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Abstract   

Breast cancer is one of the major problems affecting the breast that is very commonly 

detected in females, and it requires efficient and precise diagnosis for enhanced stages of 

survival. To achieve efficient, precise, and contactless diagnostic processes, it is proposed that 

the Radio Thermal Dual-Imaging Fusion Framework be utilized in combination with the 

structural information obtained from mammogram images, along with thermal information 

obtained from infrared images of thermograms of the breasts. This paper proposes a conceptual 

design that makes use of an available set of mammogram images taken from digital image 

databases, such as The Mammographic Image Analysis Society Database (MIAS), standard 

sets of samples from the curated Breast Imaging Subset of the Digital Database for Screening 

Mammography (CBIS-DDSM), as well as samples from anonymized patients in recent routine 

clinical screenings, similar to recent diagnostic studies that utilized mammography.  The 

samples for thermal images were obtained from infrared images of thermograms of breasts, 

which are still very much in use in today’s breast cancer diagnostic research. The proposed 

conceptual design for diagnosis will employ the Super-Fast Recurrent Convolutional Neural 

Network (SFRCNN) architecture, which will be a ResNet-50 based architecture for the 

extraction of thermal images and standard images, as mentioned above. The preprocessing for 

sampling the modalities will be done using grayscale normalization of the standard 

mammogram images as well as standard thermal mapping for the infrared images. From the 

results of the proposed conceptual design, it has been identified that the proposed dual-imaging 

modality accuracy of 84.75% will be obtained by using the standard mammogram images and 

the standard infrared images, representing a significant improvement over standard image 

processing, as an improvement in accuracy of 3% is expected from the proposed standard 

approaches within the benchmark design for the Convolutional Neural Network model due to 

the proposed dual-imaging modality technique, along with a proposed diagnosis accuracy for 

assessing a sensitivity of 98.04% by the dual-imaging modalities of the standard infrared 

images. 
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 Introduction 

Breast cancer is among the most widespread cancer cases, affecting women from all 

over the world, and is also one of the major causes of cancer-related deaths [2]. The early 

detection of different cases of cancer is especially significant for patients with breast cancer, as 

it can help them receive much better treatment and extend their lifespan. As stated in global 

health news, breast cancer is one of the most commonly diagnosed cancers each year 

worldwide, particularly among females. Genetic factors, hormonal factors, and lifestyle factors 

also influence the incidence of breast cancer. The influence of hormone levels, previous 

pregnancy complications, and high sensitivity to estrogen are just a few factors that increase 

the likelihood of developing breast cancer [1]. In medical practice, most females who exhibit 

observable symptoms and irregularities are initially examined by ultrasound and other 

technologies supervised by radiologists. Various technologies can be applied to examine and 

assess cases of breast cancer, especially during their early stages. The most widely used method 

for examining and detecting breast cancer, particularly in its early stages, is still mammography. 

It should be noted that not all breast lesions discovered are cancerous; many indicate other 

health problems that require precise differentiation [4]. Different medications and therapies for 

hormone imbalances can also increase the risk of developing breast cancer, so they should be 

closely monitored by doctors. Mammography is one of the most significant diagnostic tools 

used during examinations to detect breast cancer in its early stages. The early detection of breast 

cancer significantly enhances treatment options and enables affected females to live longer. If 

not discovered and treated in time, cases of breast cancer can worsen and spread to other parts 

of the body via lymph nodes. Computer-aided diagnostic tools assist doctors in identifying and 

analyzing abnormal cases of breast cancer during various examinations. The testing and 

examination of breast cancer cases involve conducting various medical tests and procedures 

that aid in providing an accurate diagnosis. Recent advances in machine learning, artificial 

intelligence, and image analysis techniques have made it easier for computers to accurately 

detect breast anomalies. The new edge-AI technology also facilitates fast image data analysis 

and early breast cancer diagnosis due to quicker image data processing. Thus, breast cancer 

diagnosis has gradually shifted from manual interpretation to machine learning-based 

diagnostic processes.  

1.1   Role of Cancer Segmentation in Mammogram Images 

Segmentation is an essential process in the analysis of mammography images because 

it allows for the separation of the region of interest from the surrounding biological structures. 

The analysis of mammograms can sometimes be complicated when mammographic densities 

make the boundaries of lesions hard to define. The process of segmentation can facilitate the 

separation of areas of potential malignancy from the surrounding breast tissue. 

