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Abstract

Food freshness and food safety in the hospitality industry are, to date, mainly dependent
on visual observation, where human visual interpretation does not always successfully identify
the less obvious signs of early food spoilage. In this work, we introduce DASS-Net, a novel
hybrid deep network with a trilinear structure and three separate task-focused branches: (1) the
RGB aesthetic branch, (2) the LAB spectral branch, and (3) the Vision Transformer ViT-Small
semantic branch, used together for simultaneous analysis of food image-based texture
degradation, color deviation, and overall food image-related semantic dependencies on a global
scale. Each of the network's task-focused branches projects its outputs to a unitary latent space
and further refines them with multi-head attention and adaptive joint processing with a
learnable gated fusion module. To train DASS-Net, a dual-objective training approach with
class-weighted and smoothed Cross-Entropy loss and Contrastive Learning with MixUp and
CutMix data augmentations is used. Eight-class classification experiments on fresh and spoiled
food samples of bread, dairy products, fruits, and vegetables are conducted to evaluate the
performance of DASS-Net, providing a validation accuracy of 94.33%, which demonstrates a
23.18% and 25.83% relative improvement over ResNet-18 with LAB and RGB visual channels,
respectively. Additionally, the classification model yielded a minimum misclassification rate
of 13.30% for spoiled items identified as fresh, which clearly marks an important characteristic
related to safety issues. The complementarity between the spectral and aesthetic features has
also been proven by the Grad-CAM visualizations of the dual-branch network, where the most
confusion occurs in the case of dairy products with negligible surface decay, as revealed by the
analysis of failure cases. The results explicitly confirm that the developed DASS-Net delivers
a safe, efficient, and scalable vision solution applicable to kitchen intelligence and hospitality
control scenarios.
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1. Introduction

Presentation and quality of the food are considered two of the most critical aspects of
the beliefs and expectations of hotels and restaurants since appearance can be taken as a vital
indicator of food quality. Today, some hotel and restaurant guests judge food quality by sight,
taste, or by reading its description. Regarding this, early spoilage identification has introduced
a new factor in the hotel environment where food safety, presentation, and service excellence
are combined in one place beyond functional requirements. This also safeguards consumer
satisfaction, prevents food-borne diseases, and protects reputation [2]. Therefore, the ability to
precisely and reliably assess the freshness of food is key to managing good hospitality service.

Traditional methods in hotels and restaurants include the use of human senses for
spoilage detection in an extremely manual process for inferring whether foods are safe for
human consumption. Food inspection for spoilage, color, texture, wetness, or damage to the
surface of foods is conducted by chefs and hotel/restaurant kitchen staff. To a great extent,
though, such methods have been very valuable, they are extremely prone to errors and depend
on the personal skill level of the individual involved in conducting such processes [3]. This is
especially important for restaurants where numerous ingredients are handled within a single
day. In this way, such inspections would be inaccurate. In addition, low skill levels of staff, the
amount of workload, and environmental factors could induce risks of minor initial signs being
missed.

As more diversity emerges in food production in hotels, requiring more time sensitivity,
it is even more apparent that there is a limitation in the process of merely observing it food
through visual and manual means. Typically, this occurs in buffet meals, fast turnaround diets,
and round-the-clock operations. Industry accounts indicate that developing, would-be spoilage,
commonly referred to as those changing gradually on a continuum, often escapes detection
during conventional hotel checks [4]. Since early warning signs of spoilage are not picked up,
greater risks of lowering customer satisfaction, degrading food quality, accelerating hotel food
waste, and even non-compliance with food safety standards readily emerge [5]. Consequently,
there is an urgent need for creating a mechanism that can be scaled up, is objective, and
automatic, hence assisting hotel personnel in making determinations regarding food freshness.

With the latest developments in computer vision, various machine learning and image-
processing-based techniques have been demonstrated to be effective for certain food safety
applications and automating food quality assessment. One of the techniques that showed very
strong potential in the detection of spoilage across a wide range of food categories is the
Convolutional Neural Network (CNN). CNNs learn complex spatial and colour-based patterns
directly from raw images without requiring manual feature engineering. They also
automatically learn hierarchical visual features, such as browning, textual degradation, and
surface irregularities. These developments show that automated systems can exceed the
consistency of manual inspections traditionally performed by kitchen staff.

Moreover, many previous studies from relevant areas, such as computer vision and food
science, have examined various hand-crafted features like color histograms, signatures, or
textures to represent visible changes associated with food spoilage [7]. Typically, they aim to
examine each component of food deterioration in particular, such as dehydration processes,
enzymatic browning, and bacterial growth. Although highly efficient in respective tasks, low-
level spectral feature-based approaches overlook more general aesthetic image characteristics
within food items, possibly including sharpness, color balance correction, believability of
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depicted food composition on the plate, light reflections, and symmetry of depiction [8]. It
appears that these characteristics are precisely what professional kitchen inspectors typically
focus on during real-life tasks. A joint and rather tight focus on them provides a very low ability
to detect the initial stages of food decomposition processes that attempt to impair the overall
visual representation of food items, rather than merely discolored decay and mushrooms.

However, owing to this recent innovation in computer vision, several learning
algorithms, along with various processes in images, have been identified as having the capacity
to effectively and efficiently fulfill the duties of food safety and conduct food quality analysis.
Among these identified processes that can assess food spoilage across all forms of food are
Convolutional Neural Networks. These networks have been shown to have the ability to learn
patterns across raw images, including browning and textural damage, which must be identified
manually by personnel in the kitchen.

Models of aesthetic image analysis have developed methods capable of estimating the
aesthetic quality of images based on composition, clarity, harmony, and stylistic properties [9].
Though such techniques are commonly employed in photography, social media content
assessment, and automated visual scoring, they have not been comprehensively utilized in food
quality and safety evaluation. In addition, a combination of aesthetic analysis and spectral
analysis would greatly improve the sensitivity of detecting aesthetic properties, which decrease
over time and indicate the early stages of food deterioration through reduced brightness, blurred
edges, skewed color distribution, and reduced gloss.

