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Abstract

Breast cancer is one of the major problems affecting the breast that is very commonly
detected in females, and it requires efficient and precise diagnosis for enhanced stages of
survival. To achieve efficient, precise, and contactless diagnostic processes, it is proposed that
the Radio Thermal Dual-Imaging Fusion Framework be utilized in combination with the
structural information obtained from mammogram images, along with thermal information
obtained from infrared images of thermograms of the breasts. This paper proposes a conceptual
design that makes use of an available set of mammogram images taken from digital image
databases, such as The Mammographic Image Analysis Society Database (MIAS), standard
sets of samples from the curated Breast Imaging Subset of the Digital Database for Screening
Mammography (CBIS-DDSM), as well as samples from anonymized patients in recent routine
clinical screenings, similar to recent diagnostic studies that utilized mammography. The
samples for thermal images were obtained from infrared images of thermograms of breasts,
which are still very much in use in today’s breast cancer diagnostic research. The proposed
conceptual design for diagnosis will employ the Super-Fast Recurrent Convolutional Neural
Network (SFRCNN) architecture, which will be a ResNet-50 based architecture for the
extraction of thermal images and standard images, as mentioned above. The preprocessing for
sampling the modalities will be done using grayscale normalization of the standard
mammogram images as well as standard thermal mapping for the infrared images. From the
results of the proposed conceptual design, it has been identified that the proposed dual-imaging
modality accuracy of 84.75% will be obtained by using the standard mammogram images and
the standard infrared images, representing a significant improvement over standard image
processing, as an improvement in accuracy of 3% is expected from the proposed standard
approaches within the benchmark design for the Convolutional Neural Network model due to
the proposed dual-imaging modality technique, along with a proposed diagnosis accuracy for
assessing a sensitivity of 98.04% by the dual-imaging modalities of the standard infrared
images.
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1. Introduction

Breast cancer is among the most widespread cancer cases, affecting women from all
over the world, and is also one of the major causes of cancer-related deaths [2]. The early
detection of different cases of cancer is especially significant for patients with breast cancer, as
it can help them receive much better treatment and extend their lifespan. As stated in global
health news, breast cancer is one of the most commonly diagnosed cancers each year
worldwide, particularly among females. Genetic factors, hormonal factors, and lifestyle factors
also influence the incidence of breast cancer. The influence of hormone levels, previous
pregnancy complications, and high sensitivity to estrogen are just a few factors that increase
the likelihood of developing breast cancer [1]. In medical practice, most females who exhibit
observable symptoms and irregularities are initially examined by ultrasound and other
technologies supervised by radiologists. Various technologies can be applied to examine and
assess cases of breast cancer, especially during their early stages. The most widely used method
for examining and detecting breast cancer, particularly in its early stages, is still mammography.
It should be noted that not all breast lesions discovered are cancerous; many indicate other
health problems that require precise differentiation [4]. Different medications and therapies for
hormone imbalances can also increase the risk of developing breast cancer, so they should be
closely monitored by doctors. Mammography is one of the most significant diagnostic tools
used during examinations to detect breast cancer in its early stages. The early detection of breast
cancer significantly enhances treatment options and enables affected females to live longer. If
not discovered and treated in time, cases of breast cancer can worsen and spread to other parts
of the body via lymph nodes. Computer-aided diagnostic tools assist doctors in identifying and
analyzing abnormal cases of breast cancer during various examinations. The testing and
examination of breast cancer cases involve conducting various medical tests and procedures
that aid in providing an accurate diagnosis. Recent advances in machine learning, artificial
intelligence, and image analysis techniques have made it easier for computers to accurately
detect breast anomalies. The new edge-Al technology also facilitates fast image data analysis
and early breast cancer diagnosis due to quicker image data processing. Thus, breast cancer
diagnosis has gradually shifted from manual interpretation to machine learning-based
diagnostic processes.

1.1 Role of Cancer Segmentation in Mammogram Images

Segmentation is an essential process in the analysis of mammography images because
it allows for the separation of the region of interest from the surrounding biological structures.
The analysis of mammograms can sometimes be complicated when mammographic densities
make the boundaries of lesions hard to define. The process of segmentation can facilitate the
separation of areas of potential malignancy from the surrounding breast tissue.