In clinical image analysis, it is observed that mammographic images have different 

types of noise or artefacts, which depend on various image acquisition and patient anatomical 

features. Pre-processing techniques, such as median filtering and intensity adjustment, are used 

to eliminate unwanted variability in the image to enhance its analytical features. It should be 

noted that as noise and intensity in an image are decreased, there is an increased possibility of 

finding appropriate features in early-stage abnormalities. Different strategies have also 

emerged for segmenting mammographic features in an image, ranging from simple 

thresholding to advanced edge and/or region-based segmentation. However, classical models, 

although useful in some applications, tend to be inefficient when there is an irregular boundary 
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of the lesion and inhomogeneous tissue density in the image. These difficulties have initiated a 

significant increase in interest in developing models that adapt better to the features of different 

image qualities and tissue patterns. 

Machine learning, and more recently deep learning toolkits, have enjoyed widespread 

use in breast image segmentation tasks due to their unique ability to learn patterns from sample 

images, as opposed to traditional approaches that focus on handpicked features. Deep-learning 

models have proven particularly effective for grayscale mammograms because of their ability 

to handle intensity differences within an image that can indicate tumors. Although manual 

annotation by radiologists is still regarded as the gold-standard methodology, its increasing 

complexity due to a higher number of screening studies renders full manual segmentation 

unfeasible. 

Though mammography basically entails structural information, in this study, thermal 

images are also taken into consideration to provide a combination of anatomical details with 

surface temperature patterns. By doing this, the framework can benefit from both structural and 

physiological information while localizing a lesion, which could be more helpful when purely 

structural information is not enough [18]. 

 

Figure 1. The Overall Process Involved in the Detection of Breast Cancer 

Thermal imaging is also commonly employed for the study of the variation in the 

surface temperatures of the breast region, and these temperatures can provide indications of the 

regions that may be irregular. Contrary to other diagnostic methods that may be invasive, 

thermography provides information on the distribution of heat materialized on the outer layers 

and the behavior of the blood vessels beneath the breast region. The growth of tumors is 

commonly associated with the heightened activity of the vessels, indicated by the warm regions 

apparent on the thermogram. This study will provide input for the analysis of the 

mammographic images alongside the thermal images, such that the combinations of structural 

information and thermal information will be taken into consideration. 
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Figure 1 illustrates the general sequence in cancer-related image analysis. This entails 

the reading and processing of the mammogram image, followed by segmentation, where the 

breast part of the image is distinguished from the rest of the image, including any part that could 

require further analysis. This region is then evaluated using a variety of feature measurements 

chosen depending on how it can be described in terms of its characteristics, which are 

essentially qualities of size, contrast, intensity, and texture. These factors provide a platform 

for determining whether it is a malignant or benign instance. 

To analyze the efficiency of the proposed system, a super-fast recurrent CNN-based 

deep learning approach has been considered. The proposed system operates by leveraging a 

series of convolutional layers to analyze the deeper patterns within the image. Consequently, 

the approach is able to provide a more detailed interpretation of the medical images by focusing 

on the deeper image patterns, which are not considered by other simple networks. The research 

also takes into consideration the limitations highlighted in previous research works. Many of 

the approaches used in previous research have confronted the challenges of delays in processing 

time, complex structures of the models, and difficulty in obtaining important features through 

the use of basic approaches or approaches based on fuzzy logic. 

The rest of the paper is organized in the following way: Section 2 discusses the 

background information. Thermal imaging is also commonly employed for the study of the 

variation in the surface temperatures of the breast region, and these temperatures can provide 

indications of the regions that may be irregular. Contrary to other diagnostic methods that may 

be invasive, thermography provides information on the distribution of heat materialized on the 

outer layers and the behavior of the blood vessels beneath the breast region. The growth of 

tumors is commonly associated with the heightened activity of the vessels, indicated by the 

warm regions apparent on the thermogram. This study will provide input for the analysis of 

mammographic images alongside thermal images, such that the combinations of structural 

information and thermal information will be taken into consideration. 

 Related Work 

Dabass et al. [7] introduced a framework for breast-cancer detection in ultrasound 

images by identifying the region of interest. Their study highlighted several practical 

difficulties associated with ultrasound imaging, including motion artefacts, variable contrast, 

and significant noise levels. These issues often slow down the decision-making process and 

reduce the visibility of finer structures. Since the images require several rounds of filtering to 

suppress noise, the overall resolution is affected, and the segmentation output becomes less 

reliable for subsequent classification tasks. 

Ibrahim et al. [8] proposed a Chaotic Swarm Search Algorithm (CSSA) for segmenting 

thermal images of the breast. While the method attempts to refine superpixel boundaries and 

enhance tumor visibility through chaotic map functions, the algorithm suffers from slow 

convergence and a tendency to stagnate at local optima. A key limitation noted by the authors 

is that thermal images are inherently two-dimensional, whereas the optimization process treats 

most parameters as one-dimensional values. This mismatch affects the quality of image 

matching and degrades segmentation accuracy. Their work suggests that future improvements 

may require a shift toward deep-learning-based architectures. 

