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Abstract     

Food freshness and food safety in the hospitality industry are, to date, mainly dependent 

on visual observation, where human visual interpretation does not always successfully identify 

the less obvious signs of early food spoilage. In this work, we introduce DASS-Net, a novel 

hybrid deep network with a trilinear structure and three separate task-focused branches: (1) the 

RGB aesthetic branch, (2) the LAB spectral branch, and (3) the Vision Transformer ViT-Small 

semantic branch, used together for simultaneous analysis of food image-based texture 

degradation, color deviation, and overall food image-related semantic dependencies on a global 

scale. Each of the network's task-focused branches projects its outputs to a unitary latent space 

and further refines them with multi-head attention and adaptive joint processing with a 

learnable gated fusion module. To train DASS-Net, a dual-objective training approach with 

class-weighted and smoothed Cross-Entropy loss and Contrastive Learning with MixUp and 

CutMix data augmentations is used. Eight-class classification experiments on fresh and spoiled 

food samples of bread, dairy products, fruits, and vegetables are conducted to evaluate the 

performance of DASS-Net, providing a validation accuracy of 94.33%, which demonstrates a 

23.18% and 25.83% relative improvement over ResNet-18 with LAB and RGB visual channels, 

respectively. Additionally, the classification model yielded a minimum misclassification rate 

of 13.30% for spoiled items identified as fresh, which clearly marks an important characteristic 

related to safety issues. The complementarity between the spectral and aesthetic features has 

also been proven by the Grad-CAM visualizations of the dual-branch network, where the most 

confusion occurs in the case of dairy products with negligible surface decay, as revealed by the 

analysis of failure cases.  The results explicitly confirm that the developed DASS-Net delivers 

a safe, efficient, and scalable vision solution applicable to kitchen intelligence and hospitality 

control scenarios. 

Keywords: Food Spoilage Detection, Hospitality Management, Vision Transformer, Spectral–

Aesthetic Fusion, Supervised Contrastive Learning. 
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 Introduction 

Presentation and quality of the food are considered two of the most critical aspects of 

the beliefs and expectations of hotels and restaurants since appearance can be taken as a vital 

indicator of food quality.  Today, some hotel and restaurant guests judge food quality by sight, 

taste, or by reading its description. Regarding this, early spoilage identification has introduced 

a new factor in the hotel environment where food safety, presentation, and service excellence 

are combined in one place beyond functional requirements. This also safeguards consumer 

satisfaction, prevents food-borne diseases, and protects reputation [2]. Therefore, the ability to 

precisely and reliably assess the freshness of food is key to managing good hospitality service. 

Traditional methods in hotels and restaurants include the use of human senses for 

spoilage detection in an extremely manual process for inferring whether foods are safe for 

human consumption. Food inspection for spoilage, color, texture, wetness, or damage to the 

surface of foods is conducted by chefs and hotel/restaurant kitchen staff. To a great extent, 

though, such methods have been very valuable, they are extremely prone to errors and depend 

on the personal skill level of the individual involved in conducting such processes [3]. This is 

especially important for restaurants where numerous ingredients are handled within a single 

day. In this way, such inspections would be inaccurate. In addition, low skill levels of staff, the 

amount of workload, and environmental factors could induce risks of minor initial signs being 

missed.  

As more diversity emerges in food production in hotels, requiring more time sensitivity, 

it is even more apparent that there is a limitation in the process of merely observing it food 

through visual and manual means. Typically, this occurs in buffet meals, fast turnaround diets, 

and round-the-clock operations. Industry accounts indicate that developing, would-be spoilage, 

commonly referred to as those changing gradually on a continuum, often escapes detection 

during conventional hotel checks [4]. Since early warning signs of spoilage are not picked up, 

greater risks of lowering customer satisfaction, degrading food quality, accelerating hotel food 

waste, and even non-compliance with food safety standards readily emerge [5]. Consequently, 

there is an urgent need for creating a mechanism that can be scaled up, is objective, and 

automatic, hence assisting hotel personnel in making determinations regarding food freshness. 

With the latest developments in computer vision, various machine learning and image-

processing-based techniques have been demonstrated to be effective for certain food safety 

applications and automating food quality assessment. One of the techniques that showed very 

strong potential in the detection of spoilage across a wide range of food categories is the 

Convolutional Neural Network (CNN). CNNs learn complex spatial and colour-based patterns 

directly from raw images without requiring manual feature engineering. They also 

automatically learn hierarchical visual features, such as browning, textual degradation, and 

surface irregularities. These developments show that automated systems can exceed the 

consistency of manual inspections traditionally performed by kitchen staff. 

Moreover, many previous studies from relevant areas, such as computer vision and food 

science, have examined various hand-crafted features like color histograms, signatures, or 

textures to represent visible changes associated with food spoilage [7]. Typically, they aim to 

examine each component of food deterioration in particular, such as dehydration processes, 

enzymatic browning, and bacterial growth. Although highly efficient in respective tasks, low-

level spectral feature-based approaches overlook more general aesthetic image characteristics 

within food items, possibly including sharpness, color balance correction, believability of 
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depicted food composition on the plate, light reflections, and symmetry of depiction [8]. It 

appears that these characteristics are precisely what professional kitchen inspectors typically 

focus on during real-life tasks. A joint and rather tight focus on them provides a very low ability 

to detect the initial stages of food decomposition   processes that attempt to impair the overall 

visual representation of food items, rather than merely discolored decay and mushrooms. 

However, owing to this recent innovation in computer vision, several learning 

algorithms, along with various processes in images, have been identified as having the capacity 

to effectively and efficiently fulfill the duties of food safety and conduct food quality analysis. 

Among these identified processes that can assess food spoilage across all forms of food are 

Convolutional Neural Networks. These networks have been shown to have the ability to learn 

patterns across raw images, including browning and textural damage, which must be identified 

manually by personnel in the kitchen. 

Models of aesthetic image analysis have developed methods capable of estimating the 

aesthetic quality of images based on composition, clarity, harmony, and stylistic properties [9]. 

Though such techniques are commonly employed in photography, social media content 

assessment, and automated visual scoring, they have not been comprehensively utilized in food 

quality and safety evaluation. In addition, a combination of aesthetic analysis and spectral 

analysis would greatly improve the sensitivity of detecting aesthetic properties, which decrease 

over time and indicate the early stages of food deterioration through reduced brightness, blurred 

edges, skewed color distribution, and reduced gloss. 

The vast majority of existing work on food spoilage classification models involves 

single-stream architectures that discern either spectral information or textural characteristics 

separately. There has also been a lack of consideration for the benefits that can be gained from 

combining various visual aspects into one model. Existing work has not attempted to focus on 

the combination of aesthetic information and spectral characteristics involved in judging the 

freshness of foods, despite indications that both aspects can be perceived manually and 

automatically. 

Moreover, most of these studies are more interested in applying these concepts in 

agricultural, industrial, or retail supply. However, relatively little research is currently being 

done on applying these concepts to food spoilage classification, wherein food safety and food 

quality are given equal importance. 