In clinical image analysis, it is observed that mammographic images have different
types of noise or artefacts, which depend on various image acquisition and patient anatomical
features. Pre-processing techniques, such as median filtering and intensity adjustment, are used
to eliminate unwanted variability in the image to enhance its analytical features. It should be
noted that as noise and intensity in an image are decreased, there is an increased possibility of
finding appropriate features in early-stage abnormalities. Different strategies have also
emerged for segmenting mammographic features in an image, ranging from simple
thresholding to advanced edge and/or region-based segmentation. However, classical models,
although useful in some applications, tend to be inefficient when there is an irregular boundary
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of the lesion and inhomogeneous tissue density in the image. These difficulties have initiated a
significant increase in interest in developing models that adapt better to the features of different
image qualities and tissue patterns.

Machine learning, and more recently deep learning toolkits, have enjoyed widespread
use in breast image segmentation tasks due to their unique ability to learn patterns from sample
images, as opposed to traditional approaches that focus on handpicked features. Deep-learning
models have proven particularly effective for grayscale mammograms because of their ability
to handle intensity differences within an image that can indicate tumors. Although manual
annotation by radiologists is still regarded as the gold-standard methodology, its increasing
complexity due to a higher number of screening studies renders full manual segmentation
unfeasible.

Though mammography basically entails structural information, in this study, thermal
images are also taken into consideration to provide a combination of anatomical details with
surface temperature patterns. By doing this, the framework can benefit from both structural and
physiological information while localizing a lesion, which could be more helpful when purely
structural information is not enough [18].
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Figure 1. The Overall Process Involved in the Detection of Breast Cancer

Thermal imaging is also commonly employed for the study of the variation in the
surface temperatures of the breast region, and these temperatures can provide indications of the
regions that may be irregular. Contrary to other diagnostic methods that may be invasive,
thermography provides information on the distribution of heat materialized on the outer layers
and the behavior of the blood vessels beneath the breast region. The growth of tumors is
commonly associated with the heightened activity of the vessels, indicated by the warm regions
apparent on the thermogram. This study will provide input for the analysis of the
mammographic images alongside the thermal images, such that the combinations of structural
information and thermal information will be taken into consideration.
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Figure 1 illustrates the general sequence in cancer-related image analysis. This entails
the reading and processing of the mammogram image, followed by segmentation, where the
breast part of the image is distinguished from the rest of the image, including any part that could
require further analysis. This region is then evaluated using a variety of feature measurements
chosen depending on how it can be described in terms of its characteristics, which are
essentially qualities of size, contrast, intensity, and texture. These factors provide a platform
for determining whether it is a malignant or benign instance.

To analyze the efficiency of the proposed system, a super-fast recurrent CNN-based
deep learning approach has been considered. The proposed system operates by leveraging a
series of convolutional layers to analyze the deeper patterns within the image. Consequently,
the approach is able to provide a more detailed interpretation of the medical images by focusing
on the deeper image patterns, which are not considered by other simple networks. The research
also takes into consideration the limitations highlighted in previous research works. Many of
the approaches used in previous research have confronted the challenges of delays in processing
time, complex structures of the models, and difficulty in obtaining important features through
the use of basic approaches or approaches based on fuzzy logic.

The rest of the paper is organized in the following way: Section 2 discusses the
background information. Thermal imaging is also commonly employed for the study of the
variation in the surface temperatures of the breast region, and these temperatures can provide
indications of the regions that may be irregular. Contrary to other diagnostic methods that may
be invasive, thermography provides information on the distribution of heat materialized on the
outer layers and the behavior of the blood vessels beneath the breast region. The growth of
tumors is commonly associated with the heightened activity of the vessels, indicated by the
warm regions apparent on the thermogram. This study will provide input for the analysis of
mammographic images alongside thermal images, such that the combinations of structural
information and thermal information will be taken into consideration.

2. Related Work

Dabass et al. [7] introduced a framework for breast-cancer detection in ultrasound
images by identifying the region of interest. Their study highlighted several practical
difficulties associated with ultrasound imaging, including motion artefacts, variable contrast,
and significant noise levels. These issues often slow down the decision-making process and
reduce the visibility of finer structures. Since the images require several rounds of filtering to
suppress noise, the overall resolution is affected, and the segmentation output becomes less
reliable for subsequent classification tasks.

Ibrahim et al. [8] proposed a Chaotic Swarm Search Algorithm (CSSA) for segmenting
thermal images of the breast. While the method attempts to refine superpixel boundaries and
enhance tumor visibility through chaotic map functions, the algorithm suffers from slow
convergence and a tendency to stagnate at local optima. A key limitation noted by the authors
is that thermal images are inherently two-dimensional, whereas the optimization process treats
most parameters as one-dimensional values. This mismatch affects the quality of image
matching and degrades segmentation accuracy. Their work suggests that future improvements
may require a shift toward deep-learning-based architectures.

