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Abstract

Due to the increasing prevalence of lung cancer and the urgent need for artificial
intelligence technologies to support medical fields, there is an immediate demand for highly
accurate and dependable automated diagnostic models for the segmentation of chest CT scans.
Accurate segmentation will reduce clinicians' manual labor and improve diagnostic results.
This paper proposes a new segmentation model, which combines an improved U-Net
architecture with a squeeze-and-excitation mechanism. The model can utilize the loss in a
multilevel fashion, thanks to the auxiliary classification at the bottleneck layer. Furthermore,
the squeeze-and-excitation block focuses on the key characteristics extracted from
convolutional layers. Experiments on the LUNA16 dataset were carried out to train and
evaluate the model. The proposed approach outperformed many other segmentation methods
and was very effective in defining the shape of lung nodules more precisely. On the LUNA16
dataset, it achieved 98.42% DSC and 98.56% accuracy. It has been proven that the
segmentation of lung nodules in chest CT scans using an auxiliary U-Net architecture together
with a squeeze-and-excitation mechanism is highly efficient and cost-effective. High accuracy
and Dice coefficient against the most advanced segmentation models demonstrate the
possibility of clinical usage and provide accurate boundary detection, which is crucial for an
accurate diagnosis and treatment. The proposed contraction and stimulation mechanism with
an auxiliary U-Net architecture has achieved very effective yet inexpensive lung nodule
segmentation on chest CT scans, compared to state-of-the-art segmentation models. Accurate
identification of the boundaries is of paramount importance for diagnosis and treatment
planning, and the high Dice coefficient and accuracy support its use in clinical settings.
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1. Introduction

Lung cancer is one of the deadliest cancers, ranking second in cancer deaths among
men and women, according to US cancer statistics [1], one of the earliest symptoms of lung
cancer is lung nodules, which are detected by computed tomography (CT) scans.

Several solutions for diagnosing lung nodules on CT have been presented recently [2],
including detecting lung nodules from radiographic images using artificial intelligence, and
classifying them [3]; [4]. There are several datasets that can be used in research aimed at
analyzing and classifying lung nodules for early cancer detection, such as the LIDC-IDRI
dataset [5] and LUNA16 dataset [6]. These two datasets are used to detect lung nodules, other
datasets are also available for studying the progression of lung nodules, such as the NSL [7]
and NELSON datasets [8].

Despite the advantages of the LUNA16 dataset, it is very large in size (about 65 GB),
because each image consists of 121 slices. For processing in the 3D domain, this requires very
large resources Moreover, most research has focused on segmenting lung nodules without
addressing the importance of segmenting the lungs. Since most clinics and hospitals still use
two-dimensional imaging for diagnosis due to its low cost—both financially and
computationally and time efficiency, this research proposes a novel model for segmenting both
the lungs and lung nodules in the two-dimensional domain, achieving high performance,
practicality, economy, and speed.

1.1 Available Resources

In this research, the researchers use Google Colab, which provides resources (15 GB
GPU, 127 GB RAM, and 70 GB hard disk) to implement the proposed model. As known,
architectures like UNET require very large resources, especially recent versions like UNET++
and others.

1.2 Limitation
Due to limited resources, a set of operations was performed that could be modified if
sufficient resources were available:
1. Scaling images to 320x320
2. Using images in 2D instead of 3D, and limiting the middle slice only

3. Using separable convolution instead of traditional convolution. Not augmenting the
dataset

4. The dataset was divided into 90% for training (799 images) and 10% for validation
(89 images) due to the small number of images and the inability to augment the
dataset

In this research, the researchers use accuracy and DSC to evaluate performance because
accuracy alone is not sufficient to evaluate performance in cases of classes imbalance. DSC is
the best metric to evaluate the performance of segmentation systems in case of class imbalance
and is more sensitive to small details than other measures, so it is mainly used in medical
systems.
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2. Literature Review

This section delves deeply into several important studies in the field of lung nodule
segmentation, which is a crucial step towards early lung cancer detection and improving
diagnostic accuracy.