1.1   Objectives of the Study 

This research aims to propose and assess the effectiveness of a hybrid multi-branch 

deep learning approach that has the ability to perform accurate classification tasks of food 

spoilage from images within the hotel industry. 

This research is keen on exploring the following aspects: 

• Designing an aesthetic-spectral feature MAB with multiple branches, including the 

extraction of complementary features of an image within both RGB space and 

LAB. 

• Adding a semantic Transformer branch to improve the perception of high-level 

patterns of spoilage. 
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• Applying the multi-head attention mechanism and gated fusion strategy for the 

optimal fusion of feature representations from the branches. 

• Applying supervised contrastive learning to improve the separation between 

classes. 

• Comparing the hybrid model with the model based on just RGB and with the model 

based on just LAB through an ablation study. 

• Recommending a suitable model by taking into account accuracy, F1 scores, 

confusion matrices, and other performance indicators related to errors concerning 

spoiled-as-fresh products. 

• Producing Grad-CAM attributions and studying failure cases to increase model 

interpretability. 

1.2   Key Contributions 

• The study presents a new hybrid model that combines RGB aesthetic features, LAB 

spectral cues, and high-level semantic representations using a Vision Transformer 

(ViT) branch. This design uses complementary information across color spaces and 

transformer-based context modeling. It creates a better feature extractor for 

detecting food spoilage. 

• DASS-Net employs dynamic multi-head attention and a gated fusion mechanism 

to dynamically adjust the reliance on RGB, LAB, and transformer features for each 

input. This helps the model remain reliable even when lighting, textures, or food 

surfaces change, which often causes problems for single-stream CNNs. 

• The model integrates Supervised Contrastive Learning (SupCon) to strengthen 

inter-class boundaries and reduce confusion between visually similar spoiled and 

fresh items. Moreover, the combined use of MixUp and CutMix across multi-

branch inputs enhances regularization and improves generalization for limited 

datasets in hospitality settings. 

• Dual-stream Grad-CAM visualization shows how the RGB and LAB branches 

focus on different signs of spoilage. The paper also introduces a safety-critical 

metric called the “spoiled-as-fresh rate” to measure high-risk misclassifications, 

which goes beyond accuracy and helps hotels and restaurants use the system safely. 

• Enhances food safety and operational reliability to prevent both foodborne risks 

and unnecessary waste. 

• Provides an automated, scalable, and deployment-ready vision-based system that 

supports high-volume hotel and restaurant workflows, offering continuous quality 

monitoring suitable for modern hospitality environments and smart kitchen 

platforms. 
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 Related Work 

Previous works on food spoilage detection show several methodological and practical 

limitations. These limitations pose challenges in practical applications in hospitality and 

kitchen environments. Most studies rely on single-stream CNNs using RGB images. However, 

RGB alone is insufficient since early spoilage involves subtle spectral shifts not visible in RGB, 

and different foods exhibit naturally varied colors that mask discolorations. Moreover, texture 

and moisture changes are not captured well by RGB-only models. Furthermore, there is limited 

use of alternative color spaces despite proven spectral advantages. Although few works have 

explored LAB and HSV features, LAB is rarely fused with deep learning architectures. Also, 

past color-space methods lacked robust model fusion, and spectral cues were used in isolation 

and did not combine with RGB or transformers. 

Moreover, the majority of the studies have reported model accuracy only, such as 

validation, precision, recall, and F1-score; however, safety-critical errors, such as the spoiled-

as-fresh rate, are not commonly considered. Correspondingly, real-world kitchens have varied 

lighting and backgrounds, whereas prior models often use clean datasets with controlled 

conditions, focusing only on fruit or milk-specific datasets, and have limited variation in 

illumination and noise. This reduces generalizability when applied to busy hotel kitchens. On 

the other hand, existing models treat samples independently and lack global reasoning. CNNs 

perform well at local features; however, they struggle with global relationships such as color 

gradients across the whole food surface. Similarly, they also struggle with structural changes 

and fine-grained decay progression. 

No prior work integrates aesthetic cues (RGB), spectral cues (LAB), and high-level 

semantic representations (transformer-based models) into a unified architecture designed 

specifically for food safety applications. Additionally, advanced strategies such as MixUp, 

CutMix augmentation, and supervised contrastive learning are rarely used in food spoilage 

research despite their proven ability to improve robustness under varied lighting, texture, and 

surface conditions. Thus, the proposed Dual-Aesthetic-Spectral-Semantic Network (DASS-

Net) uniquely integrates multi-modal visual cues, transformer-based semantic understanding, 

dynamic fusion mechanisms, and risk-centered evaluation to overcome the limitations of 

existing methods. Table 1 summarizes key studies on food spoilage and quality detection that 

outline their methods, performance, and limitations. 

Table 1. Summary of Related Work on Food Spoilage Classification 

Author(s) Method Performance Limitation 

[10] CNN-based mould 

detection of bread 

microscopic images 

F1-score of 

0.9948 

Exclusion of problematic images 

and datasets was taken on 

controlled imaging conditions. 

Basic data augmentation was 

applied. 

[11] Detection of mould on 

Food Surface using 

YOLOv5 

Precision 

(98.10%), 

Recall (100%), 

Average 

Precision 

(99.60%)  

Signs of overfitting. Trained only 

on heterogeneous images of 

surface-level mold and may not 

generalize to diverse food types, 

imaging conditions, and early-

stage/low-visibility mold.  
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[12] Near-infrared 

Hyperspectral Imaging in 

detecting spoilage in 

sausage 

𝑅2 = 80.61% Processed meat varies in color, and 

there are limited dataset types. The 

study shows that color-based 

spoilage detection is feasible, but 

limited.  

[13] Least-Squares Support 

Vector Machines 

(LSSVM),  Competitive 

Adaptive Reweighted 

Sampling (CARS), and 

Interval Variable Iterative 

Shrinkage Approach 

(iVISSA) for Tan sheep 

using Hyperspectral 

Imaging 

𝑅2 = 91.50% Complex equipment and model. 

There is a need for a lightweight 

and camera-based approach that is 

more practical for kitchens and 

restaurants.  

[14] ResNet-50 for fruit decay 

detection 

Validation 

Accuracy 

(98.89%) 

Struggles with partially spoiled 

fruits and varying backgrounds 

[15] Naïve-Bayes Classifier 

for Milk Spoilage 

Validation 

Accuracy 

(92.2%) 

Dairy shows subtle texture changes. 

No safety-focused metrics.  

