model's ability to detect true nodules and avoid false 

alarms. 

In another study, [12] conducted research on the Far Eastern Memorial Hospital 

(FEMH) dataset using a UNET architecture. They achieved a DSC of 902% on this dataset. 

When the FEMH dataset was combined with the LUNA16 dataset, the segmentation 

performance improved, with the DSC reaching 926%. This improvement highlights the 

importance of data diversity and volume in enhancing a model's generalization capability and 

performance across different cases. 

[13] modified the U-Net structure by replacing the ReLU activation function with the 

Mish function, which is known for properties that can contribute to more stable training and 

improved performance Some other modifications were also implemented with the aim of 
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reducing computational resources used (such as memory and processing time), which is 

critically important for practical clinical applications. These modifications achieved a DSC of 

8889% on the LUNA16 dataset. 

Despite the significant progress demonstrated by these studies, the achieved 

performance has not yet reached the level required for widespread practical application in the 

clinical environment. One of the main challenges often overlooked in previous studies is the 

issue of class imbalance Lung nodules, by their nature, are relatively small compared to the 

total size of a CT image. This means that the number of voxels representing nodules (the 

positive class) is significantly smaller than the number of voxels representing the background 

or healthy tissue (the negative class). This substantial disparity leads to trained models being 

biased towards the more prevalent class (background), resulting in poor performance in 

segmenting small and critical nodules. 

Therefore, in this research, the researchers present an innovative model based on the U-

Net architecture to address these challenges, this model features multi-label classification, 

where the background, nodules, and lungs are treated as separate and distinct classes, providing 

a more accurate representation of each component in the image. To enhance the model's focus 

on important features and mitigate the effect of class imbalance, a squeeze and excitation 

mechanism will be incorporated, enabling the model to dynamically recalibrate the importance 

of feature channels, allowing it to concentrate on the most relevant areas within CT scans, such 

as subtle nodules. Additionally, an auxiliary loss in the bottleneck of the U-Net will be 

employed, this additional loss is added at intermediate layers of the network to provide 

supplementary gradient signals during training, which helps guide the learning process and 

improve feature representation in deeper layers. Consequently, this approach aims to reduce 

the imbalance between classes and enhance the model's ability to accurately segment nodules, 

even very small ones. 

Table 1. Summary of Strengths and Weaknesses in Research Studies on Lung Nodule 

Segmentation 

Study Strengths Weaknesses 

Nam et al (2018) Use of the 3D-Unet architecture, 

suitable for volumetric data (CT 

scans), and its ability to capture 

three-dimensional context 

Relatively modest performance 

(DSC 7878%) compared to more 

recent studies 

Asha & 

Bhavanishankar 

(nd) 

Achieved very high performance 

(DSC 9708%) using a pre-trained 

foundation model (SAM), 

demonstrating the effectiveness 

of such models 

The general model may lack the 

precise specialization needed to 

handle complex and rare medical 

cases, despite its high performance 

on the selected dataset 

Zafaranchi et al 

(2024) 

A two-stage approach that 

reduces the volume of data 

processed, use of an Attention 

mechanism to focus on important 

features, and employment of 

Nodule segmentation accuracy 

(81%) is good but lower than some 

other mentioned studies, and the 

multi-stage approach may increase 

computational complexity 
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Explainable AI (Grad-CAM) to 

increase clinical reliability 

Li et al (2024) Demonstrated that data diversity 

and volume (by combining two 

datasets) significantly improve 

the model's performance and 

generalization capability (DSC 

926%) 

The improvement heavily relies on 

the availability of multiple large 

datasets, which may not always be 

accessible 

Bhattacharyya et 

al (2023) 

Modified the U-Net architecture 

to improve computational 

efficiency and reduce resource 

consumption, while achieving 

good performance (DSC 8889%) 

Despite its efficiency, the 

performance did not reach the 

highest levels recorded in the field 

As summarized in Table 1, the main contributions and inherent limitations of a selection 

of prominent studies in the field of lung nodule segmentation are outlined. The table highlights 

the diversity of methodologies employed While the study by [9] focused on leveraging the 3D 

nature of CT data using the 3D-Unet architecture, the study by [10] demonstrated the immense 

potential of large foundation models like SAM in achieving exceptional segmentation accuracy 

On the other hand, the study by [11] introduced a practical approach aimed at increasing clinical 

trust by integrating attention mechanisms and Explainable AI, albeit at the expense of achieving 

the highest possible accuracy, the study by [12] also highlighted a crucial factor: the importance 

of data, proving that increasing the diversity and volume of training data significantly enhances 

model performance Finally, the study by [13] addressed an important practical aspect, which is 

improving computational efficiency to make models more viable for use in clinical settings 

with limited resources. 