Robin et al. [9] presented a neural-network-based system for tumor-region
identification using mammographic images. The framework employed a convolutional
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architecture to analyze multiple feature patterns and used histopathological information to
validate the segmentation results. However, the authors observed that when the input dataset
contains limited or low-quality features, the model struggles to generalize and the classification
performance decreases. They emphasized the need for image-focused model selection and
improved feature extraction to overcome this challenge.

Khasana et al. [10] explored a watershed-based segmentation method combined with
thresholding to detect cancer-affected regions using hospital imaging data. Their system
reported a detection accuracy of 88.65%, and the comparative study with other state-of-the-art
approaches showed its potential for clinical use. Nonetheless, the watershed technique is highly
sensitive to variations in image resolution; when the gray-level distribution differs across scans,
the threshold selection becomes inconsistent and affects the classification outcome. Several
recent studies have also investigated the role of image enhancement and preprocessing in
improving mammogram-based computer-aided diagnosis systems [21], [22].

Nguyen et al. [11] investigated the use of fuzzy-logic-based probability distribution
techniques for analyzing mammographic images. Regions of interest were isolated by
evaluating the pixel distributions through the histogram and the gray-level segmentation.
Although their approach was able to separate the normal and abnormal cases to some extent, it
relies on a limited range of pixel-intensity information. Because mammograms often contain
multiple intensity levels that carry diagnostic significance, extracting only a narrow band of
these levels is insufficient for dependable cancer assessment.

Georgas et al. [12] examined mammographic and MRI data for early breast cancer
detection and proposed a Rad-Efficient Network using a pipelined CNN architecture. Their
dataset consisted of 104 cases (45 benign and 59 malignant), and the model achieved an
accuracy of 82%. The study noted that combining the radiomic features from the different
modalities is complex, and the integration process can restrict the overall learning capacity of
the model, particularly when handling the varied breast-lesion characteristics.

A range of additional studies has also contributed to the development of breast cancer
detection frameworks using deep learning and machine learning. These works explored issues
such as feature-extraction limitations, segmentation precision, classification reliability, and
model optimization strategies [13], [14]. Collectively, the existing literature highlights the need
for more adaptable models capable of handling multimodal data and providing stable
performance across diverse imaging conditions.

3. Proposed Work

The research work in the current context attempts to merge two different sources of
imaging information: mammogram images and breast thermogram images—to create a single
system capable of analyzing both types of structural information as well as temperature-based
information. The logic behind using these two different types of imaging information lies in
the fact that each represents a different type of data. Mammogram images provide insight into
the inner structure of breast tissues, whereas thermogram images capture the surface heat
patterns associated with changes in the blood vessels. The idea is to process the two types of
information separately at the beginning and then analyze the collective knowledge provided by
both streams of information to easily identify signs of potential abnormalities, which are much
more accurate in terms of early detection compared to existing individual systems. The
proposed approach consists of the overall design of the procedure, starting with the preparation
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of the datasets of images and the identification of the technical challenges that exist in the
context of processing these images. The model then employs a carefully selected set of
approaches to implement the two types of images effectively, enabling the analysis and
combination of the information in a manner that facilitates accurate classification. The next
section delves into more detail regarding the proposed approach.

3.1 Data Collection

In this study, two separate sets of data were used for breast image analysis. These
included a collection of mammography images in normal scan format, which were further
categorized as infrared thermograms. These two sets were found to hold exactly five hundred
images in each case. Based on initial checks for a suitable mammography image source, it
appears that a large number of images were sourced from a public Kaggle dataset with reference
to the “Mammographic Image Analysis Society (MIAS) database.” In addition to this, another
public resource used for mammography image analysis has been referred to, which appears to
be the “Curated Breast Imaging Subset of the Digital Database for Screening Mammography
(CBIS-DDSM)”. These mammograms were normal grayscale images with a non-uniform
resolution in terms of pixels, which varied between 512x512 pixels and a maximum of
1024x1024 pixels in size.