 Proposed Work 

 

Figure 1. DASS-Net Architecture 

As shown in Figure 1, the architecture of the DASS-Net used in the current study 

focuses mainly on the classification of food spoilage from images. The DASS-Net takes an 

RGB image as input, which then undergoes a resizing process; the normalized image is copied 

into the RGB stream and the LAB conversion of the spectral stream, with the original RGB 
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image proceeding to the semantic branches as well. The goal of the semantic branches of the 

ResNet-18 focuses on the texture/aesthetic surface, while the LAB branches also seek to find 

the spectral color discolorations/degradation. An additional goal of the Vision Transformer 

focuses on the global semantic context as well as the spoilage phenomena that are unclear to 

human visual observation. The three obtained features are then unified into a latent space; this 

space is improved by multi-head attention and adaptive fusion using the gated fusion module, 

with the outcome proceeding to the fully connected classifier head, which produces the final 

genre with the Softmax output. Grad-CAM visualizations provide explanations for the 

network's ability to perform balanced augmentation techniques and contrastive supervised 

learning during training.  

3.1   Dataset and Pre-processing 

3.1.1   Data Organization and Stratified Splitting 

In this study, the eight marked classes of fresh and spoiled varieties are used as the 

dataset. The Fresh and Spoiled Food Image Dataset, from which the dataset for this study was 

acquired,can be found at the Kaggle repository [17]. In this dataset, the images of food from 

hotels in eight classes are in the RGB range,  

𝐶
= {𝑓𝑟𝑒𝑠ℎ𝑏𝑟𝑒𝑎𝑑 , 𝑓𝑟𝑒𝑠ℎ𝑑𝑎𝑖𝑟𝑦 , 𝑓𝑟𝑒𝑠ℎ𝑓𝑟𝑢𝑖𝑡𝑠, 𝑓𝑟𝑒𝑠ℎ𝑣𝑒𝑔𝑒𝑡𝑎𝑏𝑙𝑒𝑠, 𝑠𝑝𝑜𝑖𝑙𝑒𝑑𝑏𝑟𝑒𝑎𝑑 , 𝑠𝑝𝑜𝑖𝑙𝑒𝑑𝑑𝑎𝑖𝑟𝑦 , 𝑠𝑝𝑜𝑖𝑙𝑒𝑑𝑓𝑟𝑢𝑖𝑡𝑠,

𝑠𝑝𝑜𝑖𝑙𝑒𝑑𝑣𝑒𝑔𝑒𝑡𝑎𝑏𝑙𝑒𝑠} 

Each class was kept in a separate directory, and the images inherited the label of the 

directory. Let 𝑁𝑐 be the number of images belonging to class 𝑐 ∈ 𝐶. Further, a stratified split 

per class was done using a fixed random seed so that the empirical class distribution was 

preserved across the training, validation, and test sets. For each class, 70% of the images went 

into the training set, 15% went to the validation set, and 15% into the test set. Next, the three 

subsets were independently shuffled in order to avoid any ordering bias. Before data splitting, 

the directory labels were manually inspected to minimize inconsistencies in the annotation. 

Again, stratified sampling with a fixed random seed preserved class distribution, while shuffled 

partitioning reduced the chances of temporal ordering leakage.  

3.1.2   Image Pre-processing and Augmentation 

All images went through a combined transformation step in a jointly learned 

augmentation graph equal for the RGB and LAB channels. The training transformation T_train 

was a combination of the following: (i) resizing the shorter side to a maximum of 1.1 × 224 

pixels, (ii) applying a RandomResizeCrop of size 224 × 224 with a scale in [0.7, 1.0] and an 

aspect ratio in [0.9, 1.1], (iii) randomized horizontal flipping with respect to a 0.5 probability, 

(iv) randomized rotation in the range of [-20°, 20°], (v) Color Jittering for brightness, contrast, 

saturation, and hue, (vi) applying a Gaussian blur, (vii) auto-contrast, and (viii) applying 

random grayscaling. While training and evaluating the model, another transformation was used 

to resize the images to a fixed size of 224 × 224 to avoid any randomness in model testing and 

training. The fixed size was a trade-off between the representation and efficiency of the model. 

The model followed the standard ImageNet model practice on input size to maintain efficiency 

and representation balance. After augmentation, each image 𝐼′ ∈  [0.255]𝐻 ×𝑊 ×3 was 

converted to a floating-point tensor 𝑥𝑟𝑔𝑏  ∈  ℝ3 ×224 ×224 and normalized using the standard 

ImageNet statistics, using Equation 1, 
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𝑥𝑐
𝑟𝑔𝑏(𝑢, 𝑣) =

𝐼′
𝑐(𝑢, 𝑣)
255

−  𝜇𝑐

𝜎𝑐
, (1) 

𝜇 = (0.485, 0.456, 0.406), 

𝜎 =  (0.229, 0.224, 0.225). 

The Random Erasing operation (with a probability of 0.25) was introduced in the RGB 

tensor by overlaying rectangles with randomly selected pixels, which greatly assisted in 

enhancing robustness to occlusions and missing information. The thought process behind this 

design decision was that greater emphasis was placed on maintaining color integrity by 

employing the Random Erasing operation selectively on the input RGB images, which aimed 

to simulate a realistic occlusion scenario. 

The values of ColorJitter parameters are kept within limited ranges to mimic practical 

lighting changes rather than simulate deterioration. Augmentation is performed symmetrically 

on both fresh and spoiled samples to avoid bias. While no negative impacts were observed in 

experiments, a detailed augmentation sensitivity analysis in the future would be useful for a 

proper understanding of the interaction between augmentations and semantics. No performance 

reduction was observed in the experimental evaluation, since orientation-based augmentation, 

such as horizontal flipping, was retained considering that spoilage visual cues are inherently 

orientation-independent [28]. 

3.1.3   RGB-LAB Color-Space Conversion 

In parallel with the RGB branch, each augmented image was converted into the CIE-

LAB color space to emphasize perceptually meaningful chromatic differences associated with 

food spoilage. The RGG array 𝐼′ was first normalized to [0, 1] and transformed to the CIEXYZ 

space using the standard linear transformation. The 𝐿\∗, 𝑎\∗, 𝑏\∗ components were then 

computed as in Equation 2, Equation 3, and Equation 4, 

𝐿\∗ = 116𝑓 (
𝑋

𝑌𝑛
) − 16, (2) 

𝑎\∗ = 500 [𝑓 (
𝑋

𝑋𝑛
) − 𝑓 (

𝑋

𝑌𝑛
)] (3) 

𝑏\∗ = 200 [𝑓 (
𝑌

𝑌𝑛
) − 𝑓 (

𝑍

𝑍𝑛
)] (4) 

where 𝑋𝑛, 𝑌𝑛, 𝑍𝑛 denote the reference white point and 𝑓(𝑡) is the usual CIE piecewise 

function. For numerical stability and to bring all channels to a comparable range, LAB values 

were normalized as in Equation 5, 

𝐿′ =  
𝐿\∗

100
, 𝑎′ =  

𝑎\∗

128
, 𝑏′ =  

𝑏\∗

128
 (5) 

producing a LAB tensor 𝑥𝑙𝑎𝑏  ∈  ℝ3 ×224 ×224. This tensor was used as input to the 

spectral branch. RGB-LAB conversion followed standardized CIEXYZ procedures with fixed 

white-reference points and normalization scaling to comparable perceptual ranges. The 
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clipping safeguards have prevented the out-of-range anomalies to ensure that spectral variations 

have reflected natural spoilage chromatic shifts rather than computational artifacts.  