Despite this notable progress and the multiple strengths highlighted by the research, 

they collectively reveal a fundamental research gap that has not been adequately addressed, this 

gap lies in the problem of class imbalance, which is inherent in CT lung scans, the nature of 

lung nodules means they occupy a very small number of voxels compared to the background 

or healthy lung tissue, which constitutes the vast majority of the data, this severe disparity leads 

to models being heavily biased towards the more prevalent class (the background), resulting in 

poor performance in accurately segmenting small nodules, which are often the most critical for 

early diagnosis, the neglect of this issue in most previous studies represents the main obstacle 

preventing these technologies from reaching the level of reliability required for widespread 

clinical application, this is precisely the gap that this research aims to address directly. 

 Proposed Methodology 

The proposed architecture is an improved version of the traditional U-Net, incorporating 

two enhancements: Squeeze-and-Excitation (SE) blocks and an Auxiliary Classifier at the 

bottleneck, these additions aim to improve feature discrimination and mitigate class imbalance 

during segmentation. 
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Figure 1. Overall Architecture of the Proposed Model 

Each encoder and decoder block follows a consistent structure, As shown in Figure 2, 

the encoder block applies two sets of convolutions, batch normalization, and activation layers, 

followed by an SE block for emphasizing important feature maps, and concludes with max-

pooling for downsampling.   All encoders blocks are similar. All decoders blocks are similar, 

and Figure 2 shows the detailed structure of each block. 

    

Figure 2. Detailed Structure of the Encoder Block with Squeeze-and-Excitation 

Encoder Block: Consists of two convolutional layers with batch normalization and 

ReLU, followed by an SE block and max pooling [14]. 

Bottleneck Block: Similar to the encoder, but without down sampling, this block 

contains the Auxiliary Classifier, which computes a secondary loss to guide feature 

learning at this depth. 
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Decoder Block: Begins with upsampling, concatenates the encoder's corresponding 

features, and applies convolution and SE operations to reconstruct spatial details [15] 

3.1   Squeeze and Excitation Block (SE) 

The squeeze and excitation block is used to focus on important details in the image, 

especially small nodules. This block is less computationally complex than the attention block, 

as it focuses on improving the quality of existing important features rather than increasing the 

size of your features map. Figure3 shows the structure of this block. 

 

Figure 3. Structure of Squeeze and Excitation Block 

• We can calculate the flops generated by each SE block using the formula: 

𝐹𝑙𝑜𝑝𝑠  = H × W × C + 2 × (𝐶 × 𝑁1 + 𝑁1 × 𝑁2) 

H: Height, W: Width, C: Channels number, 𝑁1: number of first MLP (Multi-Layer 

Perceptron) layer of SE block, 𝑁2: number of second MLP layer of SE block 

If we calculate it for the first layer: H=320, W=320, C=64, 𝑁1=8, 𝑁2=64 

Flops= 320× 320 × 64 + 2 × (64 × 8 + 8 × 64) = 6,555,648 

• We can calculate the flops generated by traditional attention block using the 

formula: 

𝐹𝑙𝑜𝑝𝑠  = 4 × H × W × C × 𝐶 + H × W × C 

Flops= 4 × 320 × 320 × 64 × 64 + 320 × 320 × 64 = 1,684,275,200 

The number of flops produced by a traditional attention block is approximately 257 

times that of the SE block.  

Auxiliary Classifier: This classifier transforms the bottleneck feature map into a vector 

using global mean pooling and then passes it through two dense layers to predict multi-label 

outputs, the bottleneck loss is calculated by comparing these predictions to the ground-truth 

label vectors, which helps address class imbalance and speed up training Before applying this 

block, the image dataset must be concatenated with the label vectors to calculate the bottleneck 
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loss, this block is not responsible for segmenting a specific class in the image, but it helps in 

regularizing training and improving general features. 