The thermogram images used here have been derived from the infrared breast
thermography database, which has been used by many researchers for recent works on detecting
breast cancer using the CNN technique [19], [17]. The thermogram images were produced in
controlled environments and are representative of the manner in which heat distribution occurs
in the breast area. In some of the thermogram images, regions of slightly warmer areas are more
visible than other areas. Such phenomena are typically representative of blood flow and other
metabolic processes.

Before attempting to analyze, each color thermogram was unified to a single-channel
thermal image to ensure that the data came in a standardized form. After this was achieved,
each image, whether mammography images or thermograms, was resized to 256256 pixels to
conform to the input requirement demanded in the subsequent steps of the process. There was
also a simple adjustment to the brightness to ensure that the images appeared balanced
compared to each other; in particular, to make sure that images did not appear too bright or too
dim compared to others. To ensure that the system was not reliant solely upon the fixed pattern,
a minor form of data augmentation was applied to the data. This directly consisted of minor
rotations, minimal contrast changes, and minimal basic geometric transformations. After all the
pre-processing steps had been completed, the data split was done the same way as in previous
examples. About eighty percent of the images used in the analysis went to training, while the
remaining twenty percent was used for independent testing. There were no patient-derived
details isolated from the images, meaning that none of the information was patient-derived or
identifiable in nature.

3.2 Problem Identification

The kind of imaging done on breasts can run into problems related to motion and
different types of noise, which are even found in ultrasound images. If there is even slight
movement of the patient being scanned, the picture is bound to get blurred, and thus features
of interest are not distinct in the image. All these problems have to be filtered to ensure that
features of interest are not lost.
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A mammogram image also creates another challenge, especially where the tumor or
area of concern is too small or even close in intensity to the surrounding tissues [3]. Such a
small area may be very critical in determining if there is a potential disease indication, but it is
not always easily recognizable. Contrast enhancement and intensity normalization
subsequently gain importance because it is easier to distinguish these areas from others.

Since mammograms are grayscale, their pixel intensity will depend on tissue thickness,
exposure levels, and other variables. To address issues related to these variables, various
statistical properties, including changes in texture, contrast, or intensity, are analyzed, ensuring
that the mammograms can be classified regardless of exposure levels.

3.3 Tool Selection

The work done in this research was conducted using MATLAB. MATLAB provides an
array of image processing tools that are quite valuable for dealing with medical images. The
software encompasses various procedures such as image format changes, image quality
improvement, observation of the process results, and implementation of various analysis
procedures [16]. The list of procedures included in MATLAB makes it easier to test and
improve every stage of the process without having to develop everything from scratch.

MATLAB is also a common platform for scientific computing, and many labs utilize
MATLAB for image and video processing and other technical applications. In addition to its
stability and functionality, MATLAB is chosen for the implementation and testing of the
proposed approach because many mathematical and technical operations and functionalities
have already been incorporated into MATLAB.

3.4 Methodology

The proposed system will involve a two-stage analysis process. The first stage will
involve processing mammogram and thermogram images separately to allow for the processing
of each type of image according to its unique nature. The initial processing of the images will
occur at this stage, including reading, resizing, and formatting the images for analysis. For
mammograms, the images will be converted to a standard grayscale format to standardize their
size by removing variances that may have been caused by different acquisition parameters.

Figure 2 describes the comprehensive procedure undertaken by the Dual-Stacked
Cancer Detection Model (DSCD). It starts with the acquisition of dual-source input data in the
form of grayscale mammographic images and thermal images. Both sources are considered
separately for the preprocessing steps, followed by noise reduction and standardization of
intensity differences to maintain uniformity by resizing the images to the same size.
Additionally, for the thermal images, the colorful images are converted into single-channel
thermal estimate maps for assessing the intensity variation pertaining to the temperatures.
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Figure 2. System Architecture of Dual Stacked Cancer Detection Model (DSCD)

Following this processing, a feature extraction process takes place separately for both
image streams through a customized ResNet-50-based CNN. The features acquired through the
mammogram path and thermogram path are consolidated using a stacked feature fusion
technique, which provides a common feature set comprising both structural and thermographic
information. The consolidated set of features is then processed through the Super-Fast
Recurrent Convolutional Neural Network (SFRCNN) module for final classification. The
performance of these predicted classifiers is measured using standard performance criteria such
as accuracy, precision, recall, and F1-score. This sequential analysis of processing helps utilize
a combination of both modalities for improved levels of breast cancer diagnosis. Multimodal
breast cancer diagnosis at a more reliable level has been made possible through this end-to-end
processing.