Robin et al. [9] presented a neural-network-based system for tumor-region 

identification using mammographic images. The framework employed a convolutional 
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architecture to analyze multiple feature patterns and used histopathological information to 

validate the segmentation results. However, the authors observed that when the input dataset 

contains limited or low-quality features, the model struggles to generalize and the classification 

performance decreases. They emphasized the need for image-focused model selection and 

improved feature extraction to overcome this challenge. 

Khasana et al. [10] explored a watershed-based segmentation method combined with 

thresholding to detect cancer-affected regions using hospital imaging data. Their system 

reported a detection accuracy of 88.65%, and the comparative study with other state-of-the-art 

approaches showed its potential for clinical use. Nonetheless, the watershed technique is highly 

sensitive to variations in image resolution; when the gray-level distribution differs across scans, 

the threshold selection becomes inconsistent and affects the classification outcome. Several 

recent studies have also investigated the role of image enhancement and preprocessing in 

improving mammogram-based computer-aided diagnosis systems [21], [22]. 

Nguyen et al. [11] investigated the use of fuzzy-logic-based probability distribution 

techniques for analyzing mammographic images. Regions of interest were isolated by 

evaluating the pixel distributions through the histogram and the gray-level segmentation. 

Although their approach was able to separate the normal and abnormal cases to some extent, it 

relies on a limited range of pixel-intensity information. Because mammograms often contain 

multiple intensity levels that carry diagnostic significance, extracting only a narrow band of 

these levels is insufficient for dependable cancer assessment. 

Georgas et al. [12] examined mammographic and MRI data for early breast cancer 

detection and proposed a Rad-Efficient Network using a pipelined CNN architecture. Their 

dataset consisted of 104 cases (45 benign and 59 malignant), and the model achieved an 

accuracy of 82%. The study noted that combining the radiomic features from the different 

modalities is complex, and the integration process can restrict the overall learning capacity of 

the model, particularly when handling the varied breast-lesion characteristics. 

A range of additional studies has also contributed to the development of breast cancer 

detection frameworks using deep learning and machine learning. These works explored issues 

such as feature-extraction limitations, segmentation precision, classification reliability, and 

model optimization strategies [13], [14]. Collectively, the existing literature highlights the need 

for more adaptable models capable of handling multimodal data and providing stable 

performance across diverse imaging conditions. 

 Proposed Work 

The research work in the current context attempts to merge two different sources of 

imaging information: mammogram images and breast thermogram images—to create a single 

system capable of analyzing both types of structural information as well as temperature-based 

information. The logic behind using these two different types of imaging information lies in 

the fact that each represents a different type of data. Mammogram images provide insight into 

the inner structure of breast tissues, whereas thermogram images capture the surface heat 

patterns associated with changes in the blood vessels. The idea is to process the two types of 

information separately at the beginning and then analyze the collective knowledge provided by 

both streams of information to easily identify signs of potential abnormalities, which are much 

more accurate in terms of early detection compared to existing individual systems. The 

proposed approach consists of the overall design of the procedure, starting with the preparation 
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of the datasets of images and the identification of the technical challenges that exist in the 

context of processing these images. The model then employs a carefully selected set of 

approaches to implement the two types of images effectively, enabling the analysis and 

combination of the information in a manner that facilitates accurate classification. The next 

section delves into more detail regarding the proposed approach.  

3.1   Data Collection 

In this study, two separate sets of data were used for breast image analysis. These 

included a collection of mammography images in normal scan format, which were further 

categorized as infrared thermograms. These two sets were found to hold exactly five hundred 

images in each case. Based on initial checks for a suitable mammography image source, it 

appears that a large number of images were sourced from a public Kaggle dataset with reference 

to the “Mammographic Image Analysis Society (MIAS) database.” In addition to this, another 

public resource used for mammography image analysis has been referred to, which appears to 

be the “Curated Breast Imaging Subset of the Digital Database for Screening Mammography 

(CBIS-DDSM)”. These mammograms were normal grayscale images with a non-uniform 

resolution in terms of pixels, which varied between 512×512 pixels and a maximum of 

1024×1024 pixels in size. 

The thermogram images used here have been derived from the infrared breast 

thermography database, which has been used by many researchers for recent works on detecting 

breast cancer using the CNN technique [19], [17]. The thermogram images were produced in 

controlled environments and are representative of the manner in which heat distribution occurs 

in the breast area. In some of the thermogram images, regions of slightly warmer areas are more 

visible than other areas. Such phenomena are typically representative of blood flow and other 

metabolic processes. 

