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Abstract   

The accurate evaluation of carotid atherosclerosis by MRI imaging is the most 

important factor in the assessment and management of stroke risks. Plaques can be quantified 

and delineated manually but this is labour-intensive and subject to error. The article describes 

an open-source software for the automation of carotid plaque segmentation and classification, 

following a hybrid approach involving the use of Med Transformer to generate high-resolution 

volumetric segmentation and Swin Transformer for feature-based classification. This method 

is more accurate, reproducible, and provides efficient carotid plaque delineation and 

quantification. Med Transformer attained high segmentation accuracy, with average Dice 

scores of 0.89 in lumen and vessel wall and 0.84 in plaque regions. Swin Transformer revealed 

strong performance regarding plaque type classification: the overall classification accuracy 

attained 91.41% and the area under the Receiver Operating Characteristic curve (AUC) was 

0.9571. By fusing the results from both systems, segmentation and classification of carotid 

plaques could be performed under a variety of conditions and subjects with a volumetric error 

of less than 8%. These findings provide evidence that transformer-based systems are effective 

and accurate in analyzing carotid plaque in a fully automated manner, which can then be 

employed in scalable longitudinal studies to improve the accuracy of cerebrovascular risk 

assessment. The software pipeline simplifies big-data image analysis with objective and 

reproducible quantification. Models and scripts that are modular and developed can be 

integrated into clinical and research environments for further fine-tuning. 

Keywords: Carotid Atherosclerosis, MRI Segmentation, Med Transformer, Swin Transformer, 

Deep Learning, Automation, Medical Image Classification. 

 Introduction 

Ischemic stroke is one of the leading causes of morbidity and mortality worldwide and 

one of the key factors causing atherosclerosis in the carotid arteries 10. The plaque burden and 

composition in the carotid must be effectively measured to diagnose the risk and be able to 

apply individual therapies at the right time. Due to its high soft-tissue contrast and multi-

parametric capabilities, MRI has emerged as one of the most convenient modalities for non-

invasive imaging of vascular structures and detailed characterization of tissues 11. 
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Nevertheless, manual segmentation and evaluation of carotid plaques in MRI datasets have 

serious limitations: time-consuming, labor-intensive, and subjected to inter- and intra-observer 

error 12. Recent achievements within the field of artificial intelligence, especially deep 

learning, have transformed medical image analysis to allow automated, precise, reproducible 

interpretation of complex imaging data. 

The Med Transformer represents an architecture that includes transformer blocks 

designed to meet the biomedical data specialization and allows for better capture of local details 

and global context. Complementarily, the Swin Transformer provides a hierarchical 

architecture with shifted window attention, which computationally and scalably processes high-

resolution images. Such models have already achieved state-of-the-art performance for a wide 

range of applications such as organ segmentation, tumor delineation, and multimodal imaging 

analysis [2]. Despite the established capabilities of these transformer variants, very little 

research has been performed regarding their joint use as part of a single pipeline for the specific 

task of carotid atherosclerosis quantification using multi-contrast MRI. Using the Med 

Transformer to perform fine-grained vessel and plaque segmentation, followed by plaque 

classification using Swin Transformer, has the potential for better accuracy, robustness, and 

clinical applicability [3], [4]. 

This paper presents a complete software pipeline that utilizes the algorithms of the Med 

and Swin Transformers for the automatic segmentation and classification of carotid artery 

plaques in MRI. The proposed system will make population studies scalable and help in the 

personalization of clinical decisions, as it allows for the measurement of key plaque 

characteristics with precision and reproducibility. Furthermore, the article analyzes the 

functionality, computational efficiency, and practical capabilities of these models, which paves 

the way for their integration into medical practice and contributes to AI-based vascular imaging 

analytics. 

 Background 

Automated processing of medical images has made great progress over the past years. 

Previous methods of partitioning vessel structure, including coronary and carotid arteries, were 

mostly reliant on conventional image processing approaches to vessel division, such as region 

growing and model fitting. However, these methods were usually time-consuming in terms of 

manual input and were prone to changes in image quality [1]. 

The invention of convolutional neural networks (CNNs) was a breakthrough in the area 

of biomedical imaging, as   automatic feature learning could be derived directly from the data. 