3.4.1 Thermal-Estimate Computation

Thermograms first emerge within a color scale in which every color represents a
corresponding temperature. In order for the information to be applicable for calculation, this
color scale must be stripped away. Then, every pixel within an image is correlated with its
corresponding temperature based on the guide color bar provided within the data set. After this
correlation is completed, the thermogram stops acting similarly to an RGB image and begins
to function as a temperature sheet.

This temperature map has a similar texture to a gray-scale image. However, the intensity
in this map translates to real temperature. To prevent irregular temperature fluctuations due to
noise in the sensor and/or small movements of the object of interest, a small amount of
smoothing is employed. The result of this processing stage is called the "thermal estimate" and
is then passed on to the next stage as input from the "thermal" modality [5], [6], [23].

All these steps make up the data preparation process. After data preparation, a split
between training and test data takes place.
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3.4.2 Network Selection and Processing Flow

To ensure the analysis is efficient, the proposed framework utilizes a lightweight model
rather than the heavy Faster R-CNN-based model. To extract patterns from the modalities, a
super-fast recurrent CNN (SFRCNN) is utilized. Its recurrent structure allows for the repeated
refinement of information at the pixel level, thus enabling the network to adjust its weights as
the image passes through. It is developed based on the ResNet-50 architecture, which has the
capacity to extract deep features and retain details by using residual connections, as proposed
in [15].

Unlike mammography, in thermography, the process starts with color-coded images.
After transformation into thermal estimate maps, standardization follows. All thermal estimates
are resized to have equal resolution to ensure they meet the input requirements of the neural
network. Variations in resolution could cause variability in interpretation when attempting to
combine the feature maps. It is important to perform intensity normalization since every person
has different body temperatures. This ensures that neither the bright nor the dull parts are taken
to have significant variation and instead relies on form and thermal distribution.

If these preprocessing techniques are integrated, such as removal of color, smoothing
of images, resizing of images, and intensity normalization, the resulting thermal images clearly
show variations that relate to vascular and/or metabolic processes. The processed images aid
the SFRCNN model in detecting detailed patterns in the raw thermal images that are missed
when used directly [17].

3.4.3 ResNet-50 Feature Extraction

In the experiment being designed, the modified ResNet-50 architecture is employed as
the main feature extractor for the mammogram and thermogram images. The choice of the
ResNet-50 model is mainly based on its ability to retain the minute details in medical imagery—
edges, contrasts, and various subtle features that tend to get diminished in the later layers of a
conventional CNN model. It is thus a prerequisite to detail the processing of the two types of
imagery inputs prior to delving into the merging or fusion stage.

The ResNet-50 network is laid out in terms of a series of stages of convolution, where
each of the stages progresses based on what the other stages have already learned. In medical
images, the details are prone to being washed out as they progress through each of the layers,
and the shortcuts used in the ResNet-50 are of great use in passing along such information
without washing it out. This is especially important within the context of the current project,
where the trace of an abnormality is often seen in the form of faint light or signs of changes in
textures, which need to be preserved and then distinguished from the other textures. Figure 3
provides a brief insight into the different steps taken by the altered ResNet-50 model in treating
the input images. The images undergo a series of convolutional layers wherein crucial edges
and texture information are extracted. The short connections ensure that minute information is
retained as the data proceed deeper. Finally, the most useful information is retained and
propagated for fusion and classification purposes.
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Figure 3. Internal Feature-Extraction Flow of the Customised ResNet-50/SFRCNN
Architecture

3.4.3.1 Input Data

The framework accepts two independent inputs: the mammogram [y;and the thermal
estimate I. Both inputs are arranged in a fixed matrix size so that the subsequent layers process
them without any dimension mismatch.

3.4.3.2 Feature Extraction using CNN

Each image passes through a dedicated CNN path. For the mammogram, the extractor
is denoted as fy;(+, Opr), while the thermogram has its own extractor fr(:, 67). These produce
the feature sets:

Fy = fuUm, Ou), Fr = fr(Ir,071) (D

These outputs represent compact descriptions of the structural patterns in the
mammograms and the temperature-related variations in the thermal maps.