 

3.2   DASS-Net Hybrid 3-Branch Architecture 

3.2.1   Brach Encoders 

The proposed DASS-Net combines a triple-cascade structure with a triplet loss 

objective for distinguishing between real and generated pairs. The system consists of a triple-

cascade network with a triplet loss objective that combines three feature extraction branches; 

the RGB image branch, the LAB image branch, and the semantic transformer image branch. 

ResNet-18 was selected for the RGB image branch and LAB image branch due to the 

established stability demonstrate in the context of spectral learning with moderate 

computational costs that exhibit better robustness than lightweight architectures [29][30]. The 

chosen model thereby ensures that execution is possible even in kitchen environments.  

3.2.1.1   Aesthetic RGB Branch (ResNet-18) 

The RGB tensor 𝑥𝑟𝑔𝑏 was fed to a ResNet-18 backbone 𝑓𝑎𝑒𝑠 configured for three-

channel LAB input using Equation 6, 

ℎ𝑎𝑒𝑠 =  𝑓𝑎𝑒𝑠(𝑥𝑟𝑔𝑏) ∈  ℝ𝑑𝑎𝑒𝑠 , 𝑑𝑎𝑒𝑠 = 5 (6) 

3.2.1.2   Spectral LAB Branch (ResNet-18) 

The LAB tensor 𝑥𝑙𝑎𝑏 was processed by a second ResNet-18 𝑓𝑠𝑝𝑒 configured for three-

channel LAB input using Equation 7, 

ℎ𝑠𝑝𝑒 =  𝑓𝑠𝑝𝑒(𝑥𝑙𝑎𝑏) ∈  ℝ𝑑𝑠𝑝𝑒 , 𝑑𝑠𝑝𝑒 = 5 (7) 

This branch captured subtle color shifts related to browning or mold growth that may 

be less apparent in RGB. 

3.2.1.3   Semantic Transformer Branch (ViT-Small) 

To model higher-level semantic patterns, a Vision Transformer (ViT-Small) with a 

patch size of 16 𝑓𝑠𝑒𝑚 processed the RGB tensor and represented it in Equation 8, 

ℎ𝑠𝑒𝑚 =  𝑓𝑠𝑒𝑚(𝑥𝑟𝑔𝑏) ∈  ℝ𝑑𝑠𝑒𝑚 , 𝑑𝑠𝑒𝑚 = 384. (8) 

Each branch feature was projected into a shared latent space of dimension 𝐷 through 

separate linear layers followed by dropout using Equations 9, 10, and 11, 

𝑡𝑎𝑒𝑠 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑊𝑎𝑒𝑠ℎ𝑎𝑒𝑠 +  𝑏𝑎𝑒𝑠), (9) 

𝑡𝑠𝑝𝑒 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑊𝑠𝑝𝑒ℎ𝑠𝑝𝑒 +  𝑏𝑠𝑝𝑒), (10) 

  𝑡𝑠𝑒𝑚 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑊𝑠𝑒𝑚ℎ𝑠𝑒𝑚 +  𝑏𝑠𝑒𝑚), (11) 

with 𝑡, ∈  ℝ𝐷 and 𝐷 = 256. 
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The LAB channel components were not passed through the Vision Transformer 

primarily because the ViT pretraining itself aims to optimize the RGB semantics. This may 

affect the pretrained semantic consistency. Moreover, the current model maintains a balance 

between the feasibility of deployment and representational complementarity. However, from 

an architectural perspective, a model exploring the benefits of a fully transformer-based 

spectral pathway certainly holds potential. 

3.2.2   Multi-head Self-Attention Fusion 

The three projected features were stacked as a sequence of tokens using Equation 12, 

𝑇 = [

𝑡𝑎𝑒𝑠

𝑡𝑠𝑝𝑒

𝑡𝑠𝑒𝑚

]  ∈  ℝ3 ×𝐷 (12) 

and passed through a multi-head self-attention layer with 𝐻 = 4 heads. For each head 

ℎ, query, key, and value metrics were computed using Equation 13, 

𝑄ℎ = 𝑇𝑊ℎ
𝑄 , 𝐾ℎ =  𝑇𝑊ℎ

𝐾, 𝑉ℎ =  𝑇𝑊ℎ
𝑉 , (13) 

where 𝑑𝑘 = 𝐷/𝐻 is the per-head dimension. The outputs from all heads were 

concatenated and projected using Equation 14, 

𝑀𝐻𝐴(𝑇) = [𝐴𝑡𝑡𝑛1(𝑇)‖… ‖ 𝐴𝑡𝑡𝑛𝐻(𝑇)]𝑊𝑂. (14) 

A dropout layer was applied to obtain the attended tokens 𝑇̂  ∈  ℝ3 ×𝐷. 

3.2.3   Gated Branch Fusion 

The attended tokens were then fused via a learnable gating mechanism that dynamically 

weights the contribution of each branch for every sample using Equation 15. Let, 

𝑇̂ = [

𝑡̂𝑎𝑒𝑠

𝑡̂𝑠𝑝𝑒

𝑡̂𝑠𝑒𝑚

] 𝑡̂𝑖 ∈  ℝ𝐷 . (15) 

The tokens were flattened into a single vector of 𝑢 = 𝑣𝑒𝑐(𝑇̂)  ∈  ℝ3𝐷, used as input to 

a fully connected gating layer 𝑔 =  𝑊𝑔𝑢 +  𝑏𝑔  ∈  ℝ3, 𝛼 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑔), where 𝛼 = (𝛼𝑎𝑒𝑠,

𝛼𝑠𝑝𝑒,   𝛼𝑠𝑒𝑚) are non-negative branch weights satisfying ∑ 𝛼𝑖 = 1𝑖 . The fused representation 

was computed as a convex combination using Equation 16, 

𝑓 =  ∑ 𝛼𝑖

𝑖 ∈{𝑎𝑒𝑠,𝑠𝑝𝑒,𝑠𝑒𝑚}

𝑡̂𝑖 ∈  ℝ𝐷 (16) 

This made it possible to depend more on the LAB branch in cases where color features 

were more prevalent, and vice versa on the semantic branch of the ViT model. In addition, it 

was ensured that the three branches encode complementary, not redundant, features. The 

alignment of the projection and the attention weighting scheme reduces redundancy and allows 

the network to concentrate on the most prevalent modalities of the inputs. Furthermore, issues 
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of collapse in the gates were overcome using SoftMax normalization, regularization, and 

supervised contrastive alignment. 

The fusion mechanism allows the network to dynamically choose which modality has 

more information about each image. When the dominant contamination is discoloration, the 

LAB feature receives more attention. When the degradation of the texture is more emphasized, 

the influence of the RGB feature became more important. For images that are ambigiously 

spoiled, the semantic branch of ViT helps disambiguate. 

