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Abstract   

Mitosis is a cell division mechanism vital for the growth of tissues and repair, 

Histopathological images are used by pathologists to diagnose cancer, but mitosis classification 

plays an important role in disease diagnosis. The mitotic counts are a proliferative indicator to 

find the aggressiveness of breast cancer. Detecting the mitotic tumor cells in tissue areas is a 

critical marker in cancer prognosis. Various researchers have focused on developing an 

automatic detection framework to identify mitotic figures, but detecting and classifying mitosis 

accurately remains a significant challenge in the medical field. Moreover, this research has 

designed a proposed Aggressive Tracing Seeking Optimization (ATSO) based Deep 

Convolutional Neural Network (Deep CNN) for the mitosis classification framework. The 

proposed framework uses less memory and increases the convergence rate; hence, it is globally 

efficient in achieving optimal solutions in the search space. The inspiration for considering the 

ATSO is its excellent behavior, as well as its scalable and adaptable mechanism, which allows 

optimization to move away from local optima. Moreover, it is computationally faster and 

exhibits higher global convergence capability in searching for the best solution. ATSO 

optimally trains a Deep CNN to generate higher classification accuracy by minimizing the false 

rate using the loss function. More explicitly, the proposed ATSO-Deep CNN model attained 

higher performance with an accuracy of 96.31%, an F1-score of 96.3%, precision of 96.84%, 

and recall of 95.78% with a 90% training percentage for the BreCaHAD dataset.  

Keywords: Mitosis Classification, Histopathological Images, Cancer Prognosis, Deep 

Convolutional Neural Network, Feature Fusion, Segmentation. 

 Introduction 

In recent decades, breast cancer has progressively amplified, and the age group affected 

by this disease has gradually decreased. It is also a leading cause of death among women, 

making the gradient an important measure for disease prognosis [1]. The Nottingham Grading 

System (NGS) states that there are three significant morphological features in the Hematoxylin 

and Eosin (H&E) slides used to grade breast cancer: mitotic count, nuclear pleomorphism, and 

tubule development [2]. According to the NGS, mitosis is the most important indicator, offering 

the strongest value among the three features. Achieving consensus on mitotic count among 
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pathologists is very complex due to the subjectivity involved in identifying mitotic cells [3]. 

Mitosis is the process of nuclear division in living organisms, comprising four different phases: 

metaphase, anaphase, prophase, and telophase [4]. In the procedure of cancer staging and 

grading, cancer grading primarily detects the aggressiveness of cancer, while cancer staging 

indicates how far it has progressed from the primary organ to other parts of the body [5]. Mitosis 

detection serves as an index of the nuclear proliferation rate and is reported as the cancer class. 

Therefore, mitosis detection and recognition play an essential role in accurate diagnosis and 

grading systems, as well as in predicting effective treatment and survival [6]. Additionally, 

mitotic count estimation mostly relies on the persistent identification of nuclei in whole slide 

images (WSI). This identification is usually carried out by pathologists but is complex, time-

consuming, highly variable, and intensive. Therefore, it is essential to develop automated 

methods in computer-assisted systems for mitosis classification [7]. Automated detection 

techniques should aim to decrease time utilization, reduce labor costs, and minimize material 

resources, in addition to enhancing diagnostic dependability. To develop an automatic 

technique, one should first identify the nucleus and then properly identify mitosis in WSI. 

Several machine-learning techniques have been introduced for identifying mitotic cells in 

histopathological images [8] recently. Deep learning-based methods have attracted a lot of 

interest among scholars in the field of disease diagnosis, particularly breast cancer 

classification. The CNN model has made a tremendous contribution in many fields and has 

automated most of the medical system's important processes. It is extremely challenging to 

distinguish between normal partitions and mitotic partitions without high-resolution images 

and the intervention of pathologists since mitotic partitions have textures and morphological 

structures similar to those of normal partitions [9]. To understand the intricate structure of 

mitosis, the U-Net model was created with segmentation maps and achieved quicker 

segmentation using context-based learning. A series of advanced U-Net models have since been 

proposed, including Attention U-Net, Inception U-Net, Residual U-Net, Dense U-Net, U-

Net++, and Adversarial U-Net, for different applications [10]. 