3.4.3.3 Stacked Feature Fusion

Once the features are extracted, the two outputs are placed next to each other along the
channel dimension. This simple stacking keeps the spatial arrangement intact while letting the
model view both modalities together:

F=¢¢(Fu Il Fr]) 2)

The operator ¢(-) may be a small dense layer or a light transformation that prepares the
fused set for the next stage. This fusion step helps the model relate the edges and textures from
the mammogram with the heat-distribution cues from the thermogram.
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3.4.3.3 Normalisation/ROI Pooling

If the region-based pooling is applied, then the fused representation is normalised to
reduce the local intensity variations:

G = Norm(¢(F)) (3)

This step ensures that the final classifier receives balanced and stable inputs. The choice
of ResNet-50 is driven by the nature of the medical images, where the important details often
appear as faint boundaries or slight changes in intensity. The skip connections in ResNet-50
allow these early features to pass deeper into the network without being suppressed. This helps
the model identify small lesions and weak patterns that a plain CNN might ignore.

Because both modalities become single-channel images after preprocessing, two
practical adjustments were made to accommodate ResNet-50. In one approach, the single
channel was replicated three times to match the normal RGB input shape. In the other approach,
the first convolutional layer of ResNet-50 was modified to accept the single channel directly.
Both methods maintain the deeper architecture unchanged, letting the network process the
images as usual.

After preprocessing, the feature extraction is given by:
FM = ResNet50(Iy) (4)
FT = ResNet50(Ir) (%)

These fused features provide a combined representation that carries both structural and
temperature information into the SFRCNN classifier. Because the residual blocks preserve fine-
grained cues, the classifier receives clearer signals, especially when dealing with small or low-
contrast abnormalities.

3.4.4 Super-Fast RCNN(SFRCNN) Classification Module

The resulting fused features from the two image flows are then analyzed using a Super-
Fast RCNN module. For this phase of the research, the thermogram images were provided from
the freely available infrared breast thermography database, which has been extensively utilized
in many past CNN-based studies for the detection of breast cancer in recent times [20], [17];
For mammograms, cases were provided from the Mammographic Image Analysis Society
Database (MIAS) and the Curated Breast Imaging Subset of the Digital Database for Screening
Mammography (CBIS-DDSM) public mammography datasets. During testing, each of the
images was initially displayed on the computer screen and then processed through the regular
procedure until the output reached the SFRCNN level. A small MATLAB interface was utilized
in the development phase to validate whether everything worked correctly and to ensure that
the output was in sync with what was being delivered in the initial phases.
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Figure 4. Super-Fast RCNN Architecture

Figure 4 illustrates the SFRCNN block utilized for enhancing the fused features
obtained from both streams of mammogram and thermogram images. In this context, the
proposed model has been implemented using thermographic images acquired from a public
infrared breast thermography image repository, while mammographic images were obtained
from the Mammographic Image Analysis Society Database (MIAS) and the Curated Breast
Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM). In the
test phase, each image will be displayed on a monitor, followed by traditional image processing
routines. Following these phases, a set of fused features will be processed through an SFRCNN
module for classification. Additionally, a simple GUI has been designed in MATLAB to verify
whether a set of input images, hidden features, and final outcomes traverse within a traditional
flow. The action of convolution layers across the network can be written as:

Hy = KW * X, + b) (6)
where:
* H,: feature map at time step t
* W.: convolutional kernel
* *: convolution operation
* b, Dbias
* K(): activation function (e.g., ReLU)

The fully connected layer gathers the final feature blocks from all samples and helps
distinguish between normal and abnormal breast-tissue patterns based on their learned intensity
and structural properties.

3.4.4.1 Hyperparameter Tuning and Training Behavior

The SFRCNN configuration also wasn't designed in one go but was achieved over
several sessions of tuning on a small scale. Rather than freezing the values of the
hyperparameters at the beginning, various patterns for the learning rates had been tried. It was
observed that the learning rate at which the loss curve was consistent in going down without
sudden peaks or fluctuations was selected for the final phases. The total number of epochs was
also not predefined. The training process was allowed to continue only when the accuracy
showed a definitive rising pattern and was stopped when the trend started to flatten out.
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In the earlier layers, the filter sizes were kept relatively similar to the conventional
layout used in ResNet-50. When a few other sizes were tried, the results were more or less the
same, and thus there was no particular need to drift away from the original design. Several
rounds were conducted in the experiment to check how the model would perform using various
combinations of settings, and after monitoring the changes that occurred from one experiment
to another in terms of accuracy, loss, and stability, a combination that provided consistent
results was taken as the final design for the experiment.