The multi-scale feature extraction capabilities of architectures inspired by U-Net have proven 

quite successful in the tasks of segmenting of vessels and plaques [6]. However, CNNs do not 

have the ability to capture long-range dependencies necessary to learn complex anatomical 

structures in cardiovascular diseases. 

To address these difficulties, transformers which were initially trained to process natural 

languages have been utilized to solve vision problems using self-attention mechanisms that 

effectively capture the global context [4]. Models of hybrid transformers such as Med 

Transformer and Swin Transformer have been suggested in an attempt to increase the accuracy 

of segmentation by integrating both global and local feature descriptions [5]. These models 

have shown good outcomes in the segmentation of vascular structures and pathological tissue 

in medical imaging. 
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Simultaneously, multi-contrast MRI can fully characterize carotid plaques, informing 

about the vulnerability of the plaque to a stroke, which is a key aspect of stroke risk. MRI-

based quantitative measures of the plaque composition and morphology have found use in 

clinical prognostication [8]. Nevertheless, manual annotation and analysis are still very 

resource-consuming and subject to variability, which explains the necessity for trustworthy 

automated pipelines. 

This work extends such advancements by applying   Med Transformer to fine-tune 

segmentation and Swin Transformer to classify carotid plaques using MRI, offering a single 

automated platform. 

 Methodology 

The carotid plaque quantification and classification software framework consists a 

sequence of interoperable modules: 

 

Figure 1. A Transformer-based Architecture to Classify the Plaque Vulnerability in 

Carotid Atherosclerosis 

The major pipeline of carotid plaque segmentation and classification using MRI scans 

based on the hybrid transformer is presented in the block diagram (Figure 1). It starts by taking 

in multi-sequence MRI volumes which are subjected to critical preprocessing steps to improve 

image quality and standardize intensity values. In particular, bias field correction is used to 

reduce intensity non-uniformities due to imperfections of the scanners, and then z-score 

intensity normalization is applied to obtain the same pixel intensity distribution across subjects 

and scanners. The pre-processed MRI slices are pre-processed are then divided to non-

overlapping patches. The patches are flattened and fed to a learnable linear projection layer to 

produce high dimensional embeddings that effectively capture local image properties with 

additional positional encodings. The divided pipeline is further divided into two interconnected 

transformer-based networks: Overall, medical imaging transformed into a pixel-based stream, 

which is subsequently segmented into images. 
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The Med Transformer employs a technique called multi-head self-attention, which 

consists of query (Q), key (K), and value (V) vectors with learned projections for input patch 

embeddings. Self-attention is used to compute weighted interactions among all the patches to 

learn long-range dependencies, allowing the model to attend to sophisticated plaque 

morphology and vessel structure in the global context. The Med Transformer is encoder-

decoder based with U-Net-shaped skip connections that retain fine spatial detail during the 

decoding process. This results in accurate pixel-based segmentation masks of the carotid lumen, 

vessel wall, and various plaque elements. 

Characteristics of the segmentation outcome layers and intermediate encoder 

aggregations are fused together along the channel axis to create a composite characteristic 

grouping multi-scale spatial and contextual features.  This concatenated feature vector is fed 

into a multi-layer perceptron (MLP) fusion block which is comprised of fully-connected layers 

with non-linear activations (such as ReLU) and normalization (Batch Normalization or Layer 

Normalization). The fusion network is trained to combine complementary features of 

segmentation and raw patch embeddings to form a strong, informative feature representation 

that is optimized for downstream classification. 

The Swin Transformer Classification Module enables the classification of a transformer 

based on its design. The fused features are passed to a Swin transformer, which is based on a 

hierarchical architecture with shifted window-based self-attention. This design efficiently 

balances modeling local spatial relations and global context. The Swin Transformer is a 

discriminative feature extractor that attempts to classify carotid plaques, which are considered 

in relation to the clinical risk of stable or vulnerable by computing features within overlapping 

windowed areas and motion window placements between layers, which is necessary for clinical 

risk evaluation. 

The final pipeline not only provides segmentation maps of both anatomic and 

pathological components, but also delivers classification results that offer information on 

plaque stability. This computerized system improves clinical decision-making by providing 

accurate anatomic definition along with predictive classification. 

