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Abstract

The accurate evaluation of carotid atherosclerosis by MRI imaging is the most
important factor in the assessment and management of stroke risks. Plaques can be quantified
and delineated manually but this is labour-intensive and subject to error. The article describes
an open-source software for the automation of carotid plaque segmentation and classification,
following a hybrid approach involving the use of Med Transformer to generate high-resolution
volumetric segmentation and Swin Transformer for feature-based classification. This method
is more accurate, reproducible, and provides efficient carotid plaque delineation and
quantification. Med Transformer attained high segmentation accuracy, with average Dice
scores of 0.89 in lumen and vessel wall and 0.84 in plaque regions. Swin Transformer revealed
strong performance regarding plaque type classification: the overall classification accuracy
attained 91.41% and the area under the Receiver Operating Characteristic curve (AUC) was
0.9571. By fusing the results from both systems, segmentation and classification of carotid
plaques could be performed under a variety of conditions and subjects with a volumetric error
of less than 8%. These findings provide evidence that transformer-based systems are effective
and accurate in analyzing carotid plaque in a fully automated manner, which can then be
employed in scalable longitudinal studies to improve the accuracy of cerebrovascular risk
assessment. The software pipeline simplifies big-data image analysis with objective and
reproducible quantification. Models and scripts that are modular and developed can be
integrated into clinical and research environments for further fine-tuning.

Keywords: Carotid Atherosclerosis, MRI Segmentation, Med Transformer, Swin Transformer,
Deep Learning, Automation, Medical Image Classification.

1. Introduction

Ischemic stroke is one of the leading causes of morbidity and mortality worldwide and
one of the key factors causing atherosclerosis in the carotid arteries 10. The plaque burden and
composition in the carotid must be effectively measured to diagnose the risk and be able to
apply individual therapies at the right time. Due to its high soft-tissue contrast and multi-
parametric capabilities, MRI has emerged as one of the most convenient modalities for non-
invasive imaging of vascular structures and detailed characterization of tissues 11.
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Nevertheless, manual segmentation and evaluation of carotid plaques in MRI datasets have
serious limitations: time-consuming, labor-intensive, and subjected to inter- and intra-observer
error 12. Recent achievements within the field of artificial intelligence, especially deep
learning, have transformed medical image analysis to allow automated, precise, reproducible
interpretation of complex imaging data.

The Med Transformer represents an architecture that includes transformer blocks
designed to meet the biomedical data specialization and allows for better capture of local details
and global context. Complementarily, the Swin Transformer provides a hierarchical
architecture with shifted window attention, which computationally and scalably processes high-
resolution images. Such models have already achieved state-of-the-art performance for a wide
range of applications such as organ segmentation, tumor delineation, and multimodal imaging
analysis [2]. Despite the established capabilities of these transformer variants, very little
research has been performed regarding their joint use as part of a single pipeline for the specific
task of carotid atherosclerosis quantification using multi-contrast MRI. Using the Med
Transformer to perform fine-grained vessel and plaque segmentation, followed by plaque
classification using Swin Transformer, has the potential for better accuracy, robustness, and
clinical applicability [3], [4].

This paper presents a complete software pipeline that utilizes the algorithms of the Med
and Swin Transformers for the automatic segmentation and classification of carotid artery
plaques in MRI. The proposed system will make population studies scalable and help in the
personalization of clinical decisions, as it allows for the measurement of key plaque
characteristics with precision and reproducibility. Furthermore, the article analyzes the
functionality, computational efficiency, and practical capabilities of these models, which paves
the way for their integration into medical practice and contributes to Al-based vascular imaging
analytics.

2. Background

Automated processing of medical images has made great progress over the past years.
Previous methods of partitioning vessel structure, including coronary and carotid arteries, were
mostly reliant on conventional image processing approaches to vessel division, such as region
growing and model fitting. However, these methods were usually time-consuming in terms of
manual input and were prone to changes in image quality [1].

The invention of convolutional neural networks (CNNs) was a breakthrough in the area
of biomedical imaging, as automatic feature learning could be derived directly from the data.
The multi-scale feature extraction capabilities of architectures inspired by U-Net have proven
quite successful in the tasks of segmenting of vessels and plaques [6]. However, CNNs do not
have the ability to capture long-range dependencies necessary to learn complex anatomical
structures in cardiovascular diseases.