Before attempting to analyze, each color thermogram was unified to a single-channel 

thermal image to ensure that the data came in a standardized form. After this was achieved, 

each image, whether mammography images or thermograms, was resized to 256×256 pixels to 

conform to the input requirement demanded in the subsequent steps of the process. There was 

also a simple adjustment to the brightness to ensure that the images appeared balanced 

compared to each other; in particular, to make sure that images did not appear too bright or too 

dim compared to others. To ensure that the system was not reliant solely upon the fixed pattern, 

a minor form of data augmentation was applied to the data. This directly consisted of minor 

rotations, minimal contrast changes, and minimal basic geometric transformations. After all the 

pre-processing steps had been completed, the data split was done the same way as in previous 

examples. About eighty percent of the images used in the analysis went to training, while the 

remaining twenty percent was used for independent testing.  There were no patient-derived 

details isolated from the images, meaning that none of the information was patient-derived or 

identifiable in nature. 

3.2   Problem Identification 

The kind of imaging done on breasts can run into problems related to motion and 

different types of noise, which are even found in ultrasound images. If there is even slight 

movement of the patient being scanned, the picture is bound to get blurred, and thus features 

of interest are not distinct in the image. All these problems have to be filtered to ensure that 

features of interest are not lost. 
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A mammogram image also creates another challenge, especially where the tumor or 

area of concern is too small or even close in intensity to the surrounding tissues [3]. Such a 

small area may be very critical in determining if there is a potential disease indication, but it is 

not always easily recognizable. Contrast enhancement and intensity normalization 

subsequently gain importance because it is easier to distinguish these areas from others. 

Since mammograms are grayscale, their pixel intensity will depend on tissue thickness, 

exposure levels, and other variables. To address issues related to these variables, various 

statistical properties, including changes in texture, contrast, or intensity, are analyzed, ensuring 

that the mammograms can be classified regardless of exposure levels. 

3.3   Tool Selection 

The work done in this research was conducted using MATLAB. MATLAB provides an 

array of image processing tools that are quite valuable for dealing with medical images. The 

software encompasses various procedures such as image format changes, image quality 

improvement, observation of the process results, and implementation of various analysis 

procedures [16]. The list of procedures included in MATLAB makes it easier to test and 

improve every stage of the process without having to develop everything from scratch. 

MATLAB is also a common platform for scientific computing, and many labs utilize 

MATLAB for image and video processing and other technical applications. In addition to its 

stability and functionality, MATLAB is chosen for the implementation and testing of the 

proposed approach because many mathematical and technical operations and functionalities 

have already been incorporated into MATLAB. 

3.4   Methodology 

 The proposed system will involve a two-stage analysis process. The first stage will 

involve processing mammogram and thermogram images separately to allow for the processing 

of each type of image according to its unique nature. The initial processing of the images will 

occur at this stage, including reading, resizing, and formatting the images for analysis. For 

mammograms, the images will be converted to a standard grayscale format to standardize their 

size by removing variances that may have been caused by different acquisition parameters. 

Figure 2 describes the comprehensive procedure undertaken by the Dual-Stacked 

Cancer Detection Model (DSCD). It starts with the acquisition of dual-source input data in the 

form of grayscale mammographic images and thermal images. Both sources are considered 

separately for the preprocessing steps, followed by noise reduction and standardization of 

intensity differences to maintain uniformity by resizing the images to the same size. 

Additionally, for the thermal images, the colorful images are converted into single-channel 

thermal estimate maps for assessing the intensity variation pertaining to the temperatures. 
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Figure 2. System Architecture of Dual Stacked Cancer Detection Model (DSCD) 

Following this processing, a feature extraction process takes place separately for both 

image streams through a customized ResNet-50-based CNN. The features acquired through the 

mammogram path and thermogram path are consolidated using a stacked feature fusion 

technique, which provides a common feature set comprising both structural and thermographic 

information. The consolidated set of features is then processed through the Super-Fast 

Recurrent Convolutional Neural Network (SFRCNN) module for final classification. The 

performance of these predicted classifiers is measured using standard performance criteria such 

as accuracy, precision, recall, and F1-score. This sequential analysis of processing helps utilize 

a combination of both modalities for improved levels of breast cancer diagnosis. Multimodal 

breast cancer diagnosis at a more reliable level has been made possible through this end-to-end 

processing. 