The vast majority of existing work on food spoilage classification models involves
single-stream architectures that discern either spectral information or textural characteristics
separately. There has also been a lack of consideration for the benefits that can be gained from
combining various visual aspects into one model. Existing work has not attempted to focus on
the combination of aesthetic information and spectral characteristics involved in judging the
freshness of foods, despite indications that both aspects can be perceived manually and
automatically.

Moreover, most of these studies are more interested in applying these concepts in
agricultural, industrial, or retail supply. However, relatively little research is currently being
done on applying these concepts to food spoilage classification, wherein food safety and food
quality are given equal importance.

1.1 Objectives of the Study

This research aims to propose and assess the effectiveness of a hybrid multi-branch
deep learning approach that has the ability to perform accurate classification tasks of food
spoilage from images within the hotel industry.

This research is keen on exploring the following aspects:

o Designing an aesthetic-spectral feature MAB with multiple branches, including the
extraction of complementary features of an image within both RGB space and
LAB.

o Adding a semantic Transformer branch to improve the perception of high-level
patterns of spoilage.
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o Applying the multi-head attention mechanism and gated fusion strategy for the
optimal fusion of feature representations from the branches.

o Applying supervised contrastive learning to improve the separation between
classes.

o Comparing the hybrid model with the model based on just RGB and with the model
based on just LAB through an ablation study.

o Recommending a suitable model by taking into account accuracy, F1 scores,
confusion matrices, and other performance indicators related to errors concerning
spoiled-as-fresh products.

e Producing Grad-CAM attributions and studying failure cases to increase model
interpretability.

1.2 Key Contributions

o The study presents a new hybrid model that combines RGB aesthetic features, LAB
spectral cues, and high-level semantic representations using a Vision Transformer
(ViT) branch. This design uses complementary information across color spaces and
transformer-based context modeling. It creates a better feature extractor for
detecting food spoilage.

o DASS-Net employs dynamic multi-head attention and a gated fusion mechanism
to dynamically adjust the reliance on RGB, LAB, and transformer features for each
input. This helps the model remain reliable even when lighting, textures, or food
surfaces change, which often causes problems for single-stream CNNss.

o The model integrates Supervised Contrastive Learning (SupCon) to strengthen
inter-class boundaries and reduce confusion between visually similar spoiled and
fresh items. Moreover, the combined use of MixUp and CutMix across multi-
branch inputs enhances regularization and improves generalization for limited
datasets in hospitality settings.

o Dual-stream Grad-CAM visualization shows how the RGB and LAB branches
focus on different signs of spoilage. The paper also introduces a safety-critical
metric called the “spoiled-as-fresh rate” to measure high-risk misclassifications,
which goes beyond accuracy and helps hotels and restaurants use the system safely.

o Enhances food safety and operational reliability to prevent both foodborne risks
and unnecessary waste.

o Provides an automated, scalable, and deployment-ready vision-based system that
supports high-volume hotel and restaurant workflows, offering continuous quality
monitoring suitable for modern hospitality environments and smart kitchen
platforms.
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2. Related Work

Previous works on food spoilage detection show several methodological and practical
limitations. These limitations pose challenges in practical applications in hospitality and
kitchen environments. Most studies rely on single-stream CNNs using RGB images. However,
RGB alone is insufficient since early spoilage involves subtle spectral shifts not visible in RGB,
and different foods exhibit naturally varied colors that mask discolorations. Moreover, texture
and moisture changes are not captured well by RGB-only models. Furthermore, there is limited
use of alternative color spaces despite proven spectral advantages. Although few works have
explored LAB and HSV features, LAB is rarely fused with deep learning architectures. Also,
past color-space methods lacked robust model fusion, and spectral cues were used in isolation
and did not combine with RGB or transformers.

Moreover, the majority of the studies have reported model accuracy only, such as
validation, precision, recall, and F1-score; however, safety-critical errors, such as the spoiled-
as-fresh rate, are not commonly considered. Correspondingly, real-world kitchens have varied
lighting and backgrounds, whereas prior models often use clean datasets with controlled
conditions, focusing only on fruit or milk-specific datasets, and have limited variation in
illumination and noise. This reduces generalizability when applied to busy hotel kitchens. On
the other hand, existing models treat samples independently and lack global reasoning. CNNs
perform well at local features; however, they struggle with global relationships such as color
gradients across the whole food surface. Similarly, they also struggle with structural changes
and fine-grained decay progression.

No prior work integrates aesthetic cues (RGB), spectral cues (LAB), and high-level
semantic representations (transformer-based models) into a unified architecture designed
specifically for food safety applications. Additionally, advanced strategies such as MixUp,
CutMix augmentation, and supervised contrastive learning are rarely used in food spoilage
research despite their proven ability to improve robustness under varied lighting, texture, and
surface conditions. Thus, the proposed Dual-Aesthetic-Spectral-Semantic Network (DASS-
Net) uniquely integrates multi-modal visual cues, transformer-based semantic understanding,
dynamic fusion mechanisms, and risk-centered evaluation to overcome the limitations of
existing methods. Table 1 summarizes key studies on food spoilage and quality detection that
outline their methods, performance, and limitations.

Table 1. Summary of Related Work on Food Spoilage Classification

Author(s) Method Performance Limitation

[10] CNN-based mould F1-score of Exclusion of problematic images
detection of bread 0.9948 and datasets was taken on
microscopic images controlled imaging conditions.

Basic data augmentation was
applied.

[11] Detection of mould on Precision Signs of overfitting. Trained only
Food Surface using (98.10%), on heterogeneous images of
YOLOvS Recall (100%), | surface-level mold and may not

Average generalize to diverse food types,
Precision imaging conditions, and early-
(99.60%) stage/low-visibility mold.