One prominent study in this domain, conducted on the LUNA16 dataset, utilized a 3D-
Unet [9] for lung nodule segmentation. The 3D version of the U-Net architecture is particularly
well-suited for volumetric data such as Computed Tomography (CT) scans, as it can process
contextual information across all three axes (length, width, depth). This capability allows it to
capture complex relationships between voxels within the nodules. The researchers in this study
achieved a Dice Similarity Coefficient (DSC) of 7878%. The Dice coefficient is a widely used
metric for evaluating segmentation accuracy, measuring the overlap between the predicted
segmentation and the ground truth, with higher values indicating better performance.

In a related context, other researchers in study [10] classified and segmented lung
nodules using the pre-trained Segment Anything Model (SAM), a foundation model known for
its general object segmentation capabilities This study demonstrates the effectiveness of pre-
trained models in specialized medical tasks, as they achieved a classification accuracy of
9671% and a segmentation DSC of 9708% on the same LUNA16 dataset, this particularly high
segmentation performance indicates the immense potential of large, broadly trained deep
learning models in medical segmentation tasks, even when applied to a narrower scope.

Furthermore, [11] aimed to develop a deep learning-based system for lung parenchyma
nodule detection and segmentation, their proposed algorithm was split into two main stages:
The first stage involved lung segmentation using the previously developed LungQuant
algorithm to determine the Region of Interest (ROI) and reduce the volume of data requiring
processing, the second stage focused on nodule segmentation itself, employing a specially
designed and optimized Attention Res-Unet for this task Attention mechanisms are crucial in
neural networks as they allow the model to selectively focus on the most important parts of an
image, thereby enhancing segmentation accuracy Additionally, the study demonstrated the
reliability of the proposed algorithm for clinical use by employing Grad-CAM, an Explainable
Al (XAI) technique Grad-CAM enables clinicians and researchers to understand which parts
of an image the model focuses on to make its decisions, increasing trust in the system, the
average Dice Similarity Coefficient (DSC) for the LungQuant algorithm in the first phase was
90%, while the DSC scores for nodule segmentation reached 81% on test sets Moreover, the
model's average sensitivity and specificity measures were 086 and 092, respectively, which are
important metrics for evaluating the model's ability to detect true nodules and avoid false
alarms.

In another study, [12] conducted research on the Far Eastern Memorial Hospital
(FEMH) dataset using a UNET architecture. They achieved a DSC of 902% on this dataset.
When the FEMH dataset was combined with the LUNA16 dataset, the segmentation
performance improved, with the DSC reaching 926%. This improvement highlights the
importance of data diversity and volume in enhancing a model's generalization capability and
performance across different cases.

[13] modified the U-Net structure by replacing the ReLU activation function with the
Mish function, which is known for properties that can contribute to more stable training and
improved performance Some other modifications were also implemented with the aim of
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reducing computational resources used (such as memory and processing time), which is
critically important for practical clinical applications. These modifications achieved a DSC of
8889% on the LUNA16 dataset.

Despite the significant progress demonstrated by these studies, the achieved
performance has not yet reached the level required for widespread practical application in the
clinical environment. One of the main challenges often overlooked in previous studies is the
issue of class imbalance Lung nodules, by their nature, are relatively small compared to the
total size of a CT image. This means that the number of voxels representing nodules (the
positive class) is significantly smaller than the number of voxels representing the background
or healthy tissue (the negative class). This substantial disparity leads to trained models being
biased towards the more prevalent class (background), resulting in poor performance in
segmenting small and critical nodules.

Therefore, in this research, the researchers present an innovative model based on the U-
Net architecture to address these challenges, this model features multi-label classification,
where the background, nodules, and lungs are treated as separate and distinct classes, providing
a more accurate representation of each component in the image. To enhance the model's focus
on important features and mitigate the effect of class imbalance, a squeeze and excitation
mechanism will be incorporated, enabling the model to dynamically recalibrate the importance
of feature channels, allowing it to concentrate on the most relevant areas within CT scans, such
as subtle nodules. Additionally, an auxiliary loss in the bottleneck of the U-Net will be
employed, this additional loss is added at intermediate layers of the network to provide
supplementary gradient signals during training, which helps guide the learning process and
improve feature representation in deeper layers. Consequently, this approach aims to reduce
the imbalance between classes and enhance the model's ability to accurately segment nodules,
even very small ones.