3.2   Dataset 

The LUNA16 (Lung Nodule Analysis) dataset is one of the most important lung cancer 

datasets. This dataset contains 1,186 nodules across 888 CT scans Each image contains 121 

slices, with each slice taken from a specific orientation to produce a 3D view of the chest. 

Figure 4 shows the middle slice of two images with the corresponding mask for each image 

from LUNA16 dataset. 

 

Figure 4. Samples of Dataset Images and Corresponding Masks 

All nodules in the data set range in size from 3 to 30 mm, with nodules between 3 and10 

mm accounting for 65% of the nodules. Some patients have nodules and others do not. Other 

patient information is not publicly available due to privacy concerns. 

Each image in the dataset has a size of (121, 512, 512, 1) where 121 is the number of 

slices, 512*512 is the width and height in pixels, and 1 is the number of channels. 

As for the masks, they contain 4 unique values: {0: background, 3: the left lung, 4: the 

right lung, 5: the nodules} Figure 4. 

3.3   Preprocessing 

Due to the large size of the dataset and limited resources, only the middle slice of each 

image, which has the largest cross-section of the chest and represents the anterior view of the 

chest, was retained. The images were saved in NPZ format and then resized to (320, 320, 1). 

No image augmentation operations, such as flipping or contrast adjustments, were performed 

due to resource limitations. 

 Results Discussion 

The proposed model was trained on the Google Colab platform using RAM = 127 GB 

and GPU = 15 GB. The Adam optimizer was used with a starting error rate of (1e-3), a training 
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scheduler with a factor of 0.5, early stopping with a patience of 10, and a batch size of 8, for 

50 iterations. Model parameters: 

• Total params: 6,577,217 (2509 MB) 

• Trainable params: 6,565,441 (2505 MB) 

• Non-trainable params: 11,776 (4600 KB) 

Training stopped at iteration 34, with a loss of (021), accuracy of (9856%), and Dice 

coefficient (9842%) on validation set, as shown in Figure (5). 

 

Figure 5. Training and Validation Accuracy/Loss Over Epochs (Seed 1) 

Training Time 1779526 seconds 

Predicting Time 34ms 

Figure 5 presents the training curve of the proposed model, demonstrating that its 

performance metrics began to achieve promising values after only four iterations. This suggests 

an effective learning process and indicates that the network weights were initialized effectively. 

The model continued to optimize its parameters and reached its optimal performance around 

the 24th iteration. This likely represents the optimal point at which the model has captured the 

most significant features from the training data without starting to overfit. Notably, for the 

remaining training epochs beyond the 24th iteration, the model's performance remained stable. 

This stability indicates effective convergence, free from oscillations, divergences, or significant 

overfitting, which are common challenges in deep learning during prolonged training. The 

consistency in performance post-convergence underscores the robustness and reliability of both 

the training methodology and the model architecture. Figure 6 qualitatively evaluates the 

segmentation of the proposed model with a representative subset of its predictions. A full 

description of the segmentation process for one input slice is shown in every row or cluster of 

images in Figure 6. The input CT scan of the chest, which is the first frame in the sequence, is 

raw 3D medical image data, and our model processes this for segmentation. The ground truth 

can be found in the second figure. It is a highly annotated gold standard comparison, and its 

results explicitly illustrate the actual boundaries of these structures of interest as they compare 

to predictions by the model. The third row shows the mask resulting from applying the proposed 

model, demonstrating how the segmentation algorithm was able to identify and delineate 



                                                          Abderrahim El yahyaouy, Abdelkader Hadjoudja, Abdelmajid EL Moutaouakkil, Rachida Latib, Youssef Omor, Hamza Retal 

Journal of Innovative Image Processing, December 2025, Volume 7, Issue 4  1329 

 

nodules and lung areas based on learned representations. A very important visualization is the 

fourth one: a composite view of the predicted mask overlaid on the original input CT image. 

This synthetic view provides a fast and interactive contrast between an anatomical context and 

the model's output. Some color coding is present on the overlay when these segmented 

structures are provided as input, which serves to highlight the differences. If there is any nodule 

in the slice, it is painted blue, and vice versa; the left lung is painted red and the right one green. 