3.4.1   Thermal-Estimate Computation 

Thermograms first emerge within a color scale in which every color represents a 

corresponding temperature. In order for the information to be applicable for calculation, this 

color scale must be stripped away. Then, every pixel within an image is correlated with its 

corresponding temperature based on the guide color bar provided within the data set. After this 

correlation is completed, the thermogram stops acting similarly to an RGB image and begins 

to function as a temperature sheet. 

This temperature map has a similar texture to a gray-scale image. However, the intensity 

in this map translates to real temperature. To prevent irregular temperature fluctuations due to 

noise in the sensor and/or small movements of the object of interest, a small amount of 

smoothing is employed. The result of this processing stage is called the "thermal estimate" and 

is then passed on to the next stage as input from the "thermal" modality [5], [6], [23]. 

All these steps make up the data preparation process. After data preparation, a split 

between training and test data takes place.  
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3.4.2   Network Selection and Processing Flow 

To ensure the analysis is efficient, the proposed framework utilizes a lightweight model 

rather than the heavy Faster R-CNN-based model. To extract patterns from the modalities, a 

super-fast recurrent CNN (SFRCNN) is utilized. Its recurrent structure allows for the repeated 

refinement of information at the pixel level, thus enabling the network to adjust its weights as 

the image passes through. It is developed based on the ResNet-50 architecture, which has the 

capacity to extract deep features and retain details by using residual connections, as proposed 

in [15]. 

Unlike mammography, in thermography, the process starts with color-coded images. 

After transformation into thermal estimate maps, standardization follows. All thermal estimates 

are resized to have equal resolution to ensure they meet the input requirements of the neural 

network. Variations in resolution could cause variability in interpretation when attempting to 

combine the feature maps. It is important to perform intensity normalization since every person 

has different body temperatures. This ensures that neither the bright nor the dull parts are taken 

to have significant variation and instead relies on form and thermal distribution. 

If these preprocessing techniques are integrated, such as removal of color, smoothing 

of images, resizing of images, and intensity normalization, the resulting thermal images clearly 

show variations that relate to vascular and/or metabolic processes. The processed images aid 

the SFRCNN model in detecting detailed patterns in the raw thermal images that are missed 

when used directly [17]. 

3.4.3   ResNet-50 Feature Extraction 

In the experiment being designed, the modified ResNet-50 architecture is employed as 

the main feature extractor for the mammogram and thermogram images. The choice of the 

ResNet-50 model is mainly based on its ability to retain the minute details in medical imagery—

edges, contrasts, and various subtle features that tend to get diminished in the later layers of a 

conventional CNN model. It is thus a prerequisite to detail the processing of the two types of 

imagery inputs prior to delving into the merging or fusion stage. 

The ResNet-50 network is laid out in terms of a series of stages of convolution, where 

each of the stages progresses based on what the other stages have already learned. In medical 

images, the details are prone to being washed out as they progress through each of the layers, 

and the shortcuts used in the ResNet-50 are of great use in passing along such information 

without washing it out. This is especially important within the context of the current project, 

where the trace of an abnormality is often seen in the form of faint light or signs of changes in 

textures, which need to be preserved and then distinguished from the other textures. Figure 3 

provides a brief insight into the different steps taken by the altered ResNet-50 model in treating 

the input images. The images undergo a series of convolutional layers wherein crucial edges 

and texture information are extracted. The short connections ensure that minute information is 

retained as the data proceed deeper. Finally, the most useful information is retained and 

propagated for fusion and classification purposes. 
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Figure 3. Internal Feature-Extraction Flow of the Customised ResNet-50/SFRCNN 

Architecture 

3.4.3.1   Input Data 

The framework accepts two independent inputs: the mammogram 𝐼𝑀and the thermal 

estimate 𝐼𝑇. Both inputs are arranged in a fixed matrix size so that the subsequent layers process 

them without any dimension mismatch. 

3.4.3.2   Feature Extraction using CNN 

Each image passes through a dedicated CNN path. For the mammogram, the extractor 

is denoted as 𝑓𝑀(⋅, 𝜃𝑀), while the thermogram has its own extractor 𝑓𝑇(⋅, 𝜃𝑇). These produce 

the feature sets: 

𝐹𝑀 = 𝑓𝑀(𝐼𝑀, 𝜃𝑀), 𝐹𝑇 = 𝑓𝑇(𝐼𝑇 , 𝜃𝑇)                                                    (1)                                                                                        

These outputs represent compact descriptions of the structural patterns in the 

mammograms and the temperature-related variations in the thermal maps. 