Table 1. Summary of Strengths and Weaknesses in Research Studies on Lung Nodule
Segmentation

Study Strengths Weaknesses

Nam et al (2018) | Use of the 3D-Unet architecture, | Relatively modest performance
suitable for volumetric data (CT | (DSC 7878%) compared to more
scans), and its ability to capture recent studies

three-dimensional context

Asha & Achieved very high performance | The general model may lack the

Bhavanishankar | (DSC 9708%) using a pre-trained | precise specialization needed to

(nd) foundation model (SAM), handle complex and rare medical
demonstrating the effectiveness cases, despite its high performance
of such models on the selected dataset

Zafaranchi etal | A two-stage approach that Nodule segmentation accuracy

(2024) reduces the volume of data (81%) is good but lower than some
processed, use of an Attention other mentioned studies, and the
mechanism to focus on important | multi-stage approach may increase
features, and employment of computational complexity
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Explainable Al (Grad-CAM) to
increase clinical reliability

Li et al (2024) Demonstrated that data diversity | The improvement heavily relies on
and volume (by combining two the availability of multiple large
datasets) significantly improve datasets, which may not always be
the model's performance and accessible
generalization capability (DSC
926%)

Bhattacharyya et | Modified the U-Net architecture | Despite its efficiency, the

al (2023) to improve computational performance did not reach the
efficiency and reduce resource highest levels recorded in the field

consumption, while achieving
good performance (DSC 8889%)

As summarized in Table 1, the main contributions and inherent limitations of a selection
of prominent studies in the field of lung nodule segmentation are outlined. The table highlights
the diversity of methodologies employed While the study by [9] focused on leveraging the 3D
nature of CT data using the 3D-Unet architecture, the study by [10] demonstrated the immense
potential of large foundation models like SAM in achieving exceptional segmentation accuracy
On the other hand, the study by [11] introduced a practical approach aimed at increasing clinical
trust by integrating attention mechanisms and Explainable Al, albeit at the expense of achieving
the highest possible accuracy, the study by [12] also highlighted a crucial factor: the importance
of data, proving that increasing the diversity and volume of training data significantly enhances
model performance Finally, the study by [13] addressed an important practical aspect, which is
improving computational efficiency to make models more viable for use in clinical settings
with limited resources.

Despite this notable progress and the multiple strengths highlighted by the research,
they collectively reveal a fundamental research gap that has not been adequately addressed, this
gap lies in the problem of class imbalance, which is inherent in CT lung scans, the nature of
lung nodules means they occupy a very small number of voxels compared to the background
or healthy lung tissue, which constitutes the vast majority of the data, this severe disparity leads
to models being heavily biased towards the more prevalent class (the background), resulting in
poor performance in accurately segmenting small nodules, which are often the most critical for
early diagnosis, the neglect of this issue in most previous studies represents the main obstacle
preventing these technologies from reaching the level of reliability required for widespread
clinical application, this is precisely the gap that this research aims to address directly.

3. Proposed Methodology

The proposed architecture is an improved version of the traditional U-Net, incorporating
two enhancements: Squeeze-and-Excitation (SE) blocks and an Auxiliary Classifier at the
bottleneck, these additions aim to improve feature discrimination and mitigate class imbalance
during segmentation.
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Figure 1. Overall Architecture of the Proposed Model

Each encoder and decoder block follows a consistent structure, As shown in Figure 2,
the encoder block applies two sets of convolutions, batch normalization, and activation layers,
followed by an SE block for emphasizing important feature maps, and concludes with max-
pooling for downsampling. All encoders blocks are similar. All decoders blocks are similar,
and Figure 2 shows the detailed structure of each block.