3.4.4.2 Integration with Dual-Modality Streams

After doing the preprocessing, each of these modalities was then fed through its
respective path in ResNet-50 so that its individual features could be attended to by the network.
This is important because, in mammography, the structural aspects of the image boundaries,
patterns of tissues, and shapes are preserved in mammography images, while thermography
images capture variations in heat. It is easier for the network to learn contrasts if the features
remain separated and do not allow one type of feature to overpower the other.

In turn, it normalized these feature maps in terms of size so that all of them were the
same size and could thus be combined into a block. This block contained a combined
representation of both the structural cues and the thermal cues. The block, now containing a
combined representation of structural cues and thermal cues, was passed through the SFRCNN.
Given that it had a repeated structure, it had the capability to revisit those combined features
multiple times with the intention of smoothing out the irregular parts.

The last part of the pipeline contains a small dense layer and then a SoftMax layer to
output the scores over the classes. In the process of learning, the system would also have
gradually learned what the respective patterns normally look like and how the abnormal
patterns would differ. Now, given a new input, it weights the input against what it has learned
and selects a class based on the appropriate pattern.

3.4.4.3 Rationale for Separate Processing of the Two Modalities

Because each of the two categories of images deals with its own type of information,
the first point of handling involves independence. The mammograms would principally
illustrate breast tissue structure—bounds, shapes, and tissue distribution—while thermograms
would indicate the distribution of heat present on the surface and would generally be associated
with variations in blood flow or metabolic rate. After extracting features from both lines of
research, these would then be combined by placing them side by side based on the channel axis.
This would yield one block that encompasses both the detail of breast structure from the
mammogram and the heat distribution from the thermogram. As both sets of information are
processed within the same space, it becomes possible to distinguish normal and potentially
problematic patterns of breast tissue better with the help of SFRCNN.

4. Results and Discussion
4.1 Thermal Images Under Test

The thermal imaging used for assessment is depicted in Figure 5. These samples
underwent an HSV contrast mapping process and an estimation conversion that emphasizes

ISSN: 2582-4252 1472



Suriya K., Praveen Kumar R., Nithyashree V., Dhanusri S., Abinaya K., Ranjana A.

areas of increased temperature based on thermal intensity. Areas of high intensity have deeper
shades of color, while lighter shades correspond to lower intensity. A normal distribution of
these would be related to vascular alterations of abnormal tissue activity.

Figure 5. Input Thermal Images Used for Analysis

Before the images are passed into the network, the minute variation due to motion or
noise present within the sensors is reduced through the use of light smoothing. Normalization
further enhances intensity variation that could be due to uneven heating and background
temperatures. Isolated noise points have less effect when the SFRCNN propagates the same
fused features repeatedly; thus providing a more representative picture of the tumour-related
patterns.

4.2 Mammogram Images Under Test

N e
ol o V'

Figure 6. Grayscale Mammogram Images Used for Testing

Figure 6 shows the grayscale image of the mammogram input. The intensity of the input
image is usually between 0 and 127, and it is prone to low contrast. During such scanning, the
diseased part usually has a higher intensity than its surroundings. In automated analysis, minute
differences in intensity are used to identify the diseased areas, although this can sometimes be
difficult due to the dense breast tissue.
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4.3 Validation of Thermography images

Brest Cancer Detection in Mamogram and Thermogram using Deep learning method

Cancer Detected

Mg e Vi [T

Figure 7. MATLAB Front-End of Thermal Evaluation

Figure 7 displays the MATLAB interface used for validating the thermographic outputs.
Generally, the thermal stream managed to locate the abnormal area using the bounding markers
obtained based on the changes in temperatures. However, the following samples led to
misunderstandings:

Images showing uniform temperature distributions sometimes imitated vascular
activity and caused the model to flag normal areas as suspicious.

There were instances where the irregularities had poor thermal contrast, making it
difficult to identify them among the background patterns.

Occasionally, slight movement or uneven heating affected the thermal symmetry.

The misclassifications were largely found to occur in borderline or low-contrast cases.
This affirms that thermography is very helpful when used along with mammography
information, as mammograms offer structural information. [17].

4.4 Validation of Mammograms Images
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Figure 8 shows the mammogram-evaluation interface used during testing.The images
may also exhibit overlapping regions of tissue that may appear similar to tumors. Dense regions
or soft tissues may cause the algorithm to misclassify non-suspicious regions as suspicious.
Inhomogeneities in exposure, compression, and illumination are also responsible for false
alarms.

These reasons can account for why there were more false positives from the
mammogram-based method compared to the thermogram method.