3.2.4   Classification and Projection Heads 

The fused representation 𝑓 was passed through a lightweight classifier composed of a 

fully connected layer with ReLU activation and dropout, followed by the final layer as in 

Equations 17 and 18, 

ℎ = 𝑅𝑒𝐿𝑈(𝑊1𝑓 +  𝑏1), (17) 

𝑜 =  𝑊2ℎ +  𝑏2  ∈  ℝ𝐶 , (18) 

where 𝐶 = 8 is the number of spoilage classes. The predicted class probabilities were 

obtained using the SoftMax function as illustrated in Equation 19, 

𝑃𝑐 =  
exp(𝑂𝑐)

∑ exp(𝑂𝑘)𝐶
𝑘=1

(19) 

In parallel, a projection head 𝑔(∙) mapped 𝑓 into a lower-dimensional embedding 𝑧 ∈
 ℝ𝑑𝑝𝑟𝑜𝑗  for supervised contrastive learning as shown in Equation 20, 

𝑧 = 𝑔(𝑓) =  𝑊4𝑅𝑒𝐿𝑈(𝑊3𝑓 +  𝑏3) + 𝑏4,         𝑑𝑝𝑟𝑜𝑗 = 128 (20) 

3.3   Training Objective and Optimization 

3.3.1   Class Weighting and Label 

Class weights 𝑤𝑐 were computed as inverse frequencies over the training set to mitigate 

class imbalance across the eight categories of the image datasets. Equation 21 illustrates the 

computation as let 𝑛𝑐 denote the number of training samples belonging to class 𝑐. The 

unnormalized inverse frequency was 1 𝑛𝑐
⁄ , these values were rescaled to sum to the number of 

classes. 

𝑤𝑐 =  

1
𝑛𝑐

∑
1

𝑛𝑘

𝐶
𝑘=1

 ∙ 𝐶 (21) 

Moreover, to regularize the classifier and reduce overconfidence, label smoothing with 

factor 𝜀 was applied. For the ground-truth class 𝑦 of a sample, the smoothed target distribution 

𝑦̃ was defined as in Equation 22, 

𝑦̃𝑐 =  {
1 −  𝜀,    𝑐 = 𝑦,

𝜀

𝐶 − 1
,    𝑐 ≠ 𝑦

(22) 
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The class-weighted and label-smoothed cross-entropy loss for a sample was computed 

using Equation 23, 

𝐿𝐶𝐸(𝑝, 𝑦̃) =  − ∑ 𝑤𝑐𝑦̃𝑐 log 𝑝𝑐

𝐶

𝑐=1

(23) 

3.3.2   MixUp and CutMix Augmentation 

To further improve generalization under limited data, the model was trained with a 

combination of MixUp and CutMix applied jointly on the RGB and LAB inputs. For a mini-

batch of size 𝐵, a random permutation of indices was sampled, and each pair (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗 ,

𝑦𝑗) was combined. In the MixUp case, inputs and labels were linearly interpolated using 𝑥̃ =

 𝜆𝑥𝑖 + (1 −  𝜆)𝑥𝑗 , 𝑦̃ =  𝑦𝑖 + (1 −  𝜆)𝑦𝑗, 𝜆 ~ 𝐵𝑒𝑡𝑎(𝛼, 𝛼). Since labels are represented as 

integers, the implementation kept two label tensors 𝑦𝑎 and 𝑦𝑏 and the mixing coefficient 𝜆. The 

cross-entropy loss under MixUp was computed using Equation 24, 

𝐿𝑀𝑖𝑥 =  𝜆𝐿𝐶𝐸(𝑝, 𝑦𝑎) + (1 −  𝜆) 𝐿𝐶𝐸(𝑝, 𝑦𝑏) (24) 

In the CutMix case, a random rectangular region was cut from 𝑥𝑖 and replaced by the 

corresponding region from 𝑥𝑗. If the patch covered area ⌈𝑅⌉ and the full image area was 𝐻𝑊, 

the effective mixing coefficient was computed using Equation 25, 

𝜆 = 1 −  
|𝑅|

𝐻𝑊
(25) 

The same mixed loss formulation as above was used, and, in the implementation, each 

batch was randomly assigned to no augmentation, MixUp, or CutMix with equal probability, 

which provides a diverse set of training perturbations. 

3.3.3   Supervised Contrastive Loss 

In addition to cross-entropy, a supervised contrastive loss was imposed on the 

projection embeddings 𝑧 to encourage samples from the same class to cluster together in feature 

space. For a batch of 𝐵 embeddings 𝑧𝑡 and labels 𝑦𝑖, the embeddings were first L2-normalized 

as illustrated in Equation 26. On the other hand, pairwise similarities were computed using the 

dot product scaled by a temperature parameter 𝜏 as shown in Equation 27. For an anchor sample 

𝑖, the set of positive indices was 𝑃(𝑖) = {𝑗 ≠ 𝑖 ∶  𝑦𝑗 =  𝑦𝑖}. The supervised contrastive loss 

[16] for 𝑖 was computed using Equation 28, and the batch loss was the mean over all anchors 

using Equation 29. 

𝑧̂𝑖 =  
𝑧𝑖

‖𝑧𝑖‖2

(26) 

𝑠𝑖𝑗 =  
𝑧̂𝑖

Τ 𝑧̂𝑗

𝜏
(27) 

ℓ𝑖 =  
1

|𝑃(𝑖)|
 ∑ log

exp(𝑠𝑖𝑝)

∑ exp(𝑠𝑖𝑎)𝑎 ≠𝑖
𝑝 ∈𝑃(𝑖)

(28) 
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𝐿𝑆𝑢𝑝𝐶𝑜𝑛 =  
1

𝐵
∑ ℓ𝑖

𝐵

𝑖=1

(29) 

3.3.4   Total Loss and Optimization 

During the training, the model received two forward passes per batch, an unmixed pass 

for the contrastive loss and a mixed pass for the cross-entropy loss under the MixUp and 

CutMix. The parameters of all branches and fusion layers were optimized using Adam with a 

learning rate of 𝜂 =  10−4 and a weight decay of 10−4, and cosine annealing scheduler 

gradually decreased the learning rate over 30 epochs. 