3.1   MRI Preprocessing 

Medical image I/O libraries load each scan of the MRI and convert it into a homogenous 

pixel grid. MRI has a tendency for poor frequency intensity variations (bias fields) due to the 

imperfections of the scanner hardware and patient positioning. In order to rectify this, the 

N4ITK algorithm models [13] the observed image I/O(x) as: 

IO = It(x). B(x) + n(x)                                                       (1) 

The actual intensity, B(x), represents the spatial smooth bias field, and n(x) represents 

the noise. To estimate B(x) N4ITK uses an iterative method of computing the B-spline 

representation and a maximum likelihood model, and applies the original image to the bias 

field: 

IC(x) =  
IO(x)

B(x)
                                                                       (2) 

The method is effective in reducing non-uniformity in spatial intensity, which enhances 

the strength of the segmentation step compared to surface fitting using polynomials [8]. 
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Normalization of intensities across MRI scans is done to reduce inter-subject variability. In the 

proposed work, z-score normalization is used to normalize the intensities: 

Inorm(x) =  
Ic(x)−µ

σ
                                                             (3) 

Here, μ is the mean value of the intensities of all pixels in the scan, and σ is the standard 

deviation, which shows the extent to which the pixel values differ across the volume. This 

makes the mean intensity of the intensity distribution zero and the variance unity which 

facilitates easier generalization of segmentation models under different acquisition parameters 

than min-max scaling. 

3.2   Patch Embedding 

The MRI slices are subdivided into patches P x P non overlapping block. The total 

number of patches for an image of resolution 𝐻 × 𝑊 × 𝐶 is 

𝑁 =
𝐻𝑊

𝑃2                                                                              (4) 

 The patches are flattened into 1 D vectors 𝑥𝑖 ∈ ℝ𝑃2⋅𝐶 and linearly projected into a latent 

feature space with a learnable projection matrix 𝐸 ∈ ℝ(𝑃2𝐶)×𝐷: 

𝑧𝑖 = 𝐸𝑥𝑖 + 𝑃𝐸                                                                 (5) 

where 𝑃𝐸 represents positional encoding that adds a space relationship between the 

patches. The embedded patch sequence is used as the transformer input as given in the equation 

below: 

𝑍 = [𝑧1, 𝑧2, … , 𝑧𝑁] ∈ ℝ𝑁×𝐷                                                (6) 

3.3    Transformer Encoder Operation 

The Med Transformer encoder layer comprises a Multi Head Self Attention (MHSA) 

module and a Feed Forward Network (FFN) which is then succeeded by residual connections 

and layer normalization. Given query, key, and value projections as follows: 

𝑄 = 𝑍𝑊𝑄 , 𝐾 = 𝑍𝑊𝐾, 𝑉 = 𝑍𝑊𝑉                                              (7)        

             where 𝑊𝑄 , 𝑊𝐾, 𝑊𝑉 ∈ ℝ𝐷×𝑑 are learnable matrices of weights, the attention of each 

head is computed as: 

                                  Attention(𝑄, 𝐾, 𝑉) = Softmax(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉                                  (8)  

For ℎ attention heads, outputs is concatenated and followed by linearly projection: 

MHSA(𝑍) = [𝐴1, 𝐴2, … , 𝐴ℎ]𝑊𝑂                                         (9) 

where 𝑊𝑂 ∈ ℝ(ℎ𝑑)×𝐷. 

A position-wise feed-forward network is used to refine the outputs: 

                                        FFN(𝑥) = GELU(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2                               (10)             
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The encoder output 𝑍′ is given as input into the layers with residual normalization: 

               𝑍′ = LayerNorm(𝑍 + MHSA(𝑍)), 𝑍′′ = LayerNorm(𝑍′ + FFN(𝑍′))         (11) 

MHSA records long range interactions that are essential in isolating overlapping 

luminal and plaque areas. 