ISSN: 2582-4252 1486



Randy O. Descarten, Jasten Keneth D. Treceiie

[12] Near-infrared R?=280.61% Processed meat varies in color, and
Hyperspectral Imaging in there are limited dataset types. The
detecting spoilage in study shows that color-based
sausage spoilage detection is feasible, but

limited.

[13] Least-Squares Support R%?=91.50% Complex equipment and model.
Vector Machines There is a need for a lightweight
(LSSVM), Competitive and camera-based approach that is
Adaptive Reweighted more practical for kitchens and
Sampling (CARS), and restaurants.

Interval Variable Iterative
Shrinkage Approach
(iVISSA) for Tan sheep
using Hyperspectral
Imaging

[14] ResNet-50 for fruit decay | Validation Struggles with partially spoiled
detection Accuracy fruits and varying backgrounds

(98.89%)

[15] Naive-Bayes Classifier Validation Dairy shows subtle texture changes.

for Milk Spoilage Accuracy No safety-focused metrics.
(92.2%)

3. Proposed Work
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Figure 1. DASS-Net Architecture

As shown in Figure 1, the architecture of the DASS-Net used in the current study
focuses mainly on the classification of food spoilage from images. The DASS-Net takes an
RGB image as input, which then undergoes a resizing process; the normalized image is copied
into the RGB stream and the LAB conversion of the spectral stream, with the original RGB
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image proceeding to the semantic branches as well. The goal of the semantic branches of the
ResNet-18 focuses on the texture/aesthetic surface, while the LAB branches also seek to find
the spectral color discolorations/degradation. An additional goal of the Vision Transformer
focuses on the global semantic context as well as the spoilage phenomena that are unclear to
human visual observation. The three obtained features are then unified into a latent space; this
space is improved by multi-head attention and adaptive fusion using the gated fusion module,
with the outcome proceeding to the fully connected classifier head, which produces the final
genre with the Softmax output. Grad-CAM visualizations provide explanations for the
network's ability to perform balanced augmentation techniques and contrastive supervised
learning during training.

3.1 Dataset and Pre-processing

3.1.1 Data Organization and Stratified Splitting

In this study, the eight marked classes of fresh and spoiled varieties are used as the
dataset. The Fresh and Spoiled Food Image Dataset, from which the dataset for this study was
acquired,can be found at the Kaggle repository [17]. In this dataset, the images of food from
hotels in eight classes are in the RGB range,

C
= {freshyreqa, freShdairy' freShfruits; freShvegetablesr spoiledpreqa, SPOileddairy' SPOiledfruits'
Spmledvegetables}

Each class was kept in a separate directory, and the images inherited the label of the
directory. Let N, be the number of images belonging to class ¢ € C. Further, a stratified split
per class was done using a fixed random seed so that the empirical class distribution was
preserved across the training, validation, and test sets. For each class, 70% of the images went
into the training set, 15% went to the validation set, and 15% into the test set. Next, the three
subsets were independently shuffled in order to avoid any ordering bias. Before data splitting,
the directory labels were manually inspected to minimize inconsistencies in the annotation.
Again, stratified sampling with a fixed random seed preserved class distribution, while shuffled
partitioning reduced the chances of temporal ordering leakage.

3.1.2 Image Pre-processing and Augmentation

All images went through a combined transformation step in a jointly learned
augmentation graph equal for the RGB and LAB channels. The training transformation T train
was a combination of the following: (i) resizing the shorter side to a maximum of 1.1 x 224
pixels, (i1) applying a RandomResizeCrop of size 224 x 224 with a scale in [0.7, 1.0] and an
aspect ratio in [0.9, 1.1], (ii1) randomized horizontal flipping with respect to a 0.5 probability,
(iv) randomized rotation in the range of [-20°, 20°], (v) Color Jittering for brightness, contrast,
saturation, and hue, (vi) applying a Gaussian blur, (vii) auto-contrast, and (viii) applying
random grayscaling. While training and evaluating the model, another transformation was used
to resize the images to a fixed size of 224 x 224 to avoid any randomness in model testing and
training. The fixed size was a trade-off between the representation and efficiency of the model.
The model followed the standard ImageNet model practice on input size to maintain efficiency
and representation balance. After augmentation, each image I' € [0.255]7*W*3 was
converted to a floating-point tensor x™92 € R3*224%224 and normalized using the standard
ImageNet statistics, using Equation 1,
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I,C(ui U) _
C
X109 (u,v) = 25 ¢ (1

O¢
u = (0.485,0.456,0.406),
o = (0.229,0.224,0.225).

The Random Erasing operation (with a probability of 0.25) was introduced in the RGB
tensor by overlaying rectangles with randomly selected pixels, which greatly assisted in
enhancing robustness to occlusions and missing information. The thought process behind this
design decision was that greater emphasis was placed on maintaining color integrity by
employing the Random Erasing operation selectively on the input RGB images, which aimed
to simulate a realistic occlusion scenario.

The values of ColorlJitter parameters are kept within limited ranges to mimic practical
lighting changes rather than simulate deterioration. Augmentation is performed symmetrically
on both fresh and spoiled samples to avoid bias. While no negative impacts were observed in
experiments, a detailed augmentation sensitivity analysis in the future would be useful for a
proper understanding of the interaction between augmentations and semantics. No performance
reduction was observed in the experimental evaluation, since orientation-based augmentation,
such as horizontal flipping, was retained considering that spoilage visual cues are inherently
orientation-independent [28].