3.3.5   Training Algorithm 

Algorithm 1: DASS-Net Hybrid Training Protocol 

Input: 

Dataset D = { (x_i, y_i) }_{i=1..N}            # images x, labels y 

Hyperparameters: 

    epochs = E 

    batch_size = B 

    lr (initial learning rate) 

    weight_decay 

    IMG_SIZE, RANDOM_SEED 

    use_mixup_cutmix (bool), alpha_mix, alpha_cut 

    supcon_temperature, supcon_lambda 

Model components: 

    model θ = DASSNetHybrid3Branch(...)         # returns (logits, fused, z_proj) 

    optimizer = AdamW(θ, lr, weight_decay) 

    scheduler = CosineAnnealingLR(optimizer, T_max=E) 

    criterion = CrossEntropyLoss(weight=class_weights, label_smoothing=λ_smooth) 

Output: 

 Trained model θ* (parameters saved at best validation accuracy) 

  History H with per-epoch metrics (train/val loss, train/val acc, lr) 

Helper functions: 

  Mixup/CutMix(rgb, lab, targets, α_mix, α_cut) -> (rgb_m, lab_m, y_a, y_b, λ, aug_type) 

  MixupCriterion(criterion, preds, y_a, y_b, λ) -> mixed_ce_loss 

  SupervisedContrastiveLoss(z, labels, temperature) -> con_loss 

  Evaluate(model, loader) -> (loss, acc)      # no-grad eval 

Procedure: 

1. Initialize random seeds and device (CPU/GPU). 

2. Build dataset splits: train_loader, val_loader, test_loader. 

3. Compute class_weights from train set and move to device. 

4. Initialize model θ on device, optimizer, scheduler, criterion. 

5. best_val_acc ← 0.0 

6. For epoch = 1 to E: 

     6.1 Set model to train mode. 

     6.2 Initialize accumulators: train_loss=0, train_correct=0, total=0. 

     6.3 For each batch (rgb, lab, labels) in train_loader: 

           - Move data to device. 
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           - optimizer.zero_grad() 

           - Forward clean: logits_clean, fused_clean, z_clean = model(rgb, lab) 

           - Apply data-mix augmentation: 

               rgb_m, lab_m, y_a, y_b, λ, aug_type = Mixup/CutMix(rgb, lab, labels) 

             Forward mixed: logits_mixed, _, _ = model(rgb_m, lab_m) 

           - Compute classification loss: 

               if λ == 1.0: 

                   ce_loss = criterion(logits_mixed, y_a) 

               else: 

                   ce_loss = MixupCriterion(criterion, logits_mixed, y_a, y_b, λ) 

           - Compute contrastive loss on clean embeddings: 

               con_loss = SupervisedContrastiveLoss(z_clean, labels, supcon_temperature) 

           - Total batch loss: 

               loss = ce_loss + supcon_lambda * con_loss 

           - Backpropagate: loss.backward(); optimizer.step() 

           - Update running counters using logits_clean predictions: 

               preds = argmax(logits_clean, dim=1) 

               train_loss += loss.item() * batch_size 

               train_correct += sum(preds == labels) 

               total += batch_size 

     6.4 Compute epoch-level train_loss /= total; train_acc = train_correct / total 

     6.5 Set model to eval mode. 

     6.6 Evaluate on val_loader without mix augmentation: 

           val_loss, val_acc = Evaluate(model, val_loader) 

     6.7 scheduler.step(); record lr 

     6.8 Save epoch metrics to H. 

     6.9 If val_acc > best_val_acc: 

           best_val_acc ← val_acc 

           save model weights θ* = θ (checkpoint) 

7. End For 

8. Load θ* (best model), then compute final test metrics: test_acc, f1, confusion matrix, per-

class reports, Grad-CAM, failure case visualizations, ablation tables, cross-validation results. 

The training procedure involved a two-step per epoch process: (i) a training step, in 

which the model parameters were optimized using a combined classification loss and 

supervised contrastive loss, and (ii) an evaluation step used for model selection. During the 

training procedure, the model essentially went through the mini-batches twice conceptually: (i) 

first, to compute the clean embeddings required by the supervised contrastive loss, and (ii) 

second, by traversing the augmented data to compute the cross-entropy loss and a scaled 

supervised contrastive loss. Additionally, during this specific setup, the data augmentation is 

considered probabilistic, and the contribution from MixUp/CutMix is addressed by using the 

correct mixed-label loss. Following every epoch, the model is evaluated on the clean validation 

set without mixing to compute the validation loss and accuracy. The learning rate is then 

updated using a cosine annealing scheduler within each epoch, and the model parameters that 

performed best on the validation accuracy will be checkpointed for final testing. 
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3.4   Evaluation Protocol 

3.4.1   Performance Metrics 

After training, the model was evaluated on the hold-out test set. For each test image, the 

predicted class 𝑦̂ was obtained as the index of the maximum logit. Overall accuracy was defined 

as in Equation 30, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

𝑁𝑡𝑒𝑠𝑡
 ∑ 1[𝑦̂𝑖 =  𝑦𝑖]

𝑁𝑡𝑒𝑠𝑡

𝑖=1

(30) 

where 1[∙] is the indicator function. In addition, per-class precision, recall, and F1-score 

were computed from the confusion counts. For every class, true positives (TP), false positives 

(FP), and false negatives (FN) were derived from the confusion matrix. The metrics were then 

computed using Equation 31, Equation 32, and Equation 33.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 =  
𝑇𝑃𝑐

𝑇𝑃𝑐 +  𝐹𝑃𝑐

(31) 

𝑅𝑒𝑐𝑎𝑙𝑙𝑐 =  
𝑇𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑁𝑐

(32) 

𝐹1𝑐 =  
2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐𝑅𝑒𝑐𝑎𝑙𝑙𝑐

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 +  𝑅𝑒𝑐𝑎𝑙𝑙𝑐

(33) 

Macro-F1 was obtained as the unweighted average of 𝐹1𝑐 across classes, while 

weighted-F1 weighted each 𝐹1𝑐 by its class support. Moreover, the confusion matrix was also 

used to summarize the number of predictions in each true-predicted pair. The row-normalized 

version was also reported by dividing each row by its sum. 

3.4.2   Safety-Critical Error Analysis 

Considering that misclassifying spoiled food as fresh has more severe consequences 

than the reverse, a safety-oriented metric was defined. Let indices 0 − 3 denote fresh classes 

and 4 − 7 spoiled classes; the total number of spoiled samples in the test set was defined as in 

Equation 34. The number of spoiled items incorrectly predicted as fresh was computed using 

Equation 35, and the spoiled-as-fresh rate was then computed using Equation 36. This metric 

directly quantifies the risk of unsafe recommendations in hospitality operations.  

𝑁𝑠𝑝𝑜𝑖𝑙𝑒𝑑 =  ∑ ∑ 𝐶𝑖𝑗

7

𝑗=0

7

𝑖=4

(34) 

𝑁𝑠𝑝𝑜𝑖𝑙𝑒𝑑 →𝑓𝑟𝑒𝑠ℎ =  ∑ ∑ 𝐶𝑖𝑗

7

𝑗=0

7

𝑖=4

(35) 

𝑟𝑠𝑝𝑜𝑖𝑙𝑒𝑑 →𝑓𝑟𝑒𝑠ℎ =  
𝑁𝑠𝑝𝑜𝑖𝑙𝑒𝑑 →𝑓𝑟𝑒𝑠ℎ

𝑁𝑠𝑝𝑜𝑖𝑙𝑒𝑑

(36) 
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3.4.3   Ablation Experiments 

Since the impact of incorrectly labeling spoiled food as fresh food would result in more 

severe outcomes compared to the opposite action, a safety-minded measure was developed. 