3.4.3.3   Stacked Feature Fusion 

Once the features are extracted, the two outputs are placed next to each other along the 

channel dimension. This simple stacking keeps the spatial arrangement intact while letting the 

model view both modalities together: 

𝐹 = 𝜙([𝐹𝑀  ∣∣  𝐹𝑇])                                                                     (2) 

The operator 𝜙(⋅) may be a small dense layer or a light transformation that prepares the 

fused set for the next stage. This fusion step helps the model relate the edges and textures from 

the mammogram with the heat-distribution cues from the thermogram. 
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3.4.3.3   Normalisation/ROI Pooling 

If the region-based pooling is applied, then the fused representation is normalised to 

reduce the local intensity variations: 

𝐺 = 𝑁𝑜𝑟𝑚(𝜙(𝐹))                                                       (3) 

This step ensures that the final classifier receives balanced and stable inputs. The choice 

of ResNet-50 is driven by the nature of the medical images, where the important details often 

appear as faint boundaries or slight changes in intensity. The skip connections in ResNet-50 

allow these early features to pass deeper into the network without being suppressed. This helps 

the model identify small lesions and weak patterns that a plain CNN might ignore. 

Because both modalities become single-channel images after preprocessing, two 

practical adjustments were made to accommodate ResNet-50. In one approach, the single 

channel was replicated three times to match the normal RGB input shape. In the other approach, 

the first convolutional layer of ResNet-50 was modified to accept the single channel directly. 

Both methods maintain the deeper architecture unchanged, letting the network process the 

images as usual. 

After preprocessing, the feature extraction is given by: 

𝐹𝑀 = 𝑅𝑒𝑠𝑁𝑒𝑡50(𝐼𝑀)                                              (4) 

𝐹𝑇 = 𝑅𝑒𝑠𝑁𝑒𝑡50(𝐼𝑇)                                                (5) 

These fused features provide a combined representation that carries both structural and 

temperature information into the SFRCNN classifier. Because the residual blocks preserve fine-

grained cues, the classifier receives clearer signals, especially when dealing with small or low-

contrast abnormalities. 

3.4.4   Super-Fast RCNN(SFRCNN) Classification Module 

The resulting fused features from the two image flows are then analyzed using a Super-

Fast RCNN module. For this phase of the research, the thermogram images were provided from 

the freely available infrared breast thermography database, which has been extensively utilized 

in many past CNN-based studies for the detection of breast cancer in recent times [20], [17]; 

For mammograms, cases were provided from the Mammographic Image Analysis Society 

Database (MIAS) and the Curated Breast Imaging Subset of the Digital Database for Screening 

Mammography (CBIS-DDSM) public mammography datasets. During testing, each of the 

images was initially displayed on the computer screen and then processed through the regular 

procedure until the output reached the SFRCNN level. A small MATLAB interface was utilized 

in the development phase to validate whether everything worked correctly and to ensure that 

the output was in sync with what was being delivered in the initial phases. 
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Figure 4. Super-Fast RCNN Architecture 

Figure 4 illustrates the SFRCNN block utilized for enhancing the fused features 

obtained from both streams of mammogram and thermogram images. In this context, the 

proposed model has been implemented using thermographic images acquired from a public 

infrared breast thermography image repository, while mammographic images were obtained 

from the Mammographic Image Analysis Society Database (MIAS) and the Curated Breast 

Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM). In the 

test phase, each image will be displayed on a monitor, followed by traditional image processing 

routines. Following these phases, a set of fused features will be processed through an SFRCNN 

module for classification. Additionally, a simple GUI has been designed in MATLAB to verify 

whether a set of input images, hidden features, and final outcomes traverse within a traditional 

flow. The action of convolution layers across the network can be written as: 

𝐻𝑡 = 𝐾(𝑊𝑐 ∗ 𝑋𝑡 + 𝑏𝑐)                                                   (6) 

where: 

• 𝐻𝑡: feature map at time step 𝑡 

• 𝑊𝑐: convolutional kernel 

• ∗: convolution operation 

• 𝑏𝑐: bias 

• 𝐾(⋅): activation function (e.g., ReLU) 

The fully connected layer gathers the final feature blocks from all samples and helps 

distinguish between normal and abnormal breast-tissue patterns based on their learned intensity 

and structural properties. 