To address these difficulties, transformers which were initially trained to process natural
languages have been utilized to solve vision problems using self-attention mechanisms that
effectively capture the global context [4]. Models of hybrid transformers such as Med
Transformer and Swin Transformer have been suggested in an attempt to increase the accuracy
of segmentation by integrating both global and local feature descriptions [5]. These models
have shown good outcomes in the segmentation of vascular structures and pathological tissue
in medical imaging.
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Simultaneously, multi-contrast MRI can fully characterize carotid plaques, informing
about the vulnerability of the plaque to a stroke, which is a key aspect of stroke risk. MRI-
based quantitative measures of the plaque composition and morphology have found use in
clinical prognostication [8]. Nevertheless, manual annotation and analysis are still very
resource-consuming and subject to variability, which explains the necessity for trustworthy
automated pipelines.

This work extends such advancements by applying Med Transformer to fine-tune
segmentation and Swin Transformer to classify carotid plaques using MRI, offering a single
automated platform.

3. Methodology

The carotid plaque quantification and classification software framework consists a
sequence of interoperable modules:
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Figure 1. A Transformer-based Architecture to Classify the Plaque Vulnerability in
Carotid Atherosclerosis

The major pipeline of carotid plaque segmentation and classification using MRI scans
based on the hybrid transformer is presented in the block diagram (Figure 1). It starts by taking
in multi-sequence MRI volumes which are subjected to critical preprocessing steps to improve
image quality and standardize intensity values. In particular, bias field correction is used to
reduce intensity non-uniformities due to imperfections of the scanners, and then z-score
intensity normalization is applied to obtain the same pixel intensity distribution across subjects
and scanners. The pre-processed MRI slices are pre-processed are then divided to non-
overlapping patches. The patches are flattened and fed to a learnable linear projection layer to
produce high dimensional embeddings that effectively capture local image properties with
additional positional encodings. The divided pipeline is further divided into two interconnected
transformer-based networks: Overall, medical imaging transformed into a pixel-based stream,
which is subsequently segmented into images.
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The Med Transformer employs a technique called multi-head self-attention, which
consists of query (Q), key (K), and value (V) vectors with learned projections for input patch
embeddings. Self-attention is used to compute weighted interactions among all the patches to
learn long-range dependencies, allowing the model to attend to sophisticated plaque
morphology and vessel structure in the global context. The Med Transformer is encoder-
decoder based with U-Net-shaped skip connections that retain fine spatial detail during the
decoding process. This results in accurate pixel-based segmentation masks of the carotid lumen,
vessel wall, and various plaque elements.

Characteristics of the segmentation outcome layers and intermediate encoder
aggregations are fused together along the channel axis to create a composite characteristic
grouping multi-scale spatial and contextual features. This concatenated feature vector is fed
into a multi-layer perceptron (MLP) fusion block which is comprised of fully-connected layers
with non-linear activations (such as ReLLU) and normalization (Batch Normalization or Layer
Normalization). The fusion network is trained to combine complementary features of
segmentation and raw patch embeddings to form a strong, informative feature representation
that is optimized for downstream classification.

The Swin Transformer Classification Module enables the classification of a transformer
based on its design. The fused features are passed to a Swin transformer, which is based on a
hierarchical architecture with shifted window-based self-attention. This design efficiently
balances modeling local spatial relations and global context. The Swin Transformer is a
discriminative feature extractor that attempts to classify carotid plaques, which are considered
in relation to the clinical risk of stable or vulnerable by computing features within overlapping
windowed areas and motion window placements between layers, which is necessary for clinical
risk evaluation.

The final pipeline not only provides segmentation maps of both anatomic and
pathological components, but also delivers classification results that offer information on
plaque stability. This computerized system improves clinical decision-making by providing
accurate anatomic definition along with predictive classification.