 In the deep learning mechanism, the model fails to consider the weight transfer function 

to improve detection performance. In multi-task deep learning, the Mask Mitosis model was 

developed to detect mitosis with unlabeled and weakly annotated datasets, but it failed to 

consider a fully annotated dataset [11]. The artificial intelligence-based method obtained better 

performance but faced issues with computational cost. Moreover, it failed to use large datasets 

to evaluate the accuracy of breast cancer cases. The deep mitosis detection framework showed 

better detection results but failed to focus on generating accurate pixels for centroid 

annotations, which enabled training a powerful detector. The mitosis detection method 

designed in [12] performed well under small-sized datasets, but it does not consider large-sized 

datasets for analyzing performance. It does not consider the ensemble model in analyzing 

performance. The mitosis detection method in [13] analyzed performance without considering 

the features of the deep learning framework. It achieved substantial improvement in both 

reliability and accuracy, but determining the features resulted in a challenging task. To address 

the above limitations in existing techniques, the proposed model was developed. The proposed 

mitosis classification research utilizes effective preprocessing techniques, which overcome the 

noisy, low-contrast, and external artifacts in the input histopathological images. Further, the 

utilization of the ATSO algorithm with the U-Net model for segmentation selects the significant 

features using segmentation maps, which helps to focus on accurate mitosis classification. The 

proposed fused DpMIE-Net feature descriptor extracts the significant features from complex 

structures, enabling the optimized DCNN for accurate detection. The substantial contribution 

of this research is detailed as follows:  
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• Optimized U-Net-based Segmentation:The segmentation process with the U-Net 

model extracts deeper features from histological images, resulting in better 

performance for mitosis classification. The integration of the ATSO algorithm tunes 

the U-Net model for accurate segmentation with minimal errors. 

• Fused DpMIE-Net Feature Extraction: The combination of Deep MobileNetV2, 

Inception-V3, and EfficientNet (DpMIE-Net) models in feature extraction extracts 

significant and complex features from the segmented image. The feature fusion 

mechanism increases the scalability and adaptability of the model, maximising the 

accuracy of classification. 

• Optimized Deep CNN-based Classification: The Deep CNN generates the feature 

map at the convolution layer using different kernels. The ATSO optimization 

incorporates different aggressive behaviors that improve convergence, which directly 

impacts the Deep CNN model by reducing the computational cost and increasing 

training speed.  

The rest of the research paper is arranged as follows: Section 2 presents the problem 

statement Section 3 describes the model of the system. Section 4 elaborates on the results and 

experimentation details, and finally, Section 6 concludes the research.  

 Problem Statement 

Different studies are analyzed to accurately detect the sample type in histopathology 

images. However, a variety of partition shapes, sizes, colors, and scales in the histopathological 

images make the detection task more complex. Moreover, the complex pattern of body 

partitions, the similarity between malignant and benign samples, and low-quality images with 

stain variations prevent the diagnosis mechanism from achieving higher accuracy. However, 

the dataset has a class imbalance issue with mitosis and non-mitosis samples, which is 

addressed by the loss function. Hence, the development of an effective deep learning model for 

the early diagnosis of mitosis will help patients minimize the severity of the disease at an early 

stage.  Assume the image captured from the dataset, is used to detect normal or abnormal cases 

by passing the image through various stages, like pre-processing, segmentation, feature 

extraction, and d B etection.  

 1 2, ,..., ,..., ;1i nD B B B B i n=  
      (1) 

The input images are processed effectively by eliminating external artifacts and are 

segmented by the classifier model, and it is represented as, S , that is further trained by the 

model to determine the optimal result. Further, the categorical cross-entropy loss is utilized to 

overcome the class imbalance issues, where weights are assigned for the minority classes to 

maintain the probability of each class.  The loss function serves as the indicator used to 

determine the performance of the learning mechanism in predicting accurate results. Here, 

categorical cross-entropy is considered the loss function to analyze the performance of this 

model. 
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Here, L is the loss function, J denotes the number of classes, s denotes the positive 

score of the model, and jg
specifies the probability of the minority class. Each image undergoes 

all the stages, and finally, the optimized network performs the detection mechanism to 

determine whether the image is normal or abnormal.  