3.4.4.1   Hyperparameter Tuning and Training Behavior 

The SFRCNN configuration also wasn't designed in one go but was achieved over 

several sessions of tuning on a small scale. Rather than freezing the values of the 

hyperparameters at the beginning, various patterns for the learning rates had been tried. It was 

observed that the learning rate at which the loss curve was consistent in going down without 

sudden peaks or fluctuations was selected for the final phases. The total number of epochs was 

also not predefined. The training process was allowed to continue only when the accuracy 

showed a definitive rising pattern and was stopped when the trend started to flatten out. 
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In the earlier layers, the filter sizes were kept relatively similar to the conventional 

layout used in ResNet-50. When a few other sizes were tried, the results were more or less the 

same, and thus there was no particular need to drift away from the original design. Several 

rounds were conducted in the experiment to check how the model would perform using various 

combinations of settings, and after monitoring the changes that occurred from one experiment 

to another in terms of accuracy, loss, and stability, a combination that provided consistent 

results was taken as the final design for the experiment. 

3.4.4.2   Integration with Dual-Modality Streams 

After doing the preprocessing, each of these modalities was then fed through its 

respective path in ResNet-50 so that its individual features could be attended to by the network. 

This is important because, in mammography, the structural aspects of the image boundaries, 

patterns of tissues, and shapes are preserved in mammography images, while thermography 

images capture variations in heat. It is easier for the network to learn contrasts if the features 

remain separated and do not allow one type of feature to overpower the other. 

In turn, it normalized these feature maps in terms of size so that all of them were the 

same size and could thus be combined into a block. This block contained a combined 

representation of both the structural cues and the thermal cues. The block, now containing a 

combined representation of structural cues and thermal cues, was passed through the SFRCNN. 

Given that it had a repeated structure, it had the capability to revisit those combined features 

multiple times with the intention of smoothing out the irregular parts. 

The last part of the pipeline contains a small dense layer and then a SoftMax layer to 

output the scores over the classes. In the process of learning, the system would also have 

gradually learned what the respective patterns normally look like and how the abnormal 

patterns would differ. Now, given a new input, it weights the input against what it has learned 

and selects a class based on the appropriate pattern.  

3.4.4.3   Rationale for Separate Processing of the Two Modalities 

Because each of the two categories of images deals with its own type of information, 

the first point of handling involves independence. The mammograms would principally 

illustrate breast tissue structure—bounds, shapes, and tissue distribution—while thermograms 

would indicate the distribution of heat present on the surface and would generally be associated 

with variations in blood flow or metabolic rate. After extracting features from both lines of 

research, these would then be combined by placing them side by side based on the channel axis. 

This would yield one block that encompasses both the detail of breast structure from the 

mammogram and the heat distribution from the thermogram. As both sets of information are 

processed within the same space, it becomes possible to distinguish normal and potentially 

problematic patterns of breast tissue better with the help of SFRCNN. 

 Results and Discussion 

4.1   Thermal Images Under Test 

The thermal imaging used for assessment is depicted in Figure 5. These samples 

underwent an HSV contrast mapping process and an estimation conversion that emphasizes 
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areas of increased temperature based on thermal intensity. Areas of high intensity have deeper 

shades of color, while lighter shades correspond to lower intensity. A normal distribution of 

these would be related to vascular alterations of abnormal tissue activity. 

 

Figure 5. Input Thermal Images Used for Analysis 

Before the images are passed into the network, the minute variation due to motion or 

noise present within the sensors is reduced through the use of light smoothing. Normalization 

further enhances intensity variation that could be due to uneven heating and background 

temperatures. Isolated noise points have less effect when the SFRCNN propagates the same 

fused features repeatedly; thus providing a more representative picture of the tumour-related 

patterns. 

4.2   Mammogram Images Under Test 

 

Figure 6. Grayscale Mammogram Images Used for Testing 

Figure 6 shows the grayscale image of the mammogram input. The intensity of the input 

image is usually between 0 and 127, and it is prone to low contrast. During such scanning, the 

diseased part usually has a higher intensity than its surroundings. In automated analysis, minute 

differences in intensity are used to identify the diseased areas, although this can sometimes be 

difficult due to the dense breast tissue. 
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4.3   Validation of Thermography images 

 

Figure 7. MATLAB Front-End of Thermal Evaluation 

Figure 7 displays the MATLAB interface used for validating the thermographic outputs. 

Generally, the thermal stream managed to locate the abnormal area using the bounding markers 

obtained based on the changes in temperatures. However, the following samples led to 

misunderstandings: 

• Images showing uniform temperature distributions sometimes imitated vascular 

activity and caused the model to flag normal areas as suspicious. 

• There were instances where the irregularities had poor thermal contrast, making it 

difficult to identify them among the background patterns. 

• Occasionally, slight movement or uneven heating affected the thermal symmetry. 

The misclassifications were largely found to occur in borderline or low-contrast cases. 

This affirms that thermography is very helpful when used along with mammography 

information, as mammograms offer structural information. [17]. 