Encoder Block Bottleneck Decoder Block

Figure 2. Detailed Structure of the Encoder Block with Squeeze-and-Excitation

Encoder Block: Consists of two convolutional layers with batch normalization and
ReLU, followed by an SE block and max pooling [14].

Bottleneck Block: Similar to the encoder, but without down sampling, this block
contains the Auxiliary Classifier, which computes a secondary loss to guide feature
learning at this depth.
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Decoder Block: Begins with upsampling, concatenates the encoder's corresponding
features, and applies convolution and SE operations to reconstruct spatial details [15]

3.1 Squeeze and Excitation Block (SE)

The squeeze and excitation block is used to focus on important details in the image,
especially small nodules. This block is less computationally complex than the attention block,
as it focuses on improving the quality of existing important features rather than increasing the
size of your features map. Figure3 shows the structure of this block.

| s

Figure 3. Structure of Squeeze and Excitation Block
e We can calculate the flops generated by each SE block using the formula:
Flops =HXW X C+2x (CXN;+ Ny XN,)

H: Height, W: Width, C: Channels number, N;: number of first MLP (Multi-Layer
Perceptron) layer of SE block, N,: number of second MLP layer of SE block

If we calculate it for the first layer: H=320, W=320, C=64, N,=8, N,=64
Flops=320% 320 X 64 + 2 X (64 X 8 + 8 X 64) = 6,555,648

e We can calculate the flops generated by traditional attention block using the
formula:

Flops =4 XHXWXCXC+HXxWXxC
Flops=4 x 320 X 320 X 64 X 64 + 320 x 320 x 64 =1,684,275,200

The number of flops produced by a traditional attention block is approximately 257
times that of the SE block.

Auxiliary Classifier: This classifier transforms the bottleneck feature map into a vector
using global mean pooling and then passes it through two dense layers to predict multi-label
outputs, the bottleneck loss is calculated by comparing these predictions to the ground-truth
label vectors, which helps address class imbalance and speed up training Before applying this
block, the image dataset must be concatenated with the label vectors to calculate the bottleneck

ISSN: 2582-4252 1326



Abderrahim El yahyaouy, Abdelkader Hadjoudja, Abdelmajid EL Moutaouakkil, Rachida Latib, Youssef Omor, Hamza Retal

loss, this block is not responsible for segmenting a specific class in the image, but it helps in
regularizing training and improving general features.

3.2 Dataset

The LUNA16 (Lung Nodule Analysis) dataset is one of the most important lung cancer
datasets. This dataset contains 1,186 nodules across 888 CT scans Each image contains 121
slices, with each slice taken from a specific orientation to produce a 3D view of the chest.
Figure 4 shows the middle slice of two images with the corresponding mask for each image
from LUNA16 dataset.

Figure 4. Samples of Dataset Images and Corresponding Masks

All nodules in the data set range in size from 3 to 30 mm, with nodules between 3 and10
mm accounting for 65% of the nodules. Some patients have nodules and others do not. Other
patient information is not publicly available due to privacy concerns.

Each image in the dataset has a size of (121, 512, 512, 1) where 121 is the number of
slices, 512*512 is the width and height in pixels, and 1 is the number of channels.

As for the masks, they contain 4 unique values: {0: background, 3: the left lung, 4: the
right lung, 5: the nodules} Figure 4.

3.3 Preprocessing

Due to the large size of the dataset and limited resources, only the middle slice of each
image, which has the largest cross-section of the chest and represents the anterior view of the
chest, was retained. The images were saved in NPZ format and then resized to (320, 320, 1).

No image augmentation operations, such as flipping or contrast adjustments, were performed
due to resource limitations.