3.1.3 RGB-LAB Color-Space Conversion

In parallel with the RGB branch, each augmented image was converted into the CIE-
LAB color space to emphasize perceptually meaningful chromatic differences associated with
food spoilage. The RGG array I’ was first normalized to [0, 1] and transformed to the CIEXYZ
space using the standard linear transformation. The L\*,a\*,b\* components were then
computed as in Equation 2, Equation 3, and Equation 4,

L\ = 116f (%) — 16, (2)
o =s00[s () ()
o =20 ()1 ()

where X,,,Y,,, Z,, denote the reference white point and f(t) is the usual CIE piecewise
function. For numerical stability and to bring all channels to a comparable range, LAB values
were normalized as in Equation 5,

e e Vs
L= 100 = 128" = 128 ()

3 X224 X224 This

producing a LAB tensor x'** € R tensor was used as input to the
spectral branch. RGB-LAB conversion followed standardized CIEXYZ procedures with fixed
white-reference points and normalization scaling to comparable perceptual ranges. The
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clipping safeguards have prevented the out-of-range anomalies to ensure that spectral variations
have reflected natural spoilage chromatic shifts rather than computational artifacts.

3.2 DASS-Net Hybrid 3-Branch Architecture
3.2.1 Brach Encoders

The proposed DASS-Net combines a triple-cascade structure with a triplet loss
objective for distinguishing between real and generated pairs. The system consists of a triple-
cascade network with a triplet loss objective that combines three feature extraction branches;
the RGB image branch, the LAB image branch, and the semantic transformer image branch.
ResNet-18 was selected for the RGB image branch and LAB image branch due to the
established stability demonstrate in the context of spectral learning with moderate
computational costs that exhibit better robustness than lightweight architectures [29][30]. The
chosen model thereby ensures that execution is possible even in kitchen environments.

3.2.1.1 Aesthetic RGB Branch (ResNet-18)

The RGB tensor x"9” was fed to a ResNet-18 backbone f,,, configured for three-
channel LAB input using Equation 6,

hges = faes(xrgb) € Rdaesfdaes =5 (6)
3.2.1.2 Spectral LAB Branch (ResNet-18)

The LAB tensor x*? was processed by a second ResNet-18 fspe configured for three-
channel LAB input using Equation 7,

hspe = fspe (xlab) € RdSpe, dspe =5 7

This branch captured subtle color shifts related to browning or mold growth that may
be less apparent in RGB.

3.2.1.3 Semantic Transformer Branch (ViT-Small)

To model higher-level semantic patterns, a Vision Transformer (ViT-Small) with a
patch size of 16 f;.,, processed the RGB tensor and represented it in Equation 8,

hsem = fsem(xrgb) € Rdsem, dsem = 384. (8)

Each branch feature was projected into a shared latent space of dimension D through
separate linear layers followed by dropout using Equations 9, 10, and 11,

laes = Dropout(Waeshaes + baes)' 9)
tspe = Dropout(Wspehspe + bspe), (10)
tsem = Dropout(vvsemhsem + bsem)' (11)

with t,€ RP and D = 256.
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The LAB channel components were not passed through the Vision Transformer
primarily because the ViT pretraining itself aims to optimize the RGB semantics. This may
affect the pretrained semantic consistency. Moreover, the current model maintains a balance
between the feasibility of deployment and representational complementarity. However, from
an architectural perspective, a model exploring the benefits of a fully transformer-based
spectral pathway certainly holds potential.

3.2.2 Multi-head Self-Attention Fusion
The three projected features were stacked as a sequence of tokens using Equation 12,

Laes
T = tspe

tsem

€ R3*P (12)

and passed through a multi-head self-attention layer with H = 4 heads. For each head
h, query, key, and value metrics were computed using Equation 13,

Qn = TW,2, Ky, = TWK,V,, = TWY, (13)

where dj = D/H is the per-head dimension. The outputs from all heads were
concatenated and projected using Equation 14,

MHA(T) = [Attn,(T)||... || Attny (T)]W°. (14)
A dropout layer was applied to obtain the attended tokens T € R3*P.
3.2.3 Gated Branch Fusion

The attended tokens were then fused via a learnable gating mechanism that dynamically
weights the contribution of each branch for every sample using Equation 15. Let,

:

The tokens were flattened into a single vector of u = vec(T) € R3P, used as input to
a fully connected gating layer g = Wyu + b, € R? a = Softmax(g), where @ = (ges,
®spe, Asem) are non-negative branch weights satisfying »;; a; = 1. The fused representation
was computed as a convex combination using Equation 16,

>

aes
m

se

4>

f = Z a; fi € RD (16)

i €{aes,spe,sem}

This made it possible to depend more on the LAB branch in cases where color features
were more prevalent, and vice versa on the semantic branch of the ViT model. In addition, it
was ensured that the three branches encode complementary, not redundant, features. The
alignment of the projection and the attention weighting scheme reduces redundancy and allows
the network to concentrate on the most prevalent modalities of the inputs. Furthermore, issues
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of collapse in the gates were overcome using SoftMax normalization, regularization, and
supervised contrastive alignment.

The fusion mechanism allows the network to dynamically choose which modality has
more information about each image. When the dominant contamination is discoloration, the
LAB feature receives more attention. When the degradation of the texture is more emphasized,
the influence of the RGB feature became more important. For images that are ambigiously
spoiled, the semantic branch of ViT helps disambiguate.

3.2.4 C(lassification and Projection Heads

The fused representation f was passed through a lightweight classifier composed of a
fully connected layer with ReLU activation and dropout, followed by the final layer as in
Equations 17 and 18,

0 = W2h+ bz € RC, (18)

where C = 8 is the number of spoilage classes. The predicted class probabilities were
obtained using the SoftMax function as illustrated in Equation 19,

_ exp(0,)
- Zﬁ:l exp(0y)

In parallel, a projection head g(-) mapped f into a lower-dimensional embedding z €
R%roj for supervised contrastive learning as shown in Equation 20,

(19)

zZ = g(f) = W4R€LU(W3f + b3) + b4,, de‘Oj = 128 (20)

3.3 Training Objective and Optimization

3.3.1 Class Weighting and Label

Class weights w, were computed as inverse frequencies over the training set to mitigate
class imbalance across the eight categories of the image datasets. Equation 21 illustrates the
computation as let n. denote the number of training samples belonging to class c. The

unnormalized inverse frequency was 1 /nc, these values were rescaled to sum to the number of
classes.