3.1 MRI Preprocessing

Medical image /O libraries load each scan of the MRI and convert it into a homogenous
pixel grid. MRI has a tendency for poor frequency intensity variations (bias fields) due to the
imperfections of the scanner hardware and patient positioning. In order to rectify this, the
N4ITK algorithm models [13] the observed image I/O(x) as:

Ip = (%).B(xX) + n(x) €))

The actual intensity, B(x), represents the spatial smooth bias field, and n(x) represents
the noise. To estimate B(x) N4ITK uses an iterative method of computing the B-spline
representation and a maximum likelihood model, and applies the original image to the bias
field:

Io(X)
B(x) ()

lc(x) =

The method is effective in reducing non-uniformity in spatial intensity, which enhances
the strength of the segmentation step compared to surface fitting using polynomials [8].
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Normalization of intensities across MRI scans is done to reduce inter-subject variability. In the
proposed work, z-score normalization is used to normalize the intensities:

I.(x)—
Inorm(X) = % (3)

Here, p is the mean value of the intensities of all pixels in the scan, and o is the standard
deviation, which shows the extent to which the pixel values differ across the volume. This
makes the mean intensity of the intensity distribution zero and the variance unity which
facilitates easier generalization of segmentation models under different acquisition parameters
than min-max scaling.

3.2 Patch Embedding

The MRI slices are subdivided into patches P x P non overlapping block. The total
number of patches for an image of resolution H X W X C is

N=2¥ (4)

p2

The patches are flattened into 1 D vectors x; € RP *C and linearly projected into a latent
feature space with a learnable projection matrix E € R(? “OxD.

Zi=Exi+PE (5)

where Py represents positional encoding that adds a space relationship between the
patches. The embedded patch sequence is used as the transformer input as given in the equation
below:

Z = [leZZI ...,ZN] € RNXD (6)

3.3 Transformer Encoder Operation

The Med Transformer encoder layer comprises a Multi Head Self Attention (MHSA)
module and a Feed Forward Network (FFN) which is then succeeded by residual connections
and layer normalization. Given query, key, and value projections as follows:

Q=ZWQ,K=ZWK,V=ZWV (7)

where Wy, W, Wy, € RP*4 are learnable matrices of weights, the attention of each
head is computed as:

T
Attention(Q, K, V) = Softmax(%)V (8)
k

For h attention heads, outputs is concatenated and followed by linearly projection:
MHSA(Z) = [A1,A,, ..., Ap]W, 9)
where W, € R(:)*D,
A position-wise feed-forward network is used to refine the outputs:
FFN(x) = GELU(xW; + by)W, + b, (10)
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The encoder output Z' is given as input into the layers with residual normalization:
Z' = LayerNorm(Z + MHSA(Z)),Z" = LayerNorm(Z' + FEN(Z")) (11)

MHSA records long range interactions that are essential in isolating overlapping
luminal and plaque areas.

3.4 Decoder with Skip Connections

The Med Transformer decoder uses bilinear up sampling to gradually restore the spatial
resolution. Skip connections are used to merge encoder features at the same depth, and the
localization is fine grained. Mathematically,

F®

dec

= UpSample(F{o™) @ E, (12)

where @ refers to concatenation and F,,,., F4.. defines the encoder and decoder

feature maps respectively. A 1*1 convolution and a SoftMax activation is performed by the
segmentation head to give pixel wise class probabilities:

S(x,y) = Softmax(W; * F + by) (13)

dec

A loss function is used to compare the predicted mask of the model with the ground
truth annotation. The performance metric that is used to measure overlap between the predicted
and actual regions is the Dice loss:

2|PNG|
|P|+]G|

—Lpice =1 (14)

In this setup, P is the set of pixels the model predicts in the positive class and G is the
set of pixels predicted as being positive in the ground truth segmentation mask. By applying all
the model weights through gradient descent, the loss can be minimized during training. Dice is
often combined with cross-entropy to form a loss function which is used to achieve stable
convergence, by iteratively optimizing the network to improve agreement between output and
reference segmentation. Table 1 compares the results of Dice on Med Transformer and U-Net
for lumen, vessel wall, and plaque segmentations and demonstrates that better segmentation is
achieved with transformer-based methods.

Table 1. Comparison of Dice Scores for Segmentation Using Med Transformer and
U-Net Across Plaque Regions

Region Dice Score (Med Transformer) | Dice Score (U-Net)
Lumen 0.89 0.85
Vessel Wall 0.87 0.83
Plaque 0.84 0.79
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3.5 Feature Extraction

Following the Med Transformer model, which generates segmentation masks of carotid
artery structures, feature extraction is a very important step in measuring anatomical
information and tissue features of the discovered locales.  The features are normally
categorized into geometric, intensity and textural features.