4. Results Discussion

The proposed model was trained on the Google Colab platform using RAM = 127 GB
and GPU = 15 GB. The Adam optimizer was used with a starting error rate of (1e-3), a training
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scheduler with a factor of 0.5, early stopping with a patience of 10, and a batch size of 8, for
50 iterations. Model parameters:

o Total params: 6,577,217 (2509 MB)
o Trainable params: 6,565,441 (2505 MB)
o Non-trainable params: 11,776 (4600 KB)

Training stopped at iteration 34, with a loss of (021), accuracy of (9856%), and Dice
coefficient (9842%) on validation set, as shown in Figure (5).

Model Segmentation Accuracy Model Segmentation Dice Coefficient Model Loss

100 1 — Train . 1.04{ — Train ‘ —— Train
Validation Validation Validation

150 4
0.9

0.8 1

0.90 1.00 4

0.7

Loss

Accuracy
Dice Coefficient

0.6
0.85

0.5 4

0.80 -
0.25
0.4 1

0754 T T T 031 T T T T T T T
0 10 20 30 o 10 20 30 o 10 20 30
Epoch Epoch Epoch

Figure 5. Training and Validation Accuracy/Loss Over Epochs (Seed 1)
Training Time 1779526 seconds
Predicting Time 34ms

Figure 5 presents the training curve of the proposed model, demonstrating that its
performance metrics began to achieve promising values after only four iterations. This suggests
an effective learning process and indicates that the network weights were initialized effectively.
The model continued to optimize its parameters and reached its optimal performance around
the 24th iteration. This likely represents the optimal point at which the model has captured the
most significant features from the training data without starting to overfit. Notably, for the
remaining training epochs beyond the 24th iteration, the model's performance remained stable.
This stability indicates effective convergence, free from oscillations, divergences, or significant
overfitting, which are common challenges in deep learning during prolonged training. The
consistency in performance post-convergence underscores the robustness and reliability of both
the training methodology and the model architecture. Figure 6 qualitatively evaluates the
segmentation of the proposed model with a representative subset of its predictions. A full
description of the segmentation process for one input slice is shown in every row or cluster of
images in Figure 6. The input CT scan of the chest, which is the first frame in the sequence, is
raw 3D medical image data, and our model processes this for segmentation. The ground truth
can be found in the second figure. It is a highly annotated gold standard comparison, and its
results explicitly illustrate the actual boundaries of these structures of interest as they compare
to predictions by the model. The third row shows the mask resulting from applying the proposed
model, demonstrating how the segmentation algorithm was able to identify and delineate
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nodules and lung areas based on learned representations. A very important visualization is the
fourth one: a composite view of the predicted mask overlaid on the original input CT image.
This synthetic view provides a fast and interactive contrast between an anatomical context and
the model's output. Some color coding is present on the overlay when these segmented
structures are provided as input, which serves to highlight the differences. If there is any nodule
in the slice, it is painted blue, and vice versa; the left lung is painted red and the right one green.
Yellow is employed by the model in important areas to visualize and indicate any mismatches
with the actual segmentation. This could either be false positives or false negatives, but instant
feedback in terms of the distribution and existence of yellow areas highlights the shortcomings
the model may have and points toward potential ways for improvement. Overall, Figure 6
qualitatively validates the quantitative performance metrics through its appearance and
provides convincing proof that the model can indeed segment lung structures and nodules in a
clinically relevant manner.

Input Image Ground Truth Mask

P

Predicted Mask Overlay: Prediction + Errars in Yellow

Ground Truth Mask Predicted Mask

Input Image

Input Image Ground Truth Mask Predicted Mask

Ground Truth Mask Predicted Mask

Figure 6. Example of Segmentation Results: CT Input, Ground Truth Mask, Predicted
Mask, And Overlay

Overlay: Prediction + Errors in Yellow

Input Image
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The high performance of the proposed model can be observed in both lung segmentation
and nodule segmentation. To achieve higher performance, a larger dataset and higher resolution
images can be used, but this requires more resources.