 Proposed Methodology 

The early diagnosis of breast cancer significantly minimizes the mortality rate. For early 

diagnosis, mitotic count plays an important role in predicting the prognosis, aggressiveness, 

and grade. This research designs the ATSO-based Deep CNN model for the detection and 

categorization of mitosis. The input image is sourced from the histopathological image dataset 

that undergoes a pre-processing phase, where Gaussian blur and median filters are applied to 

improve the quality of the image. The quality-enhanced image is taken to the image 

segmentation module, in which an optimized U-net is implemented to generate the 

segmentation results. The segmented image is passed to feature extraction, where DpMIE-Net 

is used to capture the features independently and fuse them to generate the feature vector. The 

feature map is fed to a Deep CNN tuned with ATSO optimization, where the input feature 

vector is classified as mitosis or non-mitosis. Figure 1 illustrates the schematic view of the 

proposed method.  

 

Figure 1. Workflow Diagram of the Proposed ATSO-based Deep CNN Model 
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3.1   Input Image Collection 

The input histopathological images are acquired from the MITOS-ATYPIA-14 [14] and 

the BreCaHAD dataset [15]. However, these images are used to diagnose the disease in its 

initial phase, which aids in improving the rate of survival of human beings. Consider the dataset 

as Dwith nnumber of histopathological images and it is modeled as,  

   ; 1,...,iD B i n= 
       (3) 

Here, iB implying the image is placed at thi  index in the dataset.  

3.2   Image Pre-processing 

The Input image iB undergoes the pre-processing phase, where the Gaussian blur and 

median filter methods are utilized to remove noise, external artifacts, and rectify the low-

contrast in the input images, which effectively increases the quality of the image compared to 

other denoising techniques. These techniques will enhance the input images with good quality, 

making them more suitable for further processing.   

Gaussian blur:  It is the filter commonly used to smooth the given image iB . The 

Gaussian blur [16] method generates a preprocessed image by smoothing the input image 

through the application of the Gaussian function to minimize the noise level. In general, this is 

accomplished by convolving the image with a Gaussian kernel, modeled as,  

( )
2 2

22
2

1
, ,

2

a b

G a b e 


+
−

=
      (4) 

Here, a and b are location indices,  represent standard deviation and G denote a 

Gaussian kernel.  

Median filter: It serves as the non-linear model used to remove noise from images by 

replacing each pixel value with the median value. It is a type of filter that uses a square-shaped 

window with an adjustable size to perform the filtering process [17]. The pre-processed image 

is denoted as S  that is filtered by applying the pre-processing mechanism, and it is shown 

below,  

( )  ; 1,...,iS PP B i n= 
      (5) 

Here, PP is referred to as the pre-processing phase, which includes a Gaussian blur and 

a median filter mechanism to eliminate noise that exists in images, and the resulting image is 

represented as S having the dimension of  512 512 3N   
, which is further sent for 

segmentation.  

3.3   Image Segmentation  

The medical image segmentation process is crucial for complex anatomical structures, 

and previous research has faced difficulties in achieving accurate segmentation. However, U-

Net has a deep learning architecture and is effective for accurate segmentation of complex 
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medical images. U-Net segmentation extracts deeper image features from histological images. 

Hence, U-Net is utilized in the proposed ATSO-Deep CNN model for segmentation, which 

leads to accurate mitosis classification. Furthermore, the incorporation of the ATSO algorithm 

tunes the parameters of U-Net for accurate segmentation. Segmentation is an image processing 

method used to separate the image into several regions, and it also refers to the process of 

specifying boundaries among separate semantic entities of the image. It is the procedure of 

assigning a label to every pixel in an image in such a way that pixels with the same labels are 

linked together based on some semantic property. The pre-processed image S is passed into a 

segmentation mechanism, where the U-Net model [10] is applied to determine the segmented 

image G . U-Net plays an essential role in the area of image analysis in medical research. The 

major purpose of using the U-Net model is that images with fixed dimensions are reduced to 

make the size of the image more visible in the display area and to create thumbnails of 

consistent images for extracting deeper image features. It is mainly modeled with up-sampling 

and down-sampling layers, and holds two different paths, the contracting path and the 

expansive path. Accordingly, up-sampling is employed to enlarge an image, and the features 

obtained from each layer of up-sampling and down-sampling are fused through a copy or crop 

mechanism. Each block located in the contracting path contains two successive convolutions 

with a specific size  3 3 , a ReLU activation, and a maximum pooling layer. However, the 

structural arrangement is continuous for a number of times, and more novelty of this structure 

exists in an expansive path, and here, at every stage, the feature maps are upsampled by  2 2

convolution. Accordingly, the feature map obtained from a respective layer of the contracting 

path is allowed to crop and concatenate, and further, it is used with a feature map placed at the 

up-sample layer, followed by this,  3 3 convolution and a ReLU activation is employed. A