Yellow is employed by the model in important areas to visualize and indicate any mismatches 

with the actual segmentation. This could either be false positives or false negatives, but instant 

feedback in terms of the distribution and existence of yellow areas highlights the shortcomings 

the model may have and points toward potential ways for improvement. Overall, Figure 6 

qualitatively validates the quantitative performance metrics through its appearance and 

provides convincing proof that the model can indeed segment lung structures and nodules in a 

clinically relevant manner. 

  

 

 

 

Figure 6. Example of Segmentation Results: CT Input, Ground Truth Mask, Predicted 

Mask, And Overlay 
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The high performance of the proposed model can be observed in both lung segmentation 

and nodule segmentation. To achieve higher performance, a larger dataset and higher resolution 

images can be used, but this requires more resources. 

Table 2. Comparative Performance of Different Models on LUNA16 Dataset 

Study / Model Dataset Used DSC (%) Accuracy (%) Key Techniques 

Chang-Mo et al 

(2018) 

LUNA16 7878 – 3D U-Net 

Bhattacharyya et 

al (2023) 

LUNA16 8889 – Bi-directional U-Net, 

Mish Activation 

Zafaranchi et al 

(2024) 

LungQuant + 

Custom 

8100 – Attention Res-UNet 

Li et al (2024) FEMH + 

LUNA16 

9260 – U-Net Fusion 

Authors 

(Proposed) 

LUNA16 (2D 

slices) 

9842 9856 SE Blocks + Auxiliary 

Loss + U-Net 

 

Figure 7. Model Performance Curves for the Robustness Test Run (Seed 2) 

Training and validation accuracy curves are slowly increasing smoothly and converging 

to each other, meaning the model is learning well both from training and generalizing well to 

new data without overfitting. Meanwhile, the loss is decreasing during both training and 

validation. This implies steady training (ST), where the learning matures in epochs and the 

error of the model is also minimized. Figure 8 demonstrates the visual accuracy of lung and 

nodule segmentation by the model. As can be observed, the predicted mask of the model and 

the ground truth mask had a very high overlap. The model could delineate the boundaries of 

the target with high accuracy, which was evident from the overlay image created by applying 

the predicted mask over the original image. This reconciles with its high qualitative 

performance. 
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For more robustness and validation that the model is indeed strong and that the results 

are not a consequence of some coincidental split in the data, this experiment has been repeated 

with a different split of the dataset, i.e., with another seed. This gave the following outstanding 

results: an overall accuracy of 0.09919, a Dice Similarity Coefficient of 0.09877, and finally, 

the loss value reached a minimum of 0.003. The whole training process converged in 1,569,684 

seconds at epoch #18, while the prediction of one image took only 0.034 ms. These figures 

confirm the high and stable performance of the model. The low prediction time underlines its 

efficiency and suitability for a clinical environment that requires rapid responses. 

Note that other types of loss functions, including iou_loss, hybrid_loss, weighted_loss, 

and Tversky_loss, were also experimented with during the model formation process. Those 

experiments proved that such kinds of functions are not good enough or perform worse than 

the one we selected.  

 

 

 

 

Figure 8. Example Segmentation Results from the Robustness Test Run 
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4.1   Seed3 Train Curves 

1. Train time 139373 s 

2. Test time 43ms 

3. Dice 9871 

4. Accuracy 9897 

 

Figure 9. Model Performance Curves for the Robustness Test Run for (Seed 3) 

Figure 10. Example Segmentation Results from the Robustness Test Run for Seed 3 



                                                          Abderrahim El yahyaouy, Abdelkader Hadjoudja, Abdelmajid EL Moutaouakkil, Rachida Latib, Youssef Omor, Hamza Retal 

Journal of Innovative Image Processing, December 2025, Volume 7, Issue 4  1333 

 

Table 3. The Change in Learning Rate and GPU Consumption Over Epochs for the 

Training Process of the Proposed Model 

Epoch Learning Rate Batch Size GPU 

Seed1 
   

1-12 0001 8 0-137 

13-21 00005 8 137-138 

22-29 000025 8 138 

30-34 0000125 8 138 

Seed2 
   

1-13 0001 8 0-138 

14-19 00005 8 138 

Seed3 
   

1-13 0001 8 0-138 

14-18 00005 8 138 

Table 3 shows the change in learning rate and GPU consumption over epochs for the 

training process of the proposed model. From the table 3 it is noted that the learning rate varies 

from 0001 to 0000125, and the GPU usage varies from 0 to 138 GB. This consumption is 

constant across three different seeds although some seeds take fewer iterations than others. 