Table 2. Comparative Performance of Different Models on LUNA16 Dataset

Study / Model Dataset Used | DSC (%) | Accuracy (%) | Key Techniques
Chang-Mo et al LUNA16 7878 — 3D U-Net
(2018)
Bhattacharyya et | LUNA16 8889 — Bi-directional U-Net,
al (2023) Mish Activation
Zafaranchi et al LungQuant + 8100 — Attention Res-UNet
(2024) Custom
Li et al (2024) FEMH + 9260 — U-Net Fusion
LUNAI6

Authors LUNA16 (2D 9842 9856 SE Blocks + Auxiliary
(Proposed) slices) Loss + U-Net

Model Segmentation Accuracy Model Segmentation Dice Coefficient Model Loss

1.00 4
—— Train e L0q — Train = —— Train

Validation / validation < Validation
124
0.9
0.95
101
0.8 1

0.8 4
0.7

Dice Coefficient
Loss

0.6
0.6

0.5 0.4 4

0.4 4 0.2 q

03 0.0 4

Epoch Epoch Epoch

Figure 7. Model Performance Curves for the Robustness Test Run (Seed 2)

Training and validation accuracy curves are slowly increasing smoothly and converging
to each other, meaning the model is learning well both from training and generalizing well to
new data without overfitting. Meanwhile, the loss is decreasing during both training and
validation. This implies steady training (ST), where the learning matures in epochs and the
error of the model is also minimized. Figure 8 demonstrates the visual accuracy of lung and
nodule segmentation by the model. As can be observed, the predicted mask of the model and
the ground truth mask had a very high overlap. The model could delineate the boundaries of
the target with high accuracy, which was evident from the overlay image created by applying
the predicted mask over the original image. This reconciles with its high qualitative
performance.
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For more robustness and validation that the model is indeed strong and that the results
are not a consequence of some coincidental split in the data, this experiment has been repeated
with a different split of the dataset, i.e., with another seed. This gave the following outstanding
results: an overall accuracy of 0.09919, a Dice Similarity Coefficient of 0.09877, and finally,
the loss value reached a minimum of 0.003. The whole training process converged in 1,569,684
seconds at epoch #18, while the prediction of one image took only 0.034 ms. These figures
confirm the high and stable performance of the model. The low prediction time underlines its
efficiency and suitability for a clinical environment that requires rapid responses.

Note that other types of loss functions, including iou_loss, hybrid loss, weighted loss,
and Tversky loss, were also experimented with during the model formation process. Those
experiments proved that such kinds of functions are not good enough or perform worse than
the one we selected.

Input Image

rou

<)

Input Image Ground Truth Mask Predicted Mask Overlay: Prediction + Errors in Yellow

<]
<

Input Image Ground Truth Mask Predicted Mask Overlay: Prediction + Errors in Yellow

]
Bl

Input Image Ground Truth Mask Predicted Mask Overlay. Prediction + Errors i Yellow

_
B
B

Figure 8. Example Segmentation Results from the Robustness Test Run
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4.1 Seed3 Train Curves
1. Train time 139373 s
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3. Dice 9871
4. Accuracy 9897
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Figure 9. Model Performance Curves for the Robustness Test Run for (Seed 3)

J0

A

Ground T Mash v bt 3 sk
(Grouna ot pask Fradicten Pk
Carouan s tmsd -
Grosnd i Mash vl bt M

%
€2

Figure 10. Example Segmentation Results from the Robustness Test Run for Seed 3
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Table 3. The Change in Learning Rate and GPU Consumption Over Epochs for the
Training Process of the Proposed Model

Epoch Learning Rate | Batch Size GPU
Seedl

1-12 0001 8 0-137
13-21 00005 8 137-138
22-29 000025 8 138
30-34 0000125 8 138
Seed2

1-13 0001 8 0-138
14-19 00005 8 138
Seed3

1-13 0001 8 0-138
14-18 00005 8 138

Table 3 shows the change in learning rate and GPU consumption over epochs for the
training process of the proposed model. From the table 3 it is noted that the learning rate varies
from 0001 to 0000125, and the GPU usage varies from 0 to 138 GB. This consumption is
constant across three different seeds although some seeds take fewer iterations than others.