 1 1 convolution is used to minimize the feature map to a number of channels and generate 

segmented results, which is represented as, G having a dimension  512 512 3N    . 

Accordingly, the energy function is calculated pixel-wise at the softmax layer using the cross-

entropy loss function given as, 

( ) ( ).log cCE w x P x=        (6) 

( )
( )( )
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       (7) 

Here, 
( )w x

denotes the weight map, 
( )cA x

implies activation in the feature channel c at 

pixel position x , 
( )cP x

specifies the approximated maximum function, and c is the true label 

of each pixel. The major benefit of using the U-Net model is that it contains a greater number 

of feature channels on the upsampling side, which allows the network to broadcast contextual 

details to the higher resolution layers. The U-Net is more effective in solving medical 

segmentation issues, and it effectively performs segmentation for large images. Figure 2 shows 

the architecture of the U-Net model [10].  
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Figure 2. Architecture of the U-Net Model 

3.4   Fused Feature Extraction  

The segmented G as input and performs a feature extraction strategy, where optimal 

features are effectively captured to determine mitosis detection. In this, the DpMIE-Net feature 

descriptor employed three feature extraction mechanisms, such as Deep MobileNetV2, 

Inception-V3, and EfficientNet, for effective feature extraction. Further, these models extract 

more discriminative features from complex structures and fuse them to generate more 

significant features that enhance mitosis classification. The fused feature extraction process 

captures intricate patterns from the segmented results that are used to form a feature vector. 

This feature vector is then used by the classifier for recognizing mitosis classification. 

3.4.1   Deep MobileNet Version 2 

 

Figure 3. Architecture of MobileNetV2 
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The structure of Deep MobileNetV2 [18] is based on the depth-wise separation of 

convolutional layers. Here, standard convolution is used to process the input image directly for 

generating output features. After generating a filtered output channel, these channels are 

stacked and filtered using  1 1 convolution to integrate the stacked results into a single 

channel. The process of depth-wise convolution is similar to standard convolution, but the 

advantage of depth-wise convolution is that it minimizes the number of parameters used in the 

process. However, it takes the input G with dimension  512 512 3N    pixels and generates 

the feature map as output 1F with dimension  28 28N   , respectively. Figure 3 explains the 

architecture of MobileNetV2.  

3.4.2   Inception-Version 3 

 

 

 

 

 

Figure 4. Architecture of Inception-V3 

On the other hand, the segmented result G is fed as input to the Inception V3 model for 

generating the feature map. Inception-V3 [19] is a deep-learning network used to generate 

better feature maps by solving overfitting issues. The major benefit of using this feature 

mechanism is that it employs convolution  1 1 to minimize the number of feature channels 

and increase training speed.  It takes the input of segmented images G with size 

 512 512 3N     and computes the feature map 2F with dimensions  28 28N    by involving 

different layers, like pooling, concatenation, dropout, and fully connected layers. Each layer 

performs its functions and generates the output feature map with reduced dimensionality. 

Figure 4 shows the structure of Inception-V3.  

3.4.3   EfficientNet 

 

 

 

 

 

 

Figure 5. Structure of EfficientNet 
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The Efficient Net takes the input as G with size  512 512 3N     and computes the 

feature map as 3F with size of  28 28N   , respectively. The efficient Net model [20] is an 

effective learning mechanism utilized to generate a feature map by reducing the number of 

channels. Accordingly, the benefit of using this network is the use of mobile inverted bottleneck 

(MB) convolution in depth which eventually minimizes the kernel size. Figure 5 illustrates the 

structure of EfficientNet.  