.C (21)

W, = ————
1
c
Moreover, to regularize the classifier and reduce overconfidence, label smoothing with
factor € was applied. For the ground-truth class y of a sample, the smoothed target distribution
¥ was defined as in Equation 22,

1—¢ c=y,

V. = &
Ve L ey (22)
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The class-weighted and label-smoothed cross-entropy loss for a sample was computed
using Equation 23,

(o
Lee@,9) = = ) weSlogp. 23)
c=1

3.3.2 MixUp and CutMix Augmentation

To further improve generalization under limited data, the model was trained with a
combination of MixUp and CutMix applied jointly on the RGB and LAB inputs. For a mini-
batch of size B, a random permutation of indices was sampled, and each pair (x;, y;) and (x;,
yj) was combined. In the MixUp case, inputs and labels were linearly interpolated using ¥ =
Axi+ (11— Dx;, ¥ = y; + (1 — )y;, A~ Beta(a,a). Since labels are represented as
integers, the implementation kept two label tensors y, and y, and the mixing coefficient A. The
cross-entropy loss under MixUp was computed using Equation 24,

Lyix = ALcg(0,¥) + (1= 2A) Leg(p, yp) (24)

In the CutMix case, a random rectangular region was cut from x; and replaced by the
corresponding region from x;. If the patch covered area [R] and the full image area was HW,
the effective mixing coefficient was computed using Equation 25,

p=1- A (25)
HW

The same mixed loss formulation as above was used, and, in the implementation, each

batch was randomly assigned to no augmentation, MixUp, or CutMix with equal probability,
which provides a diverse set of training perturbations.

3.3.3 Supervised Contrastive Loss

In addition to cross-entropy, a supervised contrastive loss was imposed on the
projection embeddings z to encourage samples from the same class to cluster together in feature
space. For a batch of B embeddings z; and labels y;, the embeddings were first L2-normalized
as illustrated in Equation 26. On the other hand, pairwise similarities were computed using the
dot product scaled by a temperature parameter T as shown in Equation 27. For an anchor sample
[, the set of positive indices was P(i) = {j #i: y; = y;}. The supervised contrastive loss
[16] for i was computed using Equation 28, and the batch loss was the mean over all anchors
using Equation 29.

Zj

2 = (26)
P
AT &
1 exp(sip)
;= - logg————= (28)
TIPOT L S aenp(si)
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B
1
LSupCon = Ez Y (29)

i=1

3.3.4 Total Loss and Optimization

During the training, the model received two forward passes per batch, an unmixed pass
for the contrastive loss and a mixed pass for the cross-entropy loss under the MixUp and
CutMix. The parameters of all branches and fusion layers were optimized using Adam with a
learning rate of n = 10™* and a weight decay of 10™*, and cosine annealing scheduler
gradually decreased the learning rate over 30 epochs.

3.3.5 Training Algorithm

Algorithm 1: DASS-Net Hybrid Training Protocol

Input:
Dataset D= { (x i,y i)} {i=1.N} # images X, labels y
Hyperparameters:
epochs = E
batch_size =B
Ir (initial learning rate)
weight decay
IMG_SIZE, RANDOM_SEED
use mixup_cutmix (bool), alpha mix, alpha_cut
supcon_temperature, supcon_lambda
Model components:
model 6 = DASSNetHybrid3Branch(...) # returns (logits, fused, z_proj)
optimizer = AdamW(0, Ir, weight decay)
scheduler = CosineAnnealingLR(optimizer, T max=E)
criterion = CrossEntropyLoss(weight=class_weights, label smoothing=A_smooth)
Output:
Trained model 8* (parameters saved at best validation accuracy)
History H with per-epoch metrics (train/val loss, train/val acc, Ir)
Helper functions:
Mixup/CutMix(rgb, lab, targets, o mix, a_cut) -> (rgb m, lab m,y a,y b, A, aug_type)
MixupCriterion(criterion, preds, y a,y b, A) -> mixed ce loss
SupervisedContrastiveLoss(z, labels, temperature) -> con_loss
Evaluate(model, loader) -> (loss, acc)  # no-grad eval
Procedure:
1. Initialize random seeds and device (CPU/GPU).
2. Build dataset splits: train_loader, val loader, test loader.
3. Compute class_weights from train set and move to device.
4. Initialize model 0 on device, optimizer, scheduler, criterion.
5. best_val acc «— 0.0
6. For epoch =1 to E:
6.1 Set model to train mode.
6.2 Initialize accumulators: train_loss=0, train_correct=0, total=0.
6.3 For each batch (rgb, lab, labels) in train_loader:
- Move data to device.
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- optimizer.zero grad()
- Forward clean: logits_clean, fused clean, z_clean = model(rgb, lab)
- Apply data-mix augmentation:
rgb m,lab m,y a,y b, A, aug type = Mixup/CutMix(rgb, lab, labels)