Where the indices from 0-3 indicated the fresh categories and from 4-7 indicated the spoiled 

categories, the total number of spoiled examples from the testing set was stated in Equation 34. 

The number of spoiled items labeled incorrectly as fresh food was stated in Equation 35; then 

the rate of spoiled items labeled as fresh food was stated in Equation 36.  

3.4.4   Explainability and Failure-Case Analysis 

In this study, qualitative analysis was performed using gradient-weighted class 

activation maps (Grad-CAM) on both the RGB and LAB branches to visualize the spatial 

regions that contributed most to spoilage predictions. For each selected image and target class 

𝑐1 Grad-CAM computed the importance weights 𝛼𝑘
𝑐  of feature maps 𝐴𝑘 in the last convolutional 

layer and a generated heatmap using Equation 37, 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈 (∑ 𝛼𝑘

𝑐

𝑘

𝐴𝑘) (37) 

which was upsampled and overlaid on the input image. These visualizations highlighted 

mold spots, discoloration, and texture changes that the model relied on. In addition, 

misclassified cases were categorized into fresh-to-spoiled and spoiled-to-fresh errors and 

inspected manually to understand systematic failure modes, such as naturally browned but safe 

items or very subtle spoilage patterns.  

 Results and Discussion 

The final section of this paper provides the outcome of the empirical assessment of the 

proposed hybrid DASS-Net model when applied to image-based classification problems in 

food spoilage. It includes the model's performance during training, the ablation study, 

performance on each class, confusion matrices, explanation visuals, and failure case analyses. 

The proposed model was tested using an open-source dataset retrieved from the official Kaggle 

platform [17] for eight different classes that involved fresh and spoiled products of bread, dairy 

products, fruits, and vegetables. The entire experimental setup was carried out by employing 

Python version 3.10.5 in the Jupyter Notebook environment, along with an NVIDIA GeForce 

RTX 3050 graphics card, an AMD Ryzen 5 processor, and 16 GB of RAM.  

4.1   Training and Validation Performance 

Figure 2(a) depicts the training and validation accuracy over the epochs. The accuracy 

of the validation data for the Hybrid DASS-Net model rose from 65.17% in Epoch 1 to 94.33% 

in the final epoch, thereby ensuring a smooth convergence process. As the optimization was 

smooth with no signs of overfitting, the training accuracy began to increase. Figure 2(b) depicts 

the loss for training and validation. As both the training and validation loss reach convergence 

at around Epoch 15, it is evident that the stability in accuracy is appropriate, thereby avoiding 

overfitting. According to a previous study, in the context of analyzing food images, using 

contrast regularization helps ensure the compactness of features and separation of classes [18]. 
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(a)                                                                       (b) 

Figure 2. Training and Validation Performance of the Proposed DASS-Net Model. (a) 

is the Training and Validation Accuracy, and (b) is the Training and Validation Loss 

4.2   Ablation Study 

The ablation study compares three model variants: (i) RGB-Only ResNet-18, (ii) LAB-

Only ResNet-18, and (iii) the proposed Hybrid DASS-Net. 

4.2.1   Quantitative Ablation Metrics  

Table 2. Ablation Performance Comparison Across RGB-Only, LAB-Only, and 

Hybrid DASS-Net 

Model Val Accuracy Macro-F1 Weighted F1 Spoiled-as-fresh rate 

RGB-Only ResNet18 71.15 70.80 70.75 28.44 

LAB-Only ResNet18 68.50 68.41 68.48 30.28 

Hybrid DASS-Net 94.33 94.00 94.00 13.30 

Table 2 summarizes the performance of three model variants based on their validation 

accuracy, macro F1-score, weighted F1-score, and spoiled-as-fresh error rate. Based on the 

results, the Hybrid DASS-Net tended to outperform both baseline models in every metric. With 

a weighted F1 of 94%, and a macro F1-score of 94%, the hybrid DASS-Net model generated 

the lowest safety-critical error rate of 13.30%. Moreover, this improvement also highlights the 

advantages of representation fusion across various dimensions, from spectral (LAB) to 

semantic (ViT), and further to aesthetic (RGB). This is supported by previous studies indicating 

that RGB frequently fails to detect minute discoloration signs that are captured by the LAB 

color space. Additionally, substantial global context awareness provided by the Vision 

Transformers generated improved spoiled detection when both are combined. 

From the ablation results, the removal of individual elements of the framework tends to 

result in performance degradation, suggesting that the proposed branches and learning elements 

are complementary rather than mere duplications of already existing capacities. Consistent with 
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the Grad-CAM and interpretive analyses, it follows that the contribution of the RGB pathway 

tends to be sensitive to the visible surface, that the LAB pathway facilitates the understanding 

of the spectra, and that the ViT pathways help in the case of visible ambiguities. While the 

current scope does not allow for a full factor-isolation analysis, further research may explore 

larger-scale controlled ablation on larger datasets for even more refined contribution 

attribution.  

4.3   Per-Class Evaluation Metrics 

 

Figure 3. Per-Class Precision, Recall, and F1-Score of the RGB-only Model Variant 

 

Figure 4. Per-Class Precision, Recall, and F1-Score of the LAB-only Model Variant 

 

Figure 5. Per-class Precision, Recall, and F1-Score of the Proposed DASS-Net Model 
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Figure 3 above depicts the precision, recall, and F1-score for each class based on the 

RGB-Only model variant. From Figure 3, it can be seen that the model has a very low F1-score 

of 61% and 57% for both fresh dairy products and vegetables, respectively, in detecting 

spoilage. This serves as an indication that it is not very straightforward or easy to identify 

discoloration through observation of the RGB channel alone in both dairy products and 

vegetables. 

Figure 4 below highlights the precision, recall, and F1-score of each class in the LAB-

Only model variant. Based on the obtained results, it is safe to state that the LAB-Only branch 

did not perform well with the classes containing dairy products relative to the fruits and 

vegetables. The assertion that the LAB space enhances spectral sensitivity but lacks semantic 

understanding is indeed valid, as it is demonstrated in the transformer. 

Figure 5 above shows the precision, recall, and F1 score per class attained using the 

proposed hybrid DASS-Net model. Clearly, the DASS-Net has recorded the highest scores in 

all classes. Spoiled classes have also attained excellent F1-scores, including 94% for spoiled 

bread, 92% for spoiled dairy, 95% for spoiled fruits, and 92% for spoiled vegetables. This 

indicates that the multi-branch fusion has managed to overcome the ambiguity in the classes, 

thereby improving the identification of superficial defects. 