 

Figure 11. The Correlation Between Lung-mask Dice (classes 1, 2: X-axis, 08-10) 

and Nodules-Mask Dice (class 3: Y-axis, 00-10) 
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Figure 11 shows the correlation between lung-mask Dice (classes 1, 2: X-axis, 08-10) 

and Nodules-mask Dice (class 3: Y-axis, 00-10), the points are scattered, with a concentration 

in the upper right (Lung Dice >09, Nodules Dice >06) and some low points (Nodules Dice ~02-

04) 

R = 0092 (weakly positive), this reflects that lung Dice does not directly affect nodule 

Dice, but using lungs as targets decreases image class unbalancing and negative size bias (mean 

difference ≈ -60 pixels for nodules), with wide LoA (eg, [-258, +140]) indicating under-

segmentation and better performance for lungs (slight bias, wider LoA due to their large size). 

Figure 12 shows the Bland-Altman for Class 3 (Nodules), with the difference (Y-axis, -500 to 

100) versus the mean (X-axis, 0-400 pixels). 

 

Figure 12. Bland-Altman for Class 3 (Nodules), the Difference (Y-axis, -500 to 100) 

Versus the Mean (X-axis, 0-400 Pixels 

The points are scattered, with most near 0 and some significantly negative; mean 

difference = -5921 pixels, LoA = [-25865, +14022]. There is a strong negative bias (30-50% of 

the size of a small nodule) with an asymmetric LoA (greater spread in the negative). This is 

because of the nodule edges being classified as background due to their small size and variable 

number (0-2), causing under-segmentation in cases of multiple or ambiguous nodules. Figure 

13 Bland-Altman for Class 1 (Right Lung), Shows the difference (Y-axis, -20,000 to 0) versus 

the mean (X-axis, 4,000-20,000 pixels). 

 

Figure 13. Bland-Altman for Class 1 (Right Lung), Shows the Difference (Y-axis, -

20,000 to 0) Versus the Mean (X-axis, 4,000-20,000 Pixels) 
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Points are near 0, with negative spread; mean difference = -12524 pixels, LoA = [-

425374, +420327]  ,slight negative bias (<1% of lung volume) with wide LoA (high spread in 

negative), this is due to the lung margins being classified as background, especially in cases of 

nodules that affect segmentation, but the large size makes the effect less pronounced. Figure 

14 shows the nBland-Altman for Class 2 (Left Lung), illustrating the difference (predicted – 

reference: Y-axis, -15,000 to 0) versus the mean (mean volume: X-axis, 5,000 to 22,500 pixels). 

 

Figure 14. Bland-Altman for Class 2 (Left Lung), Shows the Difference (Predicted – 

Reference: Y-axis, -15,000 to 0) Versus the Mean (Mean Volume: X-axis, 5,000 to 22,500 

Pixels) 

Points near 0, with negative spread; mean difference = -21730 pixels, LoA = [-78457, 

+34996], slight negative bias (<2% of lung volume) with asymmetric LoA (greater spread in 

negative); this is due to the lung margins being classified as background, especially in cases of 

internal nodules causing confusion, but the large lung volume reduces the effect 

1. The relationship between slice thickness, number of nodules, lung volume, and 

bias. 

2. Slice thickness (05-5 mm): Determines the vertical depth of each of the 121 slices 

in a single case Large lungs (10,000-20,000 pixels) are easy to segment, while small 

nodules (20-400 pixels) are affected by partial volume effects (tissue merging) at 

high thicknesses. 

3. Number of nodules (0-2+): Variation in number increases the complexity of 

segmentation in the middle slice (2D) only. 

4. Lung volume: Large, which reduces the effect of slice thickness, but their edges are 

classified as background. 