Forward mixed: logits mixed, , =model(rgb m, lab m)
- Compute classification loss:
if A==1.0:
ce_loss = criterion(logits_mixed, y a)
else:

ce_loss = MixupCeriterion(criterion, logits mixed, y a,y b, 1)
- Compute contrastive loss on clean embeddings:
con_loss = SupervisedContrastiveLoss(z_clean, labels, supcon_temperature)
- Total batch loss:
loss = ce loss + supcon lambda * con_loss
- Backpropagate: loss.backward(); optimizer.step()
- Update running counters using logits clean predictions:
preds = argmax(logits_clean, dim=1)
train_loss += loss.item() * batch_size
train_correct += sum(preds == labels)
total += batch_size
6.4 Compute epoch-level train_loss /= total; train_acc = train_correct / total
6.5 Set model to eval mode.
6.6 Evaluate on val loader without mix augmentation:
val_loss, val acc = Evaluate(model, val loader)
6.7 scheduler.step(); record Ir
6.8 Save epoch metrics to H.
6.9 If val acc > best val acc:
best val acc «— val acc
save model weights 6* = 0 (checkpoint)
7. End For
8. Load 0* (best model), then compute final test metrics: test _acc, f1, confusion matrix, per-
class reports, Grad-CAM, failure case visualizations, ablation tables, cross-validation results.
The training procedure involved a two-step per epoch process: (i) a training step, in
which the model parameters were optimized using a combined classification loss and
supervised contrastive loss, and (i) an evaluation step used for model selection. During the
training procedure, the model essentially went through the mini-batches twice conceptually: (1)
first, to compute the clean embeddings required by the supervised contrastive loss, and (i1)
second, by traversing the augmented data to compute the cross-entropy loss and a scaled
supervised contrastive loss. Additionally, during this specific setup, the data augmentation is
considered probabilistic, and the contribution from MixUp/CutMix is addressed by using the
correct mixed-label loss. Following every epoch, the model is evaluated on the clean validation
set without mixing to compute the validation loss and accuracy. The learning rate is then
updated using a cosine annealing scheduler within each epoch, and the model parameters that
performed best on the validation accuracy will be checkpointed for final testing.
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3.4 Evaluation Protocol

3.4.1 Performance Metrics

After training, the model was evaluated on the hold-out test set. For each test image, the
predicted class y was obtained as the index of the maximum logit. Overall accuracy was defined
as in Equation 30,

Ntest

Z 1[3: = wl (30)

Accuracy = N
test

where 1[-] is the indicator function. In addition, per-class precision, recall, and F1-score
were computed from the confusion counts. For every class, true positives (TP), false positives
(FP), and false negatives (FN) were derived from the confusion matrix. The metrics were then
computed using Equation 31, Equation 32, and Equation 33.

Precision. — TE, 31)
recision, = TP + FP.
Recall, = e (32)
¢t = TP + FN,
2Precision.Recall
F1.= < < (33)

"~ Precision, + Recall,

Macro-F1 was obtained as the unweighted average of F1, across classes, while
weighted-F1 weighted each F1, by its class support. Moreover, the confusion matrix was also
used to summarize the number of predictions in each true-predicted pair. The row-normalized
version was also reported by dividing each row by its sum.

3.4.2 Safety-Critical Error Analysis

Considering that misclassifying spoiled food as fresh has more severe consequences
than the reverse, a safety-oriented metric was defined. Let indices 0 — 3 denote fresh classes
and 4 — 7 spoiled classes; the total number of spoiled samples in the test set was defined as in
Equation 34. The number of spoiled items incorrectly predicted as fresh was computed using

Equation 35, and the spoiled-as-fresh rate was then computed using Equation 36. This metric
directly quantifies the risk of unsafe recommendations in hospitality operations.

7
Nspoiled = Z Z Cij (34)
7 7
Nspoiled —fresh = Z Z Cij (35)

Nspoiled —fresh

Yspoiled »fresh = (36)

Nspoiled
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3.4.3 Ablation Experiments

Since the impact of incorrectly labeling spoiled food as fresh food would result in more
severe outcomes compared to the opposite action, a safety-minded measure was developed.
Where the indices from 0-3 indicated the fresh categories and from 4-7 indicated the spoiled
categories, the total number of spoiled examples from the testing set was stated in Equation 34.
The number of spoiled items labeled incorrectly as fresh food was stated in Equation 35; then
the rate of spoiled items labeled as fresh food was stated in Equation 36.

3.4.4 Explainability and Failure-Case Analysis

In this study, qualitative analysis was performed using gradient-weighted class
activation maps (Grad-CAM) on both the RGB and LAB branches to visualize the spatial
regions that contributed most to spoilage predictions. For each selected image and target class
¢, Grad-CAM computed the importance weights af of feature maps A* in the last convolutional
layer and a generated heatmap using Equation 37,

LGrqa—cam = ReLU (Z ay Ak) (37)

k

which was upsampled and overlaid on the input image. These visualizations highlighted
mold spots, discoloration, and texture changes that the model relied on. In addition,
misclassified cases were categorized into fresh-to-spoiled and spoiled-to-fresh errors and
inspected manually to understand systematic failure modes, such as naturally browned but safe
items or very subtle spoilage patterns.

4. Results and Discussion

The final section of this paper provides the outcome of the empirical assessment of the
proposed hybrid DASS-Net model when applied to image-based classification problems in
food spoilage. It includes the model's performance during training, the ablation study,
performance on each class, confusion matrices, explanation visuals, and failure case analyses.
The proposed model was tested using an open-source dataset retrieved from the official Kaggle
platform [17] for eight different classes that involved fresh and spoiled products of bread, dairy
products, fruits, and vegetables. The entire experimental setup was carried out by employing
Python version 3.10.5 in the Jupyter Notebook environment, along with an NVIDIA GeForce
RTX 3050 graphics card, an AMD Ryzen 5 processor, and 16 GB of RAM.

4.1 Training and Validation Performance

Figure 2(a) depicts the training and validation accuracy over the epochs. The accuracy
of the validation data for the Hybrid DASS-Net model rose from 65.17% in Epoch 1 to 94.33%
in the final epoch, thereby ensuring a smooth convergence process. As the optimization was
smooth with no signs of overfitting, the training accuracy began to increase. Figure 2(b) depicts
the loss for training and validation. As both the training and validation loss reach convergence
at around Epoch 15, it is evident that the stability in accuracy is appropriate, thereby avoiding
overfitting. According to a previous study, in the context of analyzing food images, using
contrast regularization helps ensure the compactness of features and separation of classes [18].
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Figure 2. Training and Validation Performance of the Proposed DASS-Net Model. (a)
is the Training and Validation Accuracy, and (b) is the Training and Validation Loss

4.2 Ablation Study

The ablation study compares three model variants: (i) RGB-Only ResNet-18, (ii) LAB-
Only ResNet-18, and (iii) the proposed Hybrid DASS-Net.