In the case of geometry, the burden of the lesions can be estimated with area and
volume: in 2D slices, area is obtained by adding all the mask pixels together, and volume is
obtained by adding all the mask voxels and multiplied by the voxel size, in 3D. Perimeter
measures the length of the boundary and maximal wall thickness measures the maximum radial
distance between vessel boundaries. The descriptors of plaque and vessel morphology are
sphericity and eccentricity, obtained through shape analysis (e.g. 3D surface fitting, ellipse
approximation).

The signal characteristics of each region are summarized by intensity features, which
include mean, standard deviation, minimum, maximum and histograms. These statistics are
useful in differentiating the types of plaque or tissue contrast. Entropy and the outcomes of the
gray-level co-occurrence matrix (GLCM) analysis are texture measures, which reflect
complexity and regularity of pixel arrangement, that have the sensitivity to minute tissue
heterogeneity. A summarizing Table 2 with the mathematical representations that calculate the
structural and physical interpretation, which is essential in clinical decision-making and
machine learning classification downstream, is given below.

Table 2. Computational Formulas for Morphological and Intensity-Based Imaging

Features
Feature Description Equation
Area (AAA) Pixel/voxel count per region A= Z M)
ij
Volume (VVV) Total physical volume V=Nyox.v
Perimeter (PPP) Region boundary length Edge Pixel Count

Max Wall Thickness | Max distance inner to outer wall | Tmax = max; d;

Mean Intensity Average intensity in ROI - 1
T= 52
Sphericity (¥) Shape roundness w /3 (6V)?%/3
Bl S
Eccentricity Shape elongation See ellipse fit
Entropy Intensity randomness H=_ Z pilog (py)
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3.6 Feature Fusion

Multi-scale feature representations are obtained by combining intermediate encoder
features and final segmentation logits. The fusion of features is performed through
concatenation and Multi-Layer Perceptron (MLP) fusion:

Ffused = O-(Wf[Fseg; Fonel + bf) (15)

where [Fieg; Fenc] denotes channel concatenation, Wi and bf are learnable, and 0 is a

non-linear activation (ReLU). The combination of morphological cues of the segmentation and
contextual texture is merged for produce a richer representation to classification.

3.7 Swin Transformer for Classification

The fused feature maps are fed into the Swin Transformer, which divides the input into
shifted, non-overlapping windows to calculate window based self-attention in an efficient
manner.

Local attention is calculated for every window w:

T
Attention,, (Q,,, Ky, V) = Softmax(QV&gw)VW (16)

The cross-window connections are formed by switching between the window and
shifted window configurations across the layers, which makes it possible to learn features in a
hierarchy. The successive stages reduce the spatial resolution and the feature dimension of the
features to encode multi scale contextual patterns.

Final Swin Transformer features are aggregated by a global average pooling layer, and
then a fully connected classification head is formed:

y = Softmax(W, AvgPool(Fsyin) + b.) (17)
where J is the probabilities of the plaque types (stable or vulnerable).

The model provides a class label of either stable vs. vulnerable plaque, or AHA lesion
type with a softmax classifier head. The classification confidences are stored with the predicted
labels in a manner that allows for interpretation. . The processing is accelerated using batch
processing and all the predictions are remapped to the region/patient to understand them
statistically. The suggested Carotid Plaque Segmentation and Classification algorithm adopts
transformer-based architectures to perform precise region delineation and powerful plaque
classification as explained in the algorithm presented below:

Algorithm

MRI Volume X € RH*WXS,

Pre-Trained Med Transformer Mg, ;
Pre-Trained Swin Transformer M, ;
Segmentation Post Processing Kernel K;
Output list C <[]

1. setY <[]
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2. fors=1...S do

3. //Segment each MRI slice

4. Mg« Mgy (X[:,:,s])

5. append MgtoY

6. end for

7. set Ypyy < stack(Y)

8. set Ve < Postprocess(quu, K)
9. set R « ExtractRegions(Yy oc)
10. for each region 7 in R do

11. // Plaque Classification
12. I, < CropRegion(X,r)
13. Cr < Mcls (Ir)

14. append ¢, to C

15. end for

16. return Yy,.o¢, C

The Med Transformer performs pixel level segmentation by using hierarchical
contextual encoding and the Swin Transformer conducts plaque vulnerability classification
using fused multi scale features. Skip connections save local information and MLP fusion is
used to ensure effective cross representation assimilation. The result of this architecture is the
consistency of the models of global context and faithful delineation of boundaries producing
anatomically plausible carotid plaque segmentation and clinically informative classification.