4.4   Validation of Mammograms Images  

 

Figure 8. MATLAB Front-End ff Mammogram Evaluation 
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Figure 8 shows the mammogram-evaluation interface used during testing.The images 

may also exhibit overlapping regions of tissue that may appear similar to tumors. Dense regions 

or soft tissues may cause the algorithm to misclassify non-suspicious regions as suspicious. 

Inhomogeneities in exposure, compression, and illumination are also responsible for false 

alarms. 

These reasons can account for why there were more false positives from the 

mammogram-based method compared to the thermogram method. 

4.5   Comparative Evaluation of Test Images 

Table 1. Comparison of TP, FP, FN for Mammogram and Thermogram Images 

Metric Mammogram Thermogram 

TP 250 250 

FP 12 3 

FN 45 5 

 These thermal images provide a clear indication of fewer false detections of 

malignancies, as well as fewer missed malignancies, present within Fig.10.12. These will 

substantiate the enhanced sensitivity of the thermal patterns. 

4.6   True Positive Rate Comparison 

 

Figure 9. Comparison of True Positive rates of Mammogram and Thermogram 

Figure 9 plots a comparison of the true positive rates for mammography and 

thermography analysis based on the values in table 1. 

The thermograms are able to identify 250 out of 255 abnormal patterns (85% TPR). The 

errors in mammographic images are largely due to tissue overlap and low-contrast lesions. 
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4.7   False Positives and False Negatives 

 

Figure 10. False Positive and False Negative Comparison 

Figure 10 illustrates the FP and FN comparison. High FP values are observed in 

mammograms in cases of dense or overlapping tissues. High FN values are seen in 

mammograms in situations where the contrast is low for observing the lesions [17]. 

4.8   Accuracy, Precision, Recall and F1-Score 

Table 2. Performance Comparison (Mammogram vs. Thermogram) 

Category Accuracy Precision Recall F1-Score 

Mammogram 84.75 95.42 89.23 86.23 

Thermogram 98.04 98.81 89.99 92.33 

Thermography shows higher accuracy and precision due to the clearer visibility of 

vascular-heat patterns. Mammograms show higher false positives due to structural ambiguity. 

4.9   Performance Analysis Graph 

 

Figure 11. Performance Comparison Graph 
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Figure 11 presents the accuracy and precision comparison. The combined use of dual 

modality features significantly improves the overall stability and reduces error likelihood, 

especially when both structural and thermal cues align. 

4.10   Comparison with Conventional CNN 

Table 3. Comparison with Conventional CNN and SFRCNN 

Method Image Type Accuracy Precision Recall F1-Score 

Conventional 

CNN 
Mammogram 82.22 85.25 84.25 87.36 

Proposed 

SFRCNN 
Mammogram 84.75 95.42 89.24 86.23 

 

 

 

 

 

 

 

 

 

Figure 12. Comparison of Conventional CNN and SFRCNN 

4.11   Training and Validation Trends 

 

Figure 13. Epoch-Wise Binned Training Loss for 150 Epochs 
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Figure 14. Epoch-Wise Binned Training Accuracy for 150 Epochs 

 

Figure 15. Epoch-Wise Binned Validation Accuracy for 150 Epochs 

Figures 13–15 show the training loss, training accuracy, and validation accuracy across 

epochs. The steady reduction in the training loss and the rise in the accuracy indicate the 

effective convergence. Validation accuracy stabilizes in the later epochs, showing the improved 

generalization. 

 Conclusion 

With the fusion of images from the mammography system and the thermography 

system, along with images representing surface temperature, this proposed study confirms the 

utility of multi-modal fusion in breast cancer imaging. It provides a completely new perspective 

on tackling this issue because this specific diagnostic solution cannot be attained with the sole 

use of either system. The proposed approach using SFRCNN would be more accurate. A 

thorough thermographic analysis was conducted for the patients undergoing exercises, 

achieving a standard of at least 98.0% true positives with five or fewer false negative values 

and three or fewer false positives. This indicates a standard level for diagnosis, although due 

consideration was given to the pathological differences present in whole body temperatures. In 

the current scenario for analyzing the mammogram, the standard level was maintained at 85.0% 

true positives with overlapped tissues. The results of the performance assessment indicated that 

the accuracy of thermograms was 98.04% with an F1 score of 92.33%, while that of 
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mammograms was 84.75% with an F1 score of 86.23%. It was also ensured that the fusion 

method performed better than the individual modalities. Thus, there is an improvement in the 

accuracy of the baseline methods, which was approximately 82.22%. The fusion technique 

developed on SFRCNN showed better convergence in training and validation, proving its 

efficiency and effectiveness. Future tasks will involve applying this to more complicated 

sources of information. 
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