4.5 Comparative Evaluation of Test Images

Table 1. Comparison of TP, FP, FN for Mammogram and Thermogram Images

Metric Mammogram Thermogram
TP 250 250
FP 12 3
FN 45 5

These thermal images provide a clear indication of fewer false detections of
malignancies, as well as fewer missed malignancies, present within Fig.10.12. These will
substantiate the enhanced sensitivity of the thermal patterns.

4.6 True Positive Rate Comparison

TP

500

U - -

Mammogram Thermogram

Figure 9. Comparison of True Positive rates of Mammogram and Thermogram

Figure 9 plots a comparison of the true positive rates for mammography and
thermography analysis based on the values in table 1.

The thermograms are able to identify 250 out of 255 abnormal patterns (85% TPR). The
errors in mammographic images are largely due to tissue overlap and low-contrast lesions.
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4.7 False Positives and False Negatives

Figure 10 illustrates the FP and FN comparison. High FP values are observed in
mammograms in cases of dense or overlapping tissues. High FN values are seen in

FP and FN

50

mFP mWFN

Figure 10. False Positive and False Negative Comparison

mammograms in situations where the contrast is low for observing the lesions [17].

4.8 Accuracy, Precision, Recall and F1-Score

Table 2. Performance Comparison (Mammogram vs. Thermogram)

Category Accuracy | Precision | Recall F1-Score
Mammogram 84.75 95.42 89.23 86.23
Thermogram 98.04 98.81 89.99 92.33

Thermography shows higher accuracy and precision due to the clearer visibility of
vascular-heat patterns. Mammograms show higher false positives due to structural ambiguity.

4.9 Performance Analysis Graph
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Figure 11 presents the accuracy and precision comparison. The combined use of dual
modality features significantly improves the overall stability and reduces error likelihood,
especially when both structural and thermal cues align.

4.10 Comparison with Conventional CNN

Table 3. Comparison with Conventional CNN and SFRCNN

Method Image Type | Accuracy Precision Recall F1-Score
Conventional
Mammogram 82.22 85.25 84.25 87.36
CNN
Proposed |\ 1 imogram | 84.75 95.42 89.24 86.23
SFRCNN ' ' ' '
Comparison of Conventional CNN with SFRCNN
model
100
95.42
a5
89.24
90 87.36
84.75 85.25 - RE.23
o 82.22
ol 1N N
75
Accuracy Preasion Recall F15core
| Comentional CHN MAMOGRAM ® Proposed SFRCHN MAMODGRAM

Figure 12. Comparison of Conventional CNN and SFRCNN

4.11 Training and Validation Trends

Binned Validation Accuracy for SFRCNN {150 Epochs)
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Figure 13. Epoch-Wise Binned Training Loss for 150 Epochs
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Binned Training Loss for SFRCNN (150 Epochs)
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Figure 14. Epoch-Wise Binned Training Accuracy for 150 Epochs
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Figure 15. Epoch-Wise Binned Validation Accuracy for 150 Epochs

Figures 13—15 show the training loss, training accuracy, and validation accuracy across
epochs. The steady reduction in the training loss and the rise in the accuracy indicate the
effective convergence. Validation accuracy stabilizes in the later epochs, showing the improved
generalization.

5. Conclusion

With the fusion of images from the mammography system and the thermography
system, along with images representing surface temperature, this proposed study confirms the
utility of multi-modal fusion in breast cancer imaging. It provides a completely new perspective
on tackling this issue because this specific diagnostic solution cannot be attained with the sole
use of either system. The proposed approach using SFRCNN would be more accurate. A
thorough thermographic analysis was conducted for the patients undergoing exercises,
achieving a standard of at least 98.0% true positives with five or fewer false negative values
and three or fewer false positives. This indicates a standard level for diagnosis, although due
consideration was given to the pathological differences present in whole body temperatures. In
the current scenario for analyzing the mammogram, the standard level was maintained at 85.0%
true positives with overlapped tissues. The results of the performance assessment indicated that
the accuracy of thermograms was 98.04% with an F1 score of 92.33%, while that of
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mammograms was 84.75% with an F1 score of 86.23%. It was also ensured that the fusion
method performed better than the individual modalities. Thus, there is an improvement in the
accuracy of the baseline methods, which was approximately 82.22%. The fusion technique
developed on SFRCNN showed better convergence in training and validation, proving its
efficiency and effectiveness. Future tasks will involve applying this to more complicated
sources of information.
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