3.8 Plaque Quantification and Clinical Relevance

The carotid plaque components were quantified in terms of intensity-based thresholds
based on clinical expert opinion to distinguish the presence of fibrous, calcified, and lipid-rich
necrotic core (LRNC) areas. In particular, the voxels whose intensities exceeded 200 HU were
categorized as fibrous plaques, and the calcifications were determined based on the thresholds
of 250 -400 HU equivalent MRI intensities, which are consistent with the previously
established thresholds in vascular MRI research. The mapping of these thresholds was checked
and confirmed on multi-sequence MRI protocols that are reputed to be very accurate in
identifying the composition of plaque in the absence of invasive measures [20], [21].

Volumetric and spatial distributions of these plaque components were generated using
the segmentation masks obtained by our hybrid transformer model. The clinical relevance of
such quantitative measures has been linked to the risk of ischemic stroke and the number of
cerebrovascular events. Particularly, the patterns of intraplaque hemorrhage as well as
calcification monitored through MRI are sound biomarkers of plaque susceptibility linked to
unfavorable outcomes, which highlights the importance of accurate quantification of MRI as a
preventive neurology tool [22].

4. Results and Discussion

The pipeline analysis was conducted on the publicly available, professionally annotated
carotid MRI dataset of the UK Biobank Imaging Study of carotid plaque scans, complemented
by the multi-contrast carotid plaque scans publicly released by the Xiangya Hospital cohort [6].
We have over 600 multi-sequence MRI volumes, including T1-weighted, T2-weighted, proton
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density, and time-of-flight volumes with rich manual annotations of the carotid vessel walls
and plaques, as performed by radiology professionals. Images were obtained using 3tesla
clinical MRI scanners under standardized protocols, to provide similar quality and diagnostic
value of the images. Every annotation has very specific demarcations of major anatomic areas,
including lumen boundaries, vessel walls, and various elements of plaque, which is useful in
detailed morphological and compositional studies.

For this reason, the raw MRI scans underwent preprocessing to eliminate bias field
effects in order to remove the non-uniformity of intensities often caused by imperfections in
the scanner and z-score intensity normalization so that the intensity distributions are consistent
across patients and scanner models. To enhance the generalizability of these models and reduce
overfitting, diverse data augmentation strategies were employed: random rotations of up to a
maximum of 15 degrees, horizontal and vertical flipping, and elastic deformation to generate
realistic anatomical variation. Such augmentations reflect clinical variability and have been
shown to be effective in medical image segmentation tasks ursos [23]. Figures 2 and 3 show
the automated segmentation of the plaque using Med Transformer.

Atherosclerosis Detection Results

Classification Result: Affected

Original Image Segmented Image Bounded Image

H———
a_

Figure 2. Segmented and the Bounded Image
Atherosclerosis Detection Results

Classification Result: Aflectod

Affected Area: 13.26%

Original Image Segmented Image Bounded Image

Figure 3. Output of the Affected Image with Percentage Value

The results for the segmented classes with the Med Transformer were Dice coefficients
of 0.86-0.90, which correspond to an increase of approximately 5% compared to the baseline
CNN methods. Table 3 presents the comparison of the Dice coefficients calculated for the
proposed model with those of the existing models.
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Table 3. Comparison of Segmentation Performance Metrics Between Proposed Model
and Published Carotid Plaque Analysis Methods.

Transformer Imaging Dataset Performance | Reported | Reference
Model Modality Metric Value

Med MRI Xiangya Dice (Plaque) | 0.84 + Proposed

Transformer Hospital (610 0.10 work (2025)

(Proposed) volumes)

Swin CTA Multi-channel | Dice (Plaque) | 0.89 H. Xie et

Transformer | Ultrasound CTA al.,

+ CAM 2025 [14]

Mask R- Ultrasound 118 images of | Dice ~0.74-0.76 | M. J.