4.2.1 Quantitative Ablation Metrics

Table 2. Ablation Performance Comparison Across RGB-Only, LAB-Only, and
Hybrid DASS-Net

Model Val Accuracy | Macro-F1 | Weighted F1 | Spoiled-as-fresh rate
RGB-Only ResNet18 71.15 70.80 70.75 28.44
LAB-Only ResNet18 68.50 68.41 68.48 30.28

Hybrid DASS-Net 94.33 94.00 94.00 13.30

Table 2 summarizes the performance of three model variants based on their validation
accuracy, macro Fl-score, weighted F1-score, and spoiled-as-fresh error rate. Based on the
results, the Hybrid DASS-Net tended to outperform both baseline models in every metric. With
a weighted F1 of 94%, and a macro F1-score of 94%, the hybrid DASS-Net model generated
the lowest safety-critical error rate of 13.30%. Moreover, this improvement also highlights the
advantages of representation fusion across various dimensions, from spectral (LAB) to
semantic (ViT), and further to aesthetic (RGB). This is supported by previous studies indicating
that RGB frequently fails to detect minute discoloration signs that are captured by the LAB
color space. Additionally, substantial global context awareness provided by the Vision
Transformers generated improved spoiled detection when both are combined.

From the ablation results, the removal of individual elements of the framework tends to
result in performance degradation, suggesting that the proposed branches and learning elements
are complementary rather than mere duplications of already existing capacities. Consistent with
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the Grad-CAM and interpretive analyses, it follows that the contribution of the RGB pathway
tends to be sensitive to the visible surface, that the LAB pathway facilitates the understanding
of the spectra, and that the ViT pathways help in the case of visible ambiguities. While the
current scope does not allow for a full factor-isolation analysis, further research may explore
larger-scale controlled ablation on larger datasets for even more refined contribution
attribution.

4.3 Per-Class Evaluation Metrics

RGB-only ResNet18 Per-Class Precision, Recall, and Fl-score (No Support Included)

=== Precision
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Figure 3. Per-Class Precision, Recall, and F1-Score of the RGB-only Model Variant
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Figure 4. Per-Class Precision, Recall, and F1-Score of the LAB-only Model Variant

Hybrid DASS-Net Classification Report (Precision, Recall, F1-score)
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Figure 5. Per-class Precision, Recall, and F1-Score of the Proposed DASS-Net Model
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Figure 3 above depicts the precision, recall, and F1-score for each class based on the
RGB-Only model variant. From Figure 3, it can be seen that the model has a very low F1-score
of 61% and 57% for both fresh dairy products and vegetables, respectively, in detecting
spoilage. This serves as an indication that it is not very straightforward or easy to identify
discoloration through observation of the RGB channel alone in both dairy products and
vegetables.

Figure 4 below highlights the precision, recall, and F1-score of each class in the LAB-
Only model variant. Based on the obtained results, it is safe to state that the LAB-Only branch
did not perform well with the classes containing dairy products relative to the fruits and
vegetables. The assertion that the LAB space enhances spectral sensitivity but lacks semantic
understanding is indeed valid, as it is demonstrated in the transformer.

Figure 5 above shows the precision, recall, and F1 score per class attained using the
proposed hybrid DASS-Net model. Clearly, the DASS-Net has recorded the highest scores in
all classes. Spoiled classes have also attained excellent F1-scores, including 94% for spoiled
bread, 92% for spoiled dairy, 95% for spoiled fruits, and 92% for spoiled vegetables. This
indicates that the multi-branch fusion has managed to overcome the ambiguity in the classes,
thereby improving the identification of superficial defects.

4.4 Confusion Matrix

Confusion Matrix (Counts) - DASS-Net Hybrid Confusion Matrix (Normalized) - DASS-Net Hybrid

True laved
label

True

fresh_bresd
b

fresh bread

spoiled vegetatles

0.6

0.0

Figure 6. Confusion Matrix of the Proposed Hybrid DASS-Net Model

Figure 6 depicts the confusion matrix of the proposed hybrid model, DASS-Net. The
findings indicate that the model was able to accurately categorize most of the images in both
fresh and spoiled categories without much confusion. It can be seen from Figure 6a above that
in the counts and fresh bread categorization, the model accurately categorized 29 images as
fresh, while only 2 were confused with fresh dairy and fresh fruits. However, unlike in counts
and fresh bread, fresh dairy showed moderate confusion in the spoiled dairy, spoiled fruits, and
spoiled vegetables categories. In the spoiled categories, the model was able to accurately
categorize more than 60 images, while some were confused in their prediction, particularly in
spoiled dairy, which was confused with the fresh dairy category. Most of the images were along
the diagonal, which explains the model’s performance. The model was able to accurately
categorize most images in the spoiled categories, particularly in spoiled bread (45), spoiled
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dairy (48), spoiled fruits (40), and spoiled vegetables (63). However, some images were
confused in the spoiled dairy category, which was classified into the fresh dairy category.

On the other hand, the normalized confusion matrix is presented in Figure 6(b). The
results shows high precision and recall scores of <90% for fresh bread, fresh fruits, spoiled
fruits, and spoiled vegetables. There is moderate confusion in dairy classes for fresh dairy to
spoiled dairy (0.16) and spoiled dairy to fresh dairy (0.17). The results imply that dairy-related
foods are the most visually ambiguous category. According to a previous study [21], it is hard
to detect early-stage spoilage of dairy-related foods only by vision as, they usually present
subtle discoloration and/or texture changes.