Tumor-mask Dice (Class 3)

1.0

Case-wise Correlation (r = 0.092, p = 0.390)

0.8 4

0.0

L 1

z

0.800

0.825

0.850 0.875

0.900

0.925

Lung-mask Dice (Classes 1, 2)

0.975

1.000

Figure 11. The Correlation Between Lung-mask Dice (classes 1, 2: X-axis, 08-10)
and Nodules-Mask Dice (class 3: Y-axis, 00-10)
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Figure 11 shows the correlation between lung-mask Dice (classes 1, 2: X-axis, 08-10)
and Nodules-mask Dice (class 3: Y-axis, 00-10), the points are scattered, with a concentration
in the upper right (Lung Dice >09, Nodules Dice >06) and some low points (Nodules Dice ~02-
04)

R = 0092 (weakly positive), this reflects that lung Dice does not directly affect nodule
Dice, but using lungs as targets decreases image class unbalancing and negative size bias (mean
difference = -60 pixels for nodules), with wide LoA (eg, [-258, +140]) indicating under-
segmentation and better performance for lungs (slight bias, wider LoA due to their large size).
Figure 12 shows the Bland-Altman for Class 3 (Nodules), with the difference (Y-axis, -500 to
100) versus the mean (X-axis, 0-400 pixels).
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Figure 12. Bland-Altman for Class 3 (Nodules), the Difference (Y-axis, -500 to 100)
Versus the Mean (X-axis, 0-400 Pixels

The points are scattered, with most near 0 and some significantly negative; mean
difference = -5921 pixels, LoA =[-25865, +14022]. There is a strong negative bias (30-50% of
the size of a small nodule) with an asymmetric LoA (greater spread in the negative). This is
because of the nodule edges being classified as background due to their small size and variable
number (0-2), causing under-segmentation in cases of multiple or ambiguous nodules. Figure
13 Bland-Altman for Class 1 (Right Lung), Shows the difference (Y-axis, -20,000 to 0) versus
the mean (X-axis, 4,000-20,000 pixels).

Bland-Altman Plot: Predicted vs Reference Volumes for Class 1 (Pixels)
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Figure 13. Bland-Altman for Class 1 (Right Lung), Shows the Difference (Y-axis, -
20,000 to 0) Versus the Mean (X-axis, 4,000-20,000 Pixels)
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Points are near 0, with negative spread; mean difference = -12524 pixels, LoA = [-
425374, +420327] ,slight negative bias (<1% of lung volume) with wide LoA (high spread in
negative), this is due to the lung margins being classified as background, especially in cases of
nodules that affect segmentation, but the large size makes the effect less pronounced. Figure
14 shows the nBland-Altman for Class 2 (Left Lung), illustrating the difference (predicted —
reference: Y-axis, -15,000 to 0) versus the mean (mean volume: X-axis, 5,000 to 22,500 pixels).
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Figure 14. Bland-Altman for Class 2 (Left Lung), Shows the Difference (Predicted —
Reference: Y-axis, -15,000 to 0) Versus the Mean (Mean Volume: X-axis, 5,000 to 22,500

Pixels)

Points near 0, with negative spread; mean difference = -21730 pixels, LoA = [-78457,
+34996], slight negative bias (<2% of lung volume) with asymmetric LoA (greater spread in
negative); this is due to the lung margins being classified as background, especially in cases of
internal nodules causing confusion, but the large lung volume reduces the effect

1.

The relationship between slice thickness, number of nodules, lung volume, and
bias.

Slice thickness (05-5 mm): Determines the vertical depth of each of the 121 slices
in a single case Large lungs (10,000-20,000 pixels) are easy to segment, while small
nodules (20-400 pixels) are affected by partial volume effects (tissue merging) at
high thicknesses.

Number of nodules (0-2+): Variation in number increases the complexity of
segmentation in the middle slice (2D) only.

Lung volume: Large, which reduces the effect of slice thickness, but their edges are
classified as background.