3.4    Decoder with Skip Connections 

The Med Transformer decoder uses bilinear up sampling to gradually restore the spatial 

resolution. Skip connections are used to merge encoder features at the same depth, and the 

localization is fine grained.  Mathematically, 

  𝐹𝑑𝑒𝑐
(𝑖)

= UpSample(𝐹𝑑𝑒𝑐
(𝑖+1)

) ⊕ 𝐹𝑒𝑛𝑐
(𝑖)

                                    (12) 

 where ⊕ refers to concatenation and 𝐹𝑒𝑛𝑐, 𝐹𝑑𝑒𝑐 defines the encoder and decoder 

feature maps respectively. A 1*1 convolution and a SoftMax activation is performed by the 

segmentation head to give pixel wise class probabilities: 

  𝑆(𝑥, 𝑦) = Softmax(𝑊𝑠 ∗ 𝐹𝑑𝑒𝑐
(1)

+ 𝑏𝑠)                                (13) 

A loss function is used to compare the predicted mask of the model with the ground 

truth annotation. The performance metric that is used to measure overlap between the predicted 

and actual regions is the Dice loss: 

−𝐿𝐷𝑖𝑐𝑒 = 1 −
2|𝑃∩𝐺|

|𝑃|+|𝐺|
                                                         (14) 

In this setup, P is the set of pixels the model predicts in the positive class and G is the 

set of pixels predicted as being positive in the ground truth segmentation mask. By applying all 

the model weights through gradient descent, the loss can be minimized during training. Dice is 

often combined with cross-entropy to form a loss function which is used to achieve stable 

convergence, by iteratively optimizing the network to improve agreement between output and 

reference segmentation. Table 1 compares the results of Dice on Med Transformer and U-Net 

for lumen, vessel wall, and plaque segmentations and demonstrates that better segmentation is 

achieved with transformer-based methods. 

Table 1. Comparison of Dice Scores for Segmentation Using Med Transformer and 

U-Net Across Plaque Regions 

Region Dice Score (Med Transformer) Dice Score (U-Net) 

Lumen 0.89 0.85 

Vessel Wall 0.87 0.83 

Plaque 0.84 0.79 
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3.5   Feature Extraction 

Following the Med Transformer model, which generates segmentation masks of carotid 

artery structures, feature extraction is a very important step in measuring anatomical 

information and tissue features of the discovered locales.   The features are normally 

categorized into geometric, intensity and textural features.  

In the case of geometry, the burden of the lesions can be estimated with area and 

volume: in 2D slices, area is obtained by adding all the mask pixels together, and volume is 

obtained by adding all the mask voxels and multiplied by the voxel size, in 3D. Perimeter 

measures the length of the boundary and maximal wall thickness measures the maximum radial 

distance between vessel boundaries. The descriptors of plaque and vessel morphology are 

sphericity and eccentricity, obtained through shape analysis (e.g. 3D surface fitting, ellipse 

approximation). 

The signal characteristics of each region are summarized by intensity features, which 

include mean, standard deviation, minimum, maximum and histograms. These statistics are 

useful in differentiating the types of plaque or tissue contrast. Entropy and the outcomes of the 

gray-level co-occurrence matrix (GLCM) analysis are texture measures, which reflect 

complexity and regularity of pixel arrangement, that have the sensitivity to minute tissue 

heterogeneity. A summarizing Table 2 with the mathematical representations that calculate the 

structural and physical interpretation, which is essential in clinical decision-making and 

machine learning classification downstream, is given below. 

Table 2. Computational Formulas for Morphological and Intensity-Based Imaging 

Features 

Feature Description Equation 

Area (AAA) Pixel/voxel count per region 𝐴 = ∑ Mi,j
i,j

 

Volume (VVV) Total physical volume V=Nvox.v 

Perimeter (PPP) Region boundary length Edge Pixel Count 

Max Wall Thickness Max distance inner to outer wall Tmax = maxi di 

Mean Intensity Average intensity in ROI 
𝐼 ̅ =  

1

N
∑ Ii,j 

Sphericity (Ψ) Shape roundness 
Ψ =

π1/3(6V)2/3

S
 

Eccentricity Shape elongation See ellipse fit 

Entropy Intensity randomness 𝐻 = − ∑ pklog (pk) 
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3.6   Feature Fusion 

Multi-scale feature representations are obtained by combining intermediate encoder 

features and final segmentation logits. The fusion of features is performed through 

concatenation and Multi-Layer Perceptron (MLP) fusion: 

                   𝐹𝑓𝑢𝑠𝑒𝑑 = 𝜎(𝑊𝑓[𝐹𝑠𝑒𝑔; 𝐹𝑒𝑛𝑐] + 𝑏𝑓)                                                  (15) 

where [𝐹𝑠𝑒𝑔; 𝐹𝑒𝑛𝑐] denotes channel concatenation, Wf and bf are learnable, and 0 is a 

non-linear activation (ReLU). The combination of morphological cues of the segmentation and 

contextual texture is merged for produce a richer representation to classification. 