The results confirm the effectiveness of multi-branch fusion, in accordance with reports
that the combination of RGB-spectral-semantic modalities improves food-quality prediction
tasks [22]. Another finding is that dairy, whether fresh or spoiled, is the most difficult class to
recognize and is misclassified at rates between 10 and 17% in both matrices. According to Nur
et al. (2024), early spoilage of dairy products often involves micro-texture changes or very
slight discoloration that may not be strongly reflected in RGB. Moreover, cheese and milk-
based foods bring intra-class confusion because they naturally vary in hue, and dairy surfaces
can reflect light irregularly [24], thus causing modeling difficulties in both RGB and LAB
spaces.

This problem is very meaningful to hotel and restaurant operations, as serving spoiled
dairy can lead to gastrointestinal illness. Therefore, misclassifying some spoiled items as fresh,
particularly in dairy, is a major concern. Even a small misclassification rate may imply high
operational risk in food-safety contexts. Additionally, minimizing false negatives (spoiled to
fresh) is more important than maximizing accuracy [25]. Even though it is balanced, reality has
cases of spoilage rarity. To mitigate this problem, it is necessary to introduce what is referred
to as "spoiled-as-fresh" safety, which will provide valuable information on high-risk, rather
than accuracy, cases of spoilage.

4.5 Grad-CAM Visualization

Grad-CAM — Pred: fresh_bread Original — fresh_fruits Grad-CAM — Pred:; fresh_fruits Grad-CAM — Pred: fresh _fruits

€3

Original — spoiled_vegetables Grad-CAM — Pred: spoiled_vegetables it Grad-CAM — Pred: spoiled_fruits

Figure 7. RGB-Branch Grad-CAM Visualization
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Figure 8. LAB-Branch Grad-CAM Visualization

Figures 7 and 8 show the results obtained from the RGB and LAB branches regarding
attribute interpretation in both fine-tuned Grad-CAM models. As observed from Figure 7, the
Grad-CAM model in the RGB branch emphasized defects such as texture degradation, spots
from mold growth, and some irregularities in food surfaces, whereas in the LAB branch Grad-
CAM, emphasized discolored regions due to early browning or chromatic redistribution that
are not visible in the original images in RGB domain. Activation maps from both multiple
branch approaches justify that each branch has provided complementary information through
unique activation maps. This supports the theoretical strength in fusing multiple features in one
[26]. Moreover, both targeted areas in images could benefit from global attention in the ViT
architecture, which has also assisted in recognizing BC in boundary-sensitive regions, as well
as classifying them into either spoilage or natural variations in color in food images.
Experiments demonstrate that ViTs are effective in non-local interactions between features in
tasks such as image processing [27], which is attributed to better performance over purely
CNN-based architectures in our project.

4.6 Failure Case Analysis

Figure 9 highlights samples that were misclassified as being spoiled or fresh. The
number of spoiled samples predicted to be fresh was 32, and the number of fresh samples
predicted to be spoiled was 39. The misrepresentation of spoiled samples as fresh samples
usually occurs when the growth rate of mold is low. This is combined with lighting that
suppresses the appearance of color. The samples that were misclassified as spoiled likely
contained strong shadows and glare from the cameras, resulting in false color degradation. In
contrast, the samples misclassified as fresh were those that contained natural variations in color.
This was expected, as natural variation makes visual inspection difficult. The low percentage
(13.30%) rate of misrepresentation from the spoiled to the fresh class proves that the model is
reliable.

The identified failure instances have also provided insights into the performance of the
tested model under challenging visual conditions. As previously mentioned, some instances of
the "spoiled-as-fresh" failure occurred when discoloration visibility was masked by lighting
conditions, causing only partial surface discoloration to be noticed. The "fresh-as-spoiled"
failure instances related to shadow and glare were linked to surface color ambiguities. To
complement the identified instances, insights from the Grad-CAM tasks highlighted concerns
with the LAB approach in understanding the spectral discoloration pattern, while the approach
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of the ViT block focused on comprehending the entire context of challenging visual instances.
Although the study does not examine the weighted dynamics of the fusion approach
quantitatively, it indicates that the approach might be beneficial across different modalities
under distinct lighting conditions.

Failure Cases: Fresh items misclassified as Spoiled

T fresh_bread
P: spolied_bread

Figure 9. Failure Cases of DASS-Net (Misclassified Samples)

In this particular study, the procedure of color conversion and normalization in the LAB
color space functioned properly in a real-world setting, and no instability issues in performance
calculations were observed during the experiments. However, a specific sensitivity analysis of
the normalization procedure in relation to calibration may be of significant interest from a
future perspective.

5. Conclusion

The objective of the study was the development of the DASS-Net Multi-Branch Neural
Net Approach. The neural net would be able to classify images of food spoilage into the eight
categories used in the spoiled and fresh image datasets. The study concluded that the approach
led to an accuracy of 94.33% for the validation set. The approach was better compared to the
single-stream approaches regarding accuracy and safety. The study has relevance because it
introduced an adaptive approach to fusion that implemented multiple features of the models.
The study presented new approaches that could be applied during the development of the neural
nets, including the application of the SupCon approach. The study has played a significant role
because it demonstrated the application of safety-critical approaches, specifically the dual
Grad-CAM. The study was able to consider the rate of spoilage of food products once they
were fresh. The study also has practical implications because it deals with the application of
smart kitchen systems and hotels. For future research, both multispectral and hyperspectral
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imaging can be combined to indicate biochemical indicators of spoilage not apparent in either
RGB or LAB images. The proposed system can be expanded to apply real-time video
monitoring involving light transformer architecture systems. Additionally, more varieties of
food could be introduced to enhance robustness across various hospitality settings.
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