More specifically, the features extracted through Deep MobileNetV2, Inception-V3, 

and Efficient Net have dimensions  28 28N   that are concatenated as feature vectors. This 

process helps improve performance by reducing dimensionality and noise from the input 

images.  

Finally, the feature vectors extracted from the Deep MobileNetV2, Inception-V3, and 

Efficient Net models are concatenated to generate significant features, expressed as,  

 1 2 3, ,F F F F=
       (8)  

Here, Deep MobileNetV2, denoted as 1F , Inception-V3 as 2F and Efficient Net as 3F , F  

implying  a feature vector with the size of  28 28 3N    , further used to detect mitosis.  

3.5   Optimized Deep Convolutional Neural Network for Mitosis Classification 

The features extracted from the models are integrated and fused into a feature vector F
that is given as input to the Deep CNN for classifying mitosis as normal or abnormal. The deep 

CNN [21] model effectively learns and extracts higher levels of features that can differentiate 

among various class labels in the classification scenario. The internal functions are performed 

in the hidden layer, which is typically composed of various convolutional, pooling, and fully 

connected layers. Here, extra layers are utilized to learn complicated features in order to achieve 

a proper decision strategy. The input layer takes the feature vector F as input with a dimension 

of  28 28 3N    , which is further passed into the convolution layer with a dimension of 

 28 28 16N    . The CNN architecture consists of 3 convolutional layers as well as 3 pooling 

layers built to extract features from a training set, using small filter with sizes of (16, 32, 64), 

and employs ReLU and softmax activation functions with one fully connected layer or dense 

layer. The output retrieved after applying the ReLU activation function to the convolutional 

layer is expressed as, 

      ( )M f W F K=  +                   (9) 

Here, f is the function, W and K the weight and the bias. Further, the features are 

applied using the batch normalization technique to improve convergence speed for training the 

model. Then, the max pooling layer is considered to limit the dimension of the feature map 

while preserving confidential information. The max pooling output is sent to the next 

convolutional layer with a dimension of  28 28 32N    , and the process continues for 

multiple layers. Then the dropout layer receives features with defined dimensions,  

 28 28 64N    , which removes the irrelevant features during training, preventing overfitting 

issues in the model. A flattened layer is used to reduce the dimension  50176N  . The dense 
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layer receives features with a dimension of  1024N  , and the proposed ATSO algorithm is 

applied in the dense layer, which tunes the parameters for accurate classification. Further, the 

features are passed through the ReLU activation function and batch normalization layer, which 

normalize the activations of the data and forward it to the dropout layer. The dense layer 

computes output classes based on the input value through the softmax activation function, and 

the output is mathematically specified as, pO  with the dimension of  2N  , which shows two 

classes: mitosis or non-mitosis. Accordingly, the loss function used to analyze the model's 

performance of in predicting results is specified in Eq. (2). the training procedure of this model 

is conducted by the ATSO algorithm that trains the hyperparameters, reducing the error rate 

and enabling the achievement of the global best solution. Figure 6 demonstrates the structure 

of the Deep CNN.  

 

Figure 6. Architecture of an Optimized Deep CNN for Mitosis Classification 

3.5.1   Aggressive Tracing Seeking Optimization 

The proposed ATSO algorithm is developed through the integration of the seeking and 

tracing characteristics of Cat Swarm Optimization (CSO) [22] with the chasing and fighting 

behavior of Rat Swarm Optimization (RSO) [23], respectively. These behaviors are very 

aggressive and highly effective in solving optimization issues and avoiding convergence 

towards a local optimum. However, these behaviors are the major motivation for building the 

optimization model for tuning the U-Net model and Deep CNN model for accurate mitosis 

segmentation and classification, which also reduces false errors and enhances the convergence 

rate. The mathematical formulation of tuning the model to achieve high accuracy is explained 

as follows. 

Initialization: The initialization is made chaotically with the enhanced mechanism, 

where the parameters can prevent the model from falling into the local minimum solution [22].  
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The optimization is built as to be unpredictable with a random nature, providing an easy and 

faster way of generating and storing information. The random solution is initialized in the 

search space, let us assume, ,u vH as thv  dimension of thu individual, and the chaotic map factor 

as Q . Hence, the chaotic sequence used to initialize the solution is mathematically modeled as,  

( )    , , min , max , min ; 1,..., , 1,...,m m

u v u v v u v u vH H Q H H u U v V= + −  
  (10) 

Here, , minu vH shows the lower bound factor, , maxu vH represents the upper bound factor, 

m

vQ represents the chaotic map at thm iteration, U indicates population size, and V indicates total 

dimension.  