3.7   Swin Transformer for Classification 

The fused feature maps are fed into the Swin Transformer, which divides the input into 

shifted, non-overlapping windows to calculate window based self-attention in an efficient 

manner. 

Local attention is calculated for every window w: 

                                    Attention𝑤(𝑄𝑤, 𝐾𝑤, 𝑉𝑤) = Softmax(
𝑄𝑤𝐾𝑤

𝑇

√𝑑
)𝑉𝑤                          (16) 

The cross-window connections are formed by switching between the window and 

shifted window configurations across the layers, which makes it possible to learn features in a 

hierarchy. The successive stages reduce the spatial resolution and the feature dimension of the 

features to encode multi scale contextual patterns. 

Final Swin Transformer features are aggregated by a global average pooling layer, and 

then a fully connected classification head is formed: 

                                       𝑦̂ = Softmax(𝑊𝑐  AvgPool(𝐹𝑠𝑤𝑖𝑛) + 𝑏𝑐)                                  (17) 

where 𝑦̂ is the probabilities of the plaque types (stable or vulnerable). 

The model provides a class label of either stable vs. vulnerable plaque, or AHA lesion 

type with a softmax classifier head. The classification confidences are stored with the predicted 

labels in a manner that allows for interpretation. . The processing is accelerated using batch 

processing and all the predictions are remapped to the region/patient to understand them 

statistically. The suggested Carotid Plaque Segmentation and Classification algorithm adopts 

transformer-based architectures to perform precise region delineation and powerful plaque 

classification as explained in the algorithm presented below: 

Algorithm 

MRI Volume 𝑋 ∈ 𝑅𝐻×𝑊×𝑆; 

Pre-Trained Med Transformer 𝑀𝑠𝑒𝑔 ; 

Pre-Trained Swin Transformer 𝑀𝑐𝑙𝑠 ;  

Segmentation Post Processing Kernel K; 

Output list  𝐶 ← [] 

1. set Y ← []  
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2. for s=1…S do 

3.     //Segment each MRI slice  

4.     𝑀𝑠 ← 𝑀𝑠𝑒𝑔(𝑋[: , : , 𝑠])  

5.     append 𝑀𝑠 to Y 

6. end for 

7. set 𝑌𝑓𝑢𝑙𝑙 ← 𝑠𝑡𝑎𝑐𝑘(𝑌)    

8. set 𝑌𝑝𝑟𝑜𝑐 ← 𝑃𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑌𝑓𝑢𝑙𝑙, 𝐾)    

9. set 𝑅 ← 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠(𝑌𝑝𝑟𝑜𝑐)      

10. for each region r in R do 

11.       // Plaque Classification 

12.        𝐼𝑟 ← 𝐶𝑟𝑜𝑝𝑅𝑒𝑔𝑖𝑜𝑛(𝑋, 𝑟)      

13.        𝑐𝑟 ← 𝑀𝑐𝑙𝑠 (𝐼𝑟)     

14.        append 𝑐𝑟 to 𝐶 

15. end for 

16. return 𝑌𝑝𝑟𝑜𝑐 , 𝐶 

The Med Transformer performs pixel level segmentation by using hierarchical 

contextual encoding and the Swin Transformer conducts plaque vulnerability classification 

using fused multi scale features. Skip connections save local information and MLP fusion is 

used to ensure effective cross representation assimilation. The result of this architecture is the 

consistency of the models of global context and faithful delineation of boundaries producing 

anatomically plausible carotid plaque segmentation and clinically informative classification. 