CNN + B-mode severe (Bounding Kiernan et

Custom CNN stenosis Box) al., 2025
[15]

Hybrid 2.5D | Multi-modal | Stroke-related | Dice, MIoU ~0.80-0.88 | B. Zhao

Multi-Branch | CT/US multi-task (varies) et.al. [16]

TMN-Net datasets

U- CT Clinical CTA | Dice ~0.78 B. Huet al

Transformer | Angiography | dataset [17]

This indicates that the Med Transformer, trained on high-resolution MRI segmentation,

achieves dice scores similar to or even surpassing those of current models trained on plaque
segmentation in other image types. Moreover, it outperforms the current models due to higher
contextual understanding from long-range attention. To statistically prove the observed
improvements, we conducted a paired t-test comparing the Med Transformer model results
against CNN benchmarks such as U-Net and Attention U-Net [8]. The p-values of all metrics
(e.g., Dice p <0.001, Accuracy p <0.001) are below the level of 0.01 and strongly indicate that
the improvements observed are not coincidental.

Figure 3 shows the measured results of the plaque-affected area and categorization of
plaque with the help of the Swin Transformer. In classification, the Swin Transformer recorded
an accuracy of 91.41%, AUC of 0.9571, and F1-score of 0.9140 in classifying plaques as stable
or vulnerable, surpassing the ResNet and U Net baselines that have classification accuracies of
82%-87 [9]. The hierarchical windowing of Swin Transformer allows for the combination of
local fine-grained features with global contextual features, which are essential in identifying
sophisticated plaque morphology. Time per scan was also reduced by 65% compared to manual
analysis, making the analysis feasible in a clinical and research setting, and it depends on the
quality of the inputted images and the variety of data trained. Table 4 depicts that the proposed
model is better than the published accuracy, F1 score, and AUC, presenting state-of-the-art
performance in the classification and segmentation of carotid plaque.

1349
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The Swin Transformer works better in CTA ultrasound images, while we achieve a
competitive dice of 0.84 in MRI with our model, which showed good performance in
classification, reflecting better clinical applicability in MRI-based carotid atherosclerosis
assessment.

The two architectures, Med Transformer and Swin Transformer, were chosen for
segmentation and classification tasks, respectively, because they have complementary features
in modeling the long-range interactions and hierarchical feature extraction of medical images.
The Med Transformer is highly effective in perceiving global spatial context with the help of
multi-head self-attention, which is important for the good delineation of the structure of
complex carotid plaque. In contrast, the Swin Transformer uses shifted window attention to
effectively capture both local and global interrelations and present strong hierarchical features
for plaque vulnerability classification.

The segmentation Dice coefficient and the classification accuracy were optimized using
a grid search on the validation data as hyperparameters. We used a learning rate of 1x10-4 since
it balanced the convergence rate and stability. The batch size was 16 samples because it was
the size that maximized the utilization of the GPU without causing memory overflow. Four
attention heads were used for the transformer layers since this would provide the transformers
with sufficient modeling capacity while not being computationally too heavy to calculate.
Architectural and training parameter decisions are consistent with the current best practices of
transformer-based medical imaging models, as seen in current state-of-the-art literature.

In this work, we strictly justify the excellence of our suggested transformer-based
carotid plaque segmentation framework compared with conventional CNN baselines with the
help of extensive statistical analysis. We estimate 95% confidence intervals by bootstrapping
to represent each of the key performance measures including Dice coefficient, accuracy, area
under the ROC Curve (AUC), and F1-Score; which provide sound estimates of the variability
and reliability of the metrics. Table 4 presents the comparative analysis of the performance
metrics of the proposed model with existing methods.

Table 4. Comparison of Classification Performance Metrics Between Proposed Model
and Published Carotid Plaque Analysis Methods

Study/Model Accuracy F1 AUC Sensitivity Specificity
Score (Recall)
Present Work (Swin 0.9141 0.9140 | 0.9571 0.9147 0.9150
Transformer)
ZhouR et al., 2021 [7] 0.8940 0.8600 | 0.9310 0.8740 0.9020
Krishnasamy, N 2023 [9] 0.9000 0.8800 | 0.9400 0.9000 0.9100
Saam et al., 2005 [8] 0.8700 0.8500 | 0.9200 0.8600 0.8980