4.4   Confusion Matrix 

 

 

 

 

 

 

 

 

 

Figure 6. Confusion Matrix of the Proposed Hybrid DASS-Net Model 

Figure 6 depicts the confusion matrix of the proposed hybrid model, DASS-Net. The 

findings indicate that the model was able to accurately categorize most of the images in both 

fresh and spoiled categories without much confusion. It can be seen from Figure 6a above that 

in the counts and fresh bread categorization, the model accurately categorized 29 images as 

fresh, while only 2 were confused with fresh dairy and fresh fruits. However, unlike in counts 

and fresh bread, fresh dairy showed moderate confusion in the spoiled dairy, spoiled fruits, and 

spoiled vegetables categories. In the spoiled categories, the model was able to accurately 

categorize more than 60 images, while some were confused in their prediction, particularly in 

spoiled dairy, which was confused with the fresh dairy category. Most of the images were along 

the diagonal, which explains the model’s performance. The model was able to accurately 

categorize most images in the spoiled categories, particularly in spoiled bread (45), spoiled 

(a) (b) 
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dairy (48), spoiled fruits (40), and spoiled vegetables (63). However, some images were 

confused in the spoiled dairy category, which was classified into the fresh dairy category.  

On the other hand, the normalized confusion matrix is presented in Figure 6(b). The 

results shows high precision and recall scores of <90% for fresh bread, fresh fruits, spoiled 

fruits, and spoiled vegetables. There is moderate confusion in dairy classes for fresh dairy to 

spoiled dairy (0.16) and spoiled dairy to fresh dairy (0.17). The results imply that dairy-related 

foods are the most visually ambiguous category. According to a previous study [21], it is hard 

to detect early-stage spoilage of dairy-related foods only by vision as, they usually present 

subtle discoloration and/or texture changes.  

The results confirm the effectiveness of multi-branch fusion, in accordance with reports 

that the combination of RGB-spectral-semantic modalities improves food-quality prediction 

tasks [22]. Another finding is that dairy, whether fresh or spoiled, is the most difficult class to 

recognize and is misclassified at rates between 10 and 17% in both matrices. According to Nur 

et al. (2024), early spoilage of dairy products often involves micro-texture changes or very 

slight discoloration that may not be strongly reflected in RGB. Moreover, cheese and milk-

based foods bring intra-class confusion because they naturally vary in hue, and dairy surfaces 

can reflect light irregularly [24], thus causing modeling difficulties in both RGB and LAB 

spaces. 

This problem is very meaningful to hotel and restaurant operations, as serving spoiled 

dairy can lead to gastrointestinal illness. Therefore, misclassifying some spoiled items as fresh, 

particularly in dairy, is a major concern. Even a small misclassification rate may imply high 

operational risk in food-safety contexts. Additionally, minimizing false negatives (spoiled to 

fresh) is more important than maximizing accuracy [25]. Even though it is balanced, reality has 

cases of spoilage rarity. To mitigate this problem, it is necessary to introduce what is referred 

to as "spoiled-as-fresh" safety, which will provide valuable information on high-risk, rather 

than accuracy, cases of spoilage. 

4.5   Grad-CAM Visualization 

 

 

 

 

 

 

 

 

Figure 7. RGB-Branch Grad-CAM Visualization 
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Figure 8. LAB-Branch Grad-CAM Visualization 

Figures 7 and 8 show the results obtained from the RGB and LAB branches regarding 

attribute interpretation in both fine-tuned Grad-CAM models. As observed from Figure 7, the 

Grad-CAM model in the RGB branch emphasized defects such as texture degradation, spots 

from mold growth, and some irregularities in food surfaces, whereas in the LAB branch Grad-

CAM, emphasized discolored regions due to early browning or chromatic redistribution that 

are not visible in the original images in RGB domain. Activation maps from both multiple 

branch approaches justify that each branch has provided complementary information through 

unique activation maps. This supports the theoretical strength in fusing multiple features in one 

[26]. Moreover, both targeted areas in images could benefit from global attention in the ViT 

architecture, which has also assisted in recognizing BC in boundary-sensitive regions, as well 

as classifying them into either spoilage or natural variations in color in food images. 

Experiments demonstrate that ViTs are effective in non-local interactions between features in 

tasks such as image processing [27], which is attributed to better performance over purely 

CNN-based architectures in our project. 

4.6   Failure Case Analysis 

Figure 9 highlights samples that were misclassified as being spoiled or fresh. The 

number of spoiled samples predicted to be fresh was 32, and the number of fresh samples 

predicted to be spoiled was 39. The misrepresentation of spoiled samples as fresh samples 

usually occurs when the growth rate of mold is low. This is combined with lighting that 

suppresses the appearance of color. The samples that were misclassified as spoiled likely 

contained strong shadows and glare from the cameras, resulting in false color degradation. In 

contrast, the samples misclassified as fresh were those that contained natural variations in color. 

This was expected, as natural variation makes visual inspection difficult. The low percentage 

(13.30%) rate of misrepresentation from the spoiled to the fresh class proves that the model is 

reliable. 

 The identified failure instances have also provided insights into the performance of the 

tested model under challenging visual conditions. As previously mentioned, some instances of 

the "spoiled-as-fresh" failure occurred when discoloration visibility was masked by lighting 

conditions, causing only partial surface discoloration to be noticed. The "fresh-as-spoiled" 

failure instances related to shadow and glare were linked to surface color ambiguities. To 

complement the identified instances, insights from the Grad-CAM tasks highlighted concerns 

with the LAB approach in understanding the spectral discoloration pattern, while the approach 
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of the ViT block focused on comprehending the entire context of challenging visual instances. 

Although the study does not examine the weighted dynamics of the fusion approach 

quantitatively, it indicates that the approach might be beneficial across different modalities 

under distinct lighting conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Failure Cases of DASS-Net (Misclassified Samples) 

In this particular study, the procedure of color conversion and normalization in the LAB 

color space functioned properly in a real-world setting, and no instability issues in performance 

calculations were observed during the experiments. However, a specific sensitivity analysis of 

the normalization procedure in relation to calibration may be of significant interest from a 

future perspective.  

 Conclusion 

The objective of the study was the development of the DASS-Net Multi-Branch Neural 

Net Approach. The neural net would be able to classify images of food spoilage into the eight 

categories used in the spoiled and fresh image datasets. The study concluded that the approach 

led to an accuracy of 94.33% for the validation set. The approach was better compared to the 

single-stream approaches regarding accuracy and safety. The study has relevance because it 

introduced an adaptive approach to fusion that implemented multiple features of the models. 

The study presented new approaches that could be applied during the development of the neural 

nets, including the application of the SupCon approach. The study has played a significant role 

because it demonstrated the application of safety-critical approaches, specifically the dual 

Grad-CAM. The study was able to consider the rate of spoilage of food products once they 

were fresh. The study also has practical implications because it deals with the application of 

smart kitchen systems and hotels. For future research, both multispectral and hyperspectral 
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imaging can be combined to indicate biochemical indicators of spoilage not apparent in either 

RGB or LAB images. The proposed system can be expanded to apply real-time video 

monitoring involving light transformer architecture systems. Additionally, more varieties of 

food could be introduced to enhance robustness across various hospitality settings. 
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