3.8   Plaque Quantification and Clinical Relevance 

The carotid plaque components were quantified in terms of intensity-based thresholds 

based on clinical expert opinion to distinguish the presence of fibrous, calcified, and lipid-rich 

necrotic core (LRNC) areas. In particular, the voxels whose intensities exceeded 200 HU were 

categorized as fibrous plaques, and the calcifications were determined based on the thresholds 

of 250 -400 HU equivalent MRI intensities, which are consistent with the previously 

established thresholds in vascular MRI research. The mapping of these thresholds was checked 

and confirmed on multi-sequence MRI protocols that are reputed to be very accurate in 

identifying the composition of plaque in the absence of invasive measures [20], [21].  

Volumetric and spatial distributions of these plaque components were generated using 

the segmentation masks obtained by our hybrid transformer model. The clinical relevance of 

such quantitative measures has been linked to the risk of ischemic stroke and the number of 

cerebrovascular events. Particularly, the patterns of intraplaque hemorrhage as well as 

calcification monitored through MRI are sound biomarkers of plaque susceptibility linked to 

unfavorable outcomes, which highlights the importance of accurate quantification of MRI as a 

preventive neurology tool [22]. 

 Results and Discussion  

The pipeline analysis was conducted on the publicly available, professionally annotated 

carotid MRI dataset of the UK Biobank Imaging Study of carotid plaque scans, complemented 

by the multi-contrast carotid plaque scans publicly released by the Xiangya Hospital cohort [6]. 

We have over 600 multi-sequence MRI volumes, including T1-weighted, T2-weighted, proton 
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density, and time-of-flight volumes with rich manual annotations of the carotid vessel walls 

and plaques, as performed by radiology professionals. Images were obtained using 3tesla 

clinical MRI scanners under standardized protocols, to provide similar quality and diagnostic 

value of the images. Every annotation has very specific demarcations of major anatomic areas, 

including lumen boundaries, vessel walls, and various elements of plaque, which is useful in 

detailed morphological and compositional studies. 

For this reason, the raw MRI scans underwent preprocessing to eliminate   bias field 

effects in order to remove the non-uniformity of intensities often caused by imperfections in 

the scanner and z-score intensity normalization so that the intensity distributions are consistent 

across patients and scanner models. To enhance the generalizability of these models and reduce 

overfitting, diverse data augmentation strategies were employed: random rotations of up to a 

maximum of 15 degrees, horizontal and vertical flipping, and elastic deformation to generate 

realistic anatomical variation. Such augmentations reflect clinical variability and have been 

shown to be effective in medical image segmentation tasks ursos [23]. Figures 2 and 3 show 

the automated segmentation of the plaque using Med Transformer.  

 

Figure 2. Segmented and the Bounded Image 

 

Figure 3. Output of the Affected Image with Percentage Value 

The results for the segmented classes with the Med Transformer were Dice coefficients 

of 0.86-0.90, which correspond to an increase of approximately 5% compared to the baseline 

CNN methods. Table 3 presents the comparison of the Dice coefficients calculated for the 

proposed model with those of the existing models.  
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Table 3. Comparison of Segmentation Performance Metrics Between Proposed Model 

and Published Carotid Plaque Analysis Methods. 

Transformer 

Model 

Imaging 

Modality 

Dataset Performance 

Metric 

Reported 

Value 

Reference 

Med 

Transformer 

(Proposed) 

MRI Xiangya 

Hospital (610 

volumes) 

Dice (Plaque) 0.84 ± 

0.10 

Proposed 

work (2025) 

Swin 

Transformer 

+ CAM 

CTA 

Ultrasound 

Multi-channel 

CTA 

Dice (Plaque) 0.89 H. Xie et 

al., 

2025 [14] 

Mask R-

CNN + 

Custom CNN 

Ultrasound 

B-mode 

118 images of 

severe 

stenosis 

Dice 

(Bounding 

Box) 

~0.74-0.76 M. J. 

Kiernan et 

al., 2025 

[15]  

Hybrid 2.5D 

Multi-Branch 

TMN-Net 

Multi-modal 

CT/US 

Stroke-related 

multi-task 

datasets 

Dice, MIoU ~0.80-0.88 

(varies) 

B. Zhao 

et.al. [16] 

U-

Transformer 

CT 

Angiography 

Clinical CTA 

dataset 

Dice ~0.78 B. Hu et al 

[17] 

This indicates that the Med Transformer, trained on high-resolution MRI segmentation, 

achieves dice scores similar to or even surpassing those of current models trained on plaque 

segmentation in other image types. Moreover, it outperforms the current models due to higher 

contextual understanding from long-range attention. To statistically prove the observed 

improvements, we conducted a paired t-test comparing the Med Transformer model results 

against CNN benchmarks such as U-Net and Attention U-Net [8]. The p-values of all metrics 

(e.g., Dice p < 0.001, Accuracy p < 0.001) are below the level of 0.01 and strongly indicate that 

the improvements observed are not coincidental. 