Bias: Negative bias (-60 pixels for nodules) is due to the edges of nodules being
classified as background due to partial volume effects, especially with multiple
nodules, which reduces the volume and increases LoA contrast Lungs suffer from
a slight bias (-125 to -217 pixels) due to fuzzy edges.

2D model: Relies on the middle slice only, which limits the capture of nodules
across the 121 slices, and increasing bias.
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4.2 Comparative Performance Evaluation

This proposed model demonstrates a significant leap forward in lung nodule
segmentation, as evidenced by its superior performance when compared to existing
architectures Specifically, this approach achieves remarkable results with a Dice Similarity
Coefficient (DSC) of 9842% and an accuracy of 9856% on the LUNAI16 dataset, this
performance notably surpasses that of previous state-of-the-art methods, such as the 3D U-Net
by [14] which reported a DSC of 7878%, the Bi-directional U-Net with Mish activation by [13]
at 8889%, and even more advanced fusion models like [12] that achieved 9260% by combining
FEMH and LUNA16 datasets.

A key distinction of this methodology lies in Its efficiency and design philosophy
Unlike many contemporary studies that rely on computationally intensive 3D U-Nets or
complex, multi-stage architectures—such as the Attention Res-Unet used by [11] which had an
8100% DSC—this model achieves these superior results using a lightweight 2D
framework.This design choice significantly reduces computational overhead and memory
requirements, making the model more practical for real-world applications.

The enhanced performance stems from the integration of two critical mechanisms:
Squeeze-and-Excitation (SE) Blocks and an auxiliary loss mechanism SE Blocks dynamically
recalibrate channel-wise feature responses, allowing the network to emphasize more
informative features and suppress less relevant ones, this is particularly beneficial in medical
imaging where subtle abnormalities like small nodules need to be highlighted Concurrently,
the auxiliary loss, strategically applied within the U-Net architecture, provides additional
gradient signals during training, this not only stabilizes the learning process but also directly
aids in addressing the pervasive issue of class imbalance, where the small volume of nodules
(positive class) is heavily outnumbered by the background (negative class) By providing
supplementary supervision, the auxiliary loss ensures that the model learns robust feature
representations for both dominant and minority classes.

Moreover, the model's ability to accurately segment both the overall lung structures and
the intricate nodules using only a single 2D slice is a testament to its exceptional efficiency.
This single-pass, 2D processing capability translates into faster inference times, which is crucial
for high-throughput clinical environments. It simplifies the deployment process, as it can be
readily integrated into existing Picture Archiving and Communication Systems (PACS) that
typically display medical images in 2D slices. This streamlined approach, combined with the
high accuracy achieved, underscores the model’s robust suitability for practical, real-world
clinical deployment, paving the way for more rapid and precise early lung cancer detection.

5. Conclusion

During the research process, a high-accuracy segmentation model was developed and a
new auxiliary unit was added to the U-Net architecture. To give more weight to informative
features, the squeeze-and-excitation method dynamically recalculated feature responses. An
auxiliary loss was added at the bottleneck to alleviate the class imbalance problem and further
improve learning. The effectiveness of the model proposed herein receives full confirmation
on the widely used dataset LUNA16. Its accuracy was as high as 98.56%; if the Dice Similarity
Coefficient is 98.42%, its performance is considered satisfactory. These results show how well
the approach presented here works to detect lung nodules and structures, a crucial clinical
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testing step that requires accurate boundary definition. Firstly, the robustness and reliability
of the model for various real-world clinical scenarios could be further improved by the addition
of a larger and more diverse data set in addition to LUNA16. Second, though this study is
focused on a very efficient 2D framework, the core principle of the proposed model,
particularly the auxiliary unit, has great potential for application in the 3D domain. The
extension of the model to directly process volumetric data in 3D may capture comprehensive
contextual information and interslice relationships that may lead to finer segmentation details.
However, such a transition will require very high computational resources, thus a very careful
evaluation is required. Lastly, training on and using a range of datasets will be essential to
further increase the model's ability to handle small nodules and irregular boundaries.
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