Fitness function: In this algorithm, the fitness function is tuned to measure the high 

accuracy of the model in the classification process. The fitness function tF  is evaluated as,  

( ),

m

t u vF Max Accuracy H =
      (11) 

The maximum fitness value or maximum accuracy defines the solution to attain the 

global best value by eliminating the local optima.  

Solution Update: To find the optimal solution, the random solution is classified based 

on the characteristics of rat and cat optimization, which is explained in the following section. 

Case (i) Quick search phase: If ,

m

u vH T satisfied, the quick search phase is activated 

by inheriting the resting characteristic features of rats and seeking the characteristics of cats. 

The updated solution at this phase is given as,  

                    (12) 

( )
( ) ( )1 2 ,1

, , ,

1 1
.

2 2

m

u vm m m

u v u v best u v

R R H
H X H Y H H+

+ 
 = + + −
 

  (13) 

( ) ( )1

, 1 2 , , ,

1
1 .

2

m m m m

u v u v u v best u vH R R H X H Y H H+  = +  + + −
 

   (14) 

   

( ) ( )
( ) ( )

1 2

, ,

1 1 2

, ,

m m

t u v t u v

m m

t u v t u v

F H F H
R

F H F H

− −

− −

−
=

+
     (15) 

3
3

max

R
X R m

m

 
= −  

       (16) 

( )2.Y rand=
     (17) 

where 1R shows the fitness measure of the current and previous value and it lies between 

0 and 1, 2R denotes seeking range of selected dimension, m specifies current iteration, maxm

denotes the maximum iteration, X and Y are the parameters, and rand denotes the random 

number.  

( )1

, , 1 2

1
1

2

m m

u v u v bestH H R R X Y YH+  = +  + − + 
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Case (ii) Aggressive tracking phase: If 
,

m

u vH T satisfied, the aggressive tracking phase 

begins by incorporating the fighting behavior of rats and tracing the character of cats. The 

position update solution of cat is defined as,  

1

, , ,

m m m

u v u v u vH H Z+ = +
      (18) 

Here, ,

m

u vZ is the velocity at the previous iteration.  

The fighting behavior of rats is given as,  

( ) ( )1

, , ,.m m m

u v best u v best u vH H X H Y H H+ = − + −
   (19) 

With Eq. (18) and Eq. (19), the position update solution at this phase is modeled as,  

( ) ( ), , , ,1

,

.

2

m m m m

u v u v best u v best u vm

u v

H Z H X H Y H H
H +

+ + − + −
=

   (20) 

( )1

, , ,.m m m

u v u v best u vZ Z y z H H−= + −
    (21) 

Here, bestH denotes the best search agent, max

m

my e
−

= and its value lies between [0,1] and 

z is a constant value.  

 

Figure 7. Flowchart of Aggressive Tracing and Seeking Optimization 



Deep Learning Model with Enhanced Segmentation and Combined Feature Activation for Mitosis Classification 

 

 

 

ISSN: 2582-4252  1198 

 

Termination: The fitness function is evaluated for each result at every single iteration 

to find high accuracy, and the optimization continues until the best result is obtained. After 

reaching the best solution, the iteration is terminated. The ATSO trains the hyperparameters of 

the model to determine optimal solutions for mitosis classification with a high convergence rate 

and minimum misclassifications. Figure 7 shows the flowchart of the ATSO algorithm. 

 Results and Discussion 

This division demonstrates the results as well as a discussion of the ATSO-Deep CNN 

model by showing the improvement of the deep learning model through analysis with existing 

methods.  

4.1   Experimental Setup 

The research on mitosis detection using the ATSO-Deep CNN model is executed in 

PyCharm software with the Python 3.7 programming language, which requires Windows 11 

OS, 16 GB of RAM, 128 GB of ROM, an Intel i7-13770K processor, and 12GB of GPU 

memory. The initial parameter settings involve a batch size of 32, learning rate of 0.001, 500 

epochs, a dropout rate of 0.5, an activation function of ‘linear’, a loss function of ‘MSE’, 45 

LSTM units and the default optimizer Adam. The input data is split with a 90:10 ratio for return 

rate prediction, where 90% is used for training and 10% for testing purposes.  