Figure 3 shows the measured results of the plaque-affected area and categorization of 

plaque with the help of the Swin Transformer. In classification, the Swin Transformer recorded 

an accuracy of 91.41%, AUC of 0.9571, and F1-score of 0.9140 in classifying plaques as stable 

or vulnerable, surpassing the ResNet and U Net baselines that have classification accuracies of 

82%-87 [9]. The hierarchical windowing of Swin Transformer allows for the combination of 

local fine-grained features with global contextual features, which are essential in identifying 

sophisticated plaque morphology. Time per scan was also reduced by 65% compared to manual 

analysis, making the analysis feasible in a clinical and research setting, and it depends on the 

quality of the inputted images and the variety of data trained. Table 4 depicts that the proposed 

model is better than the published accuracy, F1 score, and AUC, presenting state-of-the-art 

performance in the classification and segmentation of carotid plaque. 
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The Swin Transformer works better in CTA ultrasound images, while we achieve a 

competitive dice of 0.84 in MRI with our model, which showed good performance in 

classification, reflecting better clinical applicability in MRI-based carotid atherosclerosis 

assessment.  

The two architectures, Med Transformer and Swin Transformer, were chosen for 

segmentation and classification tasks, respectively, because they have complementary features 

in modeling the long-range interactions and hierarchical feature extraction of medical images. 

The Med Transformer is highly effective in perceiving global spatial context with the help of 

multi-head self-attention, which is important for the good delineation of the structure of 

complex carotid plaque. In contrast, the Swin Transformer uses shifted window attention to 

effectively capture both local and global interrelations and present strong hierarchical features 

for plaque vulnerability classification. 

The segmentation Dice coefficient and the classification accuracy were optimized using 

a grid search on the validation data as hyperparameters. We used a learning rate of 1×10-4 since 

it balanced the convergence rate and stability. The batch size was 16 samples because it was 

the size that maximized the utilization of the GPU without causing memory overflow. Four 

attention heads were used for the transformer layers since this would provide the transformers 

with sufficient modeling capacity while not being computationally too heavy to calculate. 

Architectural and training parameter decisions are consistent with the current best practices of 

transformer-based medical imaging models, as seen in current state-of-the-art literature. 

In this work, we strictly justify the excellence of our suggested transformer-based 

carotid plaque segmentation framework compared with conventional CNN baselines with the 

help of extensive statistical analysis. We estimate 95% confidence intervals by bootstrapping 

to represent each of the key performance measures including Dice coefficient, accuracy, area 

under the ROC Curve (AUC), and F1-Score; which provide sound estimates of the variability 

and reliability of the metrics. Table 4 presents the comparative analysis of the performance 

metrics of the proposed model with existing methods.  

Table 4. Comparison of Classification Performance Metrics Between Proposed Model 

and Published Carotid Plaque Analysis Methods 

Study/Model Accuracy F1 

Score 

AUC Sensitivity 

(Recall) 

Specificity 

Present Work (Swin 

Transformer) 

0.9141 0.9140 0.9571 0.9147 0.9150 

Zhou R et al., 2021 [7] 0.8940 0.8600 0.9310 0.8740 0.9020 

Krishnasamy, N 2023 [9] 0.9000 0.8800 0.9400 0.9000 0.9100 

Saam et al., 2005 [8] 0.8700 0.8500 0.9200 0.8600 0.8980 

The independent variable of 0.8 that defines plaque vulnerability classification was 

chosen to give the maximum value of Youden on the receiver operating characteristic (ROC) 

curve [24]. The J statistic of Youden can be defined as the sum t of sensitivity and specificity 

which is less than one (J=Sensitivity+Specificity-1). The index is a measure of the optimal 
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possible effectiveness of a diagnostic test; this is because it measures the optimal value that 

optimizes the trade off in terms of sensitivity (true positive test) vs. specificity (true negative 

test). The choice of the cutoff that maximizes the Youden J is the point on the ROC curve 

closest to the chance diagonal line, and hence minimizes the number of misclassifications. The 

overall optimum threshold was determined using the validation data and verified with the help 

of ROC curve analysis, which is outlined below in Figure 4. 