5. Bias: Negative bias (-60 pixels for nodules) is due to the edges of nodules being 

classified as background due to partial volume effects, especially with multiple 

nodules, which reduces the volume and increases LoA contrast Lungs suffer from 

a slight bias (-125 to -217 pixels) due to fuzzy edges. 

6. 2D model: Relies on the middle slice only, which limits the capture of nodules 

across the 121 slices, and increasing bias. 
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4.2   Comparative Performance Evaluation 

This proposed model demonstrates a significant leap forward in lung nodule 

segmentation, as evidenced by its superior performance when compared to existing 

architectures Specifically, this approach achieves remarkable results with a Dice Similarity 

Coefficient (DSC) of 9842% and an accuracy of 9856% on the LUNA16 dataset, this 

performance notably surpasses that of previous state-of-the-art methods, such as the 3D U-Net 

by [14] which reported a DSC of 7878%, the Bi-directional U-Net with Mish activation by [13] 

at 8889%, and even more advanced fusion models like [12] that achieved 9260% by combining 

FEMH and LUNA16 datasets. 

A key distinction of this methodology lies in Its efficiency and design philosophy 

Unlike many contemporary studies that rely on computationally intensive 3D U-Nets or 

complex, multi-stage architectures—such as the Attention Res-Unet used by [11] which had an 

8100% DSC—this model achieves these superior results using a lightweight 2D 

framework.This design choice significantly reduces computational overhead and memory 

requirements, making the model more practical for real-world applications. 

The enhanced performance stems from the integration of two critical mechanisms: 

Squeeze-and-Excitation (SE) Blocks and an auxiliary loss mechanism SE Blocks dynamically 

recalibrate channel-wise feature responses, allowing the network to emphasize more 

informative features and suppress less relevant ones, this is particularly beneficial in medical 

imaging where subtle abnormalities like small nodules need to be highlighted Concurrently, 

the auxiliary loss, strategically applied within the U-Net architecture, provides additional 

gradient signals during training, this not only stabilizes the learning process but also directly 

aids in addressing the pervasive issue of class imbalance, where the small volume of nodules 

(positive class) is heavily outnumbered by the background (negative class) By providing 

supplementary supervision, the auxiliary loss ensures that the model learns robust feature 

representations for both dominant and minority classes. 

Moreover, the model's ability to accurately segment both the overall lung structures and 

the intricate nodules using only a single 2D slice is a testament to its exceptional efficiency. 

This single-pass, 2D processing capability translates into faster inference times, which is crucial 

for high-throughput clinical environments. It simplifies the deployment process, as it can be 

readily integrated into existing Picture Archiving and Communication Systems (PACS) that 

typically display medical images in 2D slices. This streamlined approach, combined with the 

high accuracy achieved, underscores the model’s robust suitability for practical, real-world 

clinical deployment, paving the way for more rapid and precise early lung cancer detection. 

 Conclusion 

During the research process, a high-accuracy segmentation model was developed and a 

new auxiliary unit was added to the U-Net architecture. To give more weight to informative 

features, the squeeze-and-excitation method dynamically recalculated feature responses.  An 

auxiliary loss was added at the bottleneck to alleviate the class imbalance problem and further 

improve learning. The effectiveness of the model proposed herein receives full confirmation 

on the widely used dataset LUNA16. Its accuracy was as high as 98.56%; if the Dice Similarity 

Coefficient is 98.42%, its performance is considered satisfactory. These results show how well 

the approach presented here works to detect lung nodules and structures, a crucial clinical 
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testing step that requires accurate boundary definition.   Firstly, the robustness and reliability 

of the model for various real-world clinical scenarios could be further improved by the addition 

of a larger and more diverse data set in addition to LUNA16. Second, though this study is 

focused on a very efficient 2D framework, the core principle of the proposed model, 

particularly the auxiliary unit, has great potential for application in the 3D domain.  The 

extension of the model to directly process volumetric data in 3D may capture comprehensive 

contextual information and interslice relationships that may lead to finer segmentation details. 

However, such a transition will require very high computational resources, thus a very careful 

evaluation is required. Lastly, training on and using a range of datasets will be essential to 

further increase the model's ability to handle small nodules and irregular boundaries. 
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