4.2   Dataset Description 

MITOS-ATYPIA-14 dataset [14]: The dataset comprises a set of breast cancer biopsy 

slides collected from the Pitié-Salpêtrière Hospital in Paris, which contains 284 frames at X20 

magnification and 1,136 frames at X40 magnification. These pathological images are stored in 

CSV file format with frames of RGB bitmap images in TIFF format. Furthermore, the frames 

at X20 magnification are subdivided into four different frames of X40 magnification, which 

are used for annotating mitosis. The dimensions of the X20 frame are 1539 × 1376 pixels, and 

the size of the magnification located inside tumors is 755.649 × 675.616 µm².  The X40 frames 

are annotated as mitosis or not mitosis by three pathologists. Likewise, nuclear atypia is 

categorized into six types, size of nuclei, size of nucleoli, density of chromatin, thickness of 

nuclear membrane, regularity of nuclear contour, and anisonucleosis. 

BreCaHAD dataset [15]: The dataset, called the Breast Cancer Histopathological 

Annotation and Diagnosis dataset (BreCaHAD), contains 162 breast cancer histopathology 

images. This dataset is annotated into six classes based on their histological structures; mitosis, 

apoptosis, tumor nuclei, non-tumor nuclei, tubule, and non-tubule. This diagnostic dataset has 

492 files in 2 columns, stored in 1.06GB. The BreCaHAD dataset contains microscopic biopsy 

images taken over a duration of 2 to 20 years and saved in (.TIFF) format, with RGB and 8-bit 

depth in the channels. The dimensions of the annotated images are 1360 × 1024 pixels, and the 

annotation data is given in JSON format. Also, this dataset includes four types of malignant 

breast cancer; ductal carcinoma (DC), lobular carcinoma (LC), mucinous carcinoma (MC), and 

tubular carcinoma (TC). 
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4.3   Experimental Results 

The experimental results of the ATSO-Deep CNN model for the mitosis classification 

process are showcased in this section, which is illustrated in Figure 8. 
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Figure 8. Experimental Results for Mitosis Classification 

4.4   Performance Metrics 

The performance of the proposed ATSO-Deep CNN model is evaluated using metrics 

such as accuracy, F1-Score, precision, and recall, which are mathematically expressed as, 
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where,  cP is the correct prediction, TP is the total prediction, cpP is the correct positive 

prediction, mpP is the missed positive prediction, cnP is the correct negative prediction, inpP and 

is the incorrect positive prediction.                                                                                                                            

4.5   Comparative Analysis 

The performance of the proposed ATSO Deep CNN model for mitosis classification is 

evaluated against existing models, such as SVM [6], A-FCN [7], Random Forest (RF) [16], 

LSTM [24], Deep CNN [21], RSO-Deep CNN [23], CSO-Deep CNN [22], Mi-DETR [13], and 

MDFS based on various training percentages to enhance performance for mitosis classification. 

4.5.1   Comparative Analysis with MITOS-ATYPIA-14 Dataset  

Figure 9 shows the evaluation of the proposed ATSO Deep CNN model for mitosis 

classification using the MITOS-ATYPIA-14 dataset based on training percentages. At 90% 

training, the proposed model achieved high performance compared to other existing models. 

Moreover, the model achieved a high accuracy of 94.49%, which is 2.44% higher than the Mi-

DETR model. Likewise, the proposed model’s F1-score is 94.48%, which is 2.72% greater than 

the Mi-DETR model. Similarly, the model attained a precision of 95.28% and a recall of 93.7%, 

which are 2.22% and 3.21% greater than the Mi-DETR model. 

  
Accuracy F1-Score 
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Figure 9. Comparative Analysis with the MITOS-ATYPIA-14 Dataset 

4.5.2   Comparative Analysis with BreCaHAD Dataset 

Figure 10 illustrates the evaluation of the proposed ATSO Deep CNN model for mitosis 

classification using the BreCaHAD Dataset based on various training percentages. At 90% of 

training, the proposed model achieved high performance and outperformed all the other 

existing models with an accuracy of 96.31%, which is 2.42% higher than the Mi-DETR model. 