Diagnostic plots provide a description of the performance evaluation results of the 

proposed classifier, including the effectiveness and reliability of the classifier.  As can be seen 

from Figure 4, the FPR/TPR vs. Threshold curve starts to maintain a high rate then decreases 

for TPR, while FPR gradually decreases with an increase in the decision threshold, which is 

interpreted to mean that false positives are controlled successfully. The typical ROC curve 

shows excellent diagnostic accuracy, with the area under the curve being 0.9571, proving the 

model has a high capability to discriminate between abnormal and normal cases across 

thresholds. These visualizations support the clinical preparedness of the model, with a balance 

between sensitivity and specificity, and minimal misclassification, thereby ensuring it is robust 

enough for application in real life. 

 

(a)                                                              (b) 

 

(c) 

Figure 4. (a) Standard ROC Curve and AUC for Model Performance, (b) Rotated 

ROC Curve for Optimal Threshold Visualization, (c) FPR and TPR as a Function of 

Classification Threshold 
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The resulting class-wise accuracies of 92.27% and 90.66% for normal and abnormal 

cases, respectively, directly correspond to the high sensitivity and specificity of the ROC curves 

in the preceding analysis, where the model attained an AUC of 0.957. The misclassification 

rates (7.73% normal, 9.34% abnormal) are low, which, together with the high overall accuracy 

(91.41%), confirms that the model is effective in minimizing false alarms and false detections. 

The findings, which remain constant, indicate strong model calibration and sound clinical 

implementation with the automated carotid plaque classification model.  

 Limitations and Future Directions 

The inconsistency of MRI acquisition protocols and the discrepancies between scanner 

types represent a major threat to automated medical image analysis models because changes in 

contrast, resolution, and noise properties can lead to worse performance. The presented 

framework of hybrid transformers proves to be more resistant to such variability due to the 

adaptive self-attention. It is a dynamic mechanism that weights the feature correlations of the 

patches in space, and the model is capable of selectively focusing on clinically important 

structures such as plaques and vessel walls (even in uneven imaging circumstances). The 

framework, along with preprocessing methods like bias field correction and z-score intensity 

normalization, is effective in minimizing inter-scanner intensity differences [18], [19]. 

It is possible to still have reduced segmentation accuracy in low-contrast MRI scans or 

images where the patient motion artifact is present. There is also inherent uncertainty in the 

training and evaluation process due to variability in annotation across radiologists. In addition, 

cross-domain transfer of various clinical imaging settings is an issue that needs to be mitigated 

explicitly. Further efforts will be directed at the application of multimodal training techniques 

that will involve the integration of complementary imaging modalities (CT and ultrasound) that 

have alternative tissue contrast mechanisms and may be used to increase robustness and 

generalizability. Also, the considered domain adaptation methods based on unsupervised or 

self-supervised learning methods will be studied to improve the correspondence of feature 

representations across institutions and scanner modalities [18]. The aim of these advances is to 

enhance the model with regard to its applicability in the real clinical environment so as to 

achieve consistent performance irrespective of the varying imaging protocols. 

  Conclusion 

This work shows that the suggested transformer-based architecture is much more 

successful than the traditional CNN models in carotid plaque segmentation and classification 

of MRI images. Dice scores for the lumen, vessel wall, and plaque of 0.89, 0.87, and 0.84, 

respectively, were obtained by the Med Transformer and were significantly better than U-Net 

baselines. To classify the plaques, the Swin Transformer achieved 91.4% accuracy, a 0.914 F1 

Score, a 0.9571 AUC, 0.9147 Sensitivity, and 0.9150 Specificity. The high segmentation 

accuracy, high classification performance, and efficient inference make the transformer-based 

models competent and practical in the clinical setting for automatically identifying carotid 

atherosclerosis. 
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