The independent variable of 0.8 that defines plaque vulnerability classification was
chosen to give the maximum value of Youden on the receiver operating characteristic (ROC)
curve [24]. The J statistic of Youden can be defined as the sum t of sensitivity and specificity
which is less than one (J=Sensitivity+Specificity-1). The index is a measure of the optimal
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possible effectiveness of a diagnostic test; this is because it measures the optimal value that
optimizes the trade off in terms of sensitivity (true positive test) vs. specificity (true negative
test). The choice of the cutoff that maximizes the Youden J is the point on the ROC curve
closest to the chance diagonal line, and hence minimizes the number of misclassifications. The
overall optimum threshold was determined using the validation data and verified with the help
of ROC curve analysis, which is outlined below in Figure 4.

Diagnostic plots provide a description of the performance evaluation results of the
proposed classifier, including the effectiveness and reliability of the classifier. As can be seen
from Figure 4, the FPR/TPR vs. Threshold curve starts to maintain a high rate then decreases
for TPR, while FPR gradually decreases with an increase in the decision threshold, which is
interpreted to mean that false positives are controlled successfully. The typical ROC curve
shows excellent diagnostic accuracy, with the area under the curve being 0.9571, proving the
model has a high capability to discriminate between abnormal and normal cases across
thresholds. These visualizations support the clinical preparedness of the model, with a balance
between sensitivity and specificity, and minimal misclassification, thereby ensuring it is robust
enough for application in real life.
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Figure 4. (a) Standard ROC Curve and AUC for Model Performance, (b) Rotated
ROC Curve for Optimal Threshold Visualization, (c) FPR and TPR as a Function of
Classification Threshold
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The resulting class-wise accuracies of 92.27% and 90.66% for normal and abnormal
cases, respectively, directly correspond to the high sensitivity and specificity of the ROC curves
in the preceding analysis, where the model attained an AUC of 0.957. The misclassification
rates (7.73% normal, 9.34% abnormal) are low, which, together with the high overall accuracy
(91.41%), confirms that the model is effective in minimizing false alarms and false detections.
The findings, which remain constant, indicate strong model calibration and sound clinical
implementation with the automated carotid plaque classification model.

5. Limitations and Future Directions

The inconsistency of MRI acquisition protocols and the discrepancies between scanner
types represent a major threat to automated medical image analysis models because changes in
contrast, resolution, and noise properties can lead to worse performance. The presented
framework of hybrid transformers proves to be more resistant to such variability due to the
adaptive self-attention. It is a dynamic mechanism that weights the feature correlations of the
patches in space, and the model is capable of selectively focusing on clinically important
structures such as plaques and vessel walls (even in uneven imaging circumstances). The
framework, along with preprocessing methods like bias field correction and z-score intensity
normalization, is effective in minimizing inter-scanner intensity differences [18], [19].

It is possible to still have reduced segmentation accuracy in low-contrast MRI scans or
images where the patient motion artifact is present. There is also inherent uncertainty in the
training and evaluation process due to variability in annotation across radiologists. In addition,
cross-domain transfer of various clinical imaging settings is an issue that needs to be mitigated
explicitly. Further efforts will be directed at the application of multimodal training techniques
that will involve the integration of complementary imaging modalities (CT and ultrasound) that
have alternative tissue contrast mechanisms and may be used to increase robustness and
generalizability. Also, the considered domain adaptation methods based on unsupervised or
self-supervised learning methods will be studied to improve the correspondence of feature
representations across institutions and scanner modalities [18]. The aim of these advances is to
enhance the model with regard to its applicability in the real clinical environment so as to
achieve consistent performance irrespective of the varying imaging protocols.

6. Conclusion

This work shows that the suggested transformer-based architecture is much more
successful than the traditional CNN models in carotid plaque segmentation and classification
of MRI images. Dice scores for the lumen, vessel wall, and plaque of 0.89, 0.87, and 0.84,
respectively, were obtained by the Med Transformer and were significantly better than U-Net
baselines. To classify the plaques, the Swin Transformer achieved 91.4% accuracy, a 0.914 F1
Score, a 0.9571 AUC, 0.9147 Sensitivity, and 0.9150 Specificity. The high segmentation
accuracy, high classification performance, and efficient inference make the transformer-based
models competent and practical in the clinical setting for automatically identifying carotid
atherosclerosis.
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