Likewise, the proposed model’s F1-score is 96.3%, which is 2.24% more than the Mi-DETR 

model. Similarly, the model attained a precision of 96.84% and a recall of 95.78%, which is 

3.58% and 1.25% greater than those of the Mi-DETR model. 

  
Accuracy F1-Score 
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Figure 10. Comparative Analysis with the BreCaHAD Dataset 

4.6   Comparative Discussion 

The proposed ATSO-Deep CNN model is compared with other existing models to 

enhance the classification performance of the model. Generally, the conventional deep learning 

approaches used for mitosis classification attained better accuracy. However, those models 

have limitations such as complexity, time consumption, high computational cost, struggles with 

large datasets, and difficulty in complex feature extraction. Therefore, it is more important to 

design automated techniques in computer-aided systems for classifying mitosis. Most of the 

existing techniques obtained poor performance due to unbalanced data, computational issues, 

and noisy images, and failed to evaluate the mitosis level using the whole-slide image. Due to 

the above complex issues, the proposed ATSO-Deep CNN model is developed for classifying 

mitotic cells more accurately, which is highly suitable for medical research for the diagnosis of 

diseases with histopathological images. Here, the input histopathological image is pre-

processed, and segments are formed to generate the features for mitosis classification. 

Moreover, a filtering approach is utilized for enhancing the image quality, from which the 

segments are formed using the U-Net model with the ATSO algorithm, such that the features 

acquired from the segments yield informative patterns for mitosis classification. Applying the 

feature fusion mechanism in the classification approach maximizes the accuracy of a 

classification and helps to learn images fully with their rich internal information. The inclusion 

of the DpMIE-Net features for feature fusion extracts intricate patterns from the input, which 

reduces the complexity of the model. The hybrid ATSO optimization fine-tunes the parameters 

of the proposed DCNN model to find optimal solutions with high accuracy, which increases 

the convergence rate with minimum loss. More specifically, the evaluation results show that 

the proposed model achieved high accuracy based on a large dataset of the MITOS-ATYPIA-

14 dataset and the BreCaHAD dataset. Table 1 illustrates the comparative discussion of the 

ATSO-Deep CNN model. 
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Table 1. Comparative Discussion of the Proposed ATSO Deep CNN Model 

Metrics/ 

Methods 

MITOS-ATYPIA-14 dataset BreCaHAD Dataset 

Accuracy 

(%) 

F1-score 

(%) 

Precision 

(%) 

Recall 

(%) 

Accuracy 

(%) 

F1-score 

(%) 

Precision 

(%) 

Recall 

(%) 

RF 93.97 93.91 94.19 93.64 93.91 93.89 92.54 95.27 

SVM 82.41 82.39 83.48 81.34 90.05 89.96 87.20 92.90 

A-FCN 91.05 91.05 91.65 90.45 91.77 91.74 90.05 93.49 

LSTM 91.31 91.30 92.00 90.61 93.40 93.40 92.62 94.18 

Mi-DETR 92.19 91.91 93.16 90.69 93.98 93.97 93.37 94.58 

MDFS 92.36 93.01 94.39 91.67 94.42 94.42 94.11 94.73 

Deep CNN 93.26 93.24 94.71 91.81 95.10 95.10 95.28 94.91 

CSO-Deep CNN 93.63 93.61 94.81 92.45 95.52 95.52 95.64 95.40 

RSO-Deep CNN 93.95 93.94 95.00 92.91 95.79 95.79 96.11 95.46 

ATSO Deep CNN 94.49 94.48 95.28 93.70 96.31 96.30 96.84 95.78 

4.7   Statistical T-test Analysis 

The significance of the proposed ATSO Deep CNN model is evaluated based on 

statistical t-test analysis and compared with other existing models. The evaluation values show 

that the model attained p-values less than 0.05, indicating that the proposed model is 

statistically significant. Further, the statistical significance values are tabulated in Table 2. 

Table 2. Statistical T-test Analysis 
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 T-statistic 2.55 3.79 2.85 3.70 3.72 3.69 2.98 3.22 3.16 4.11 

P-value 0.05 0.01 0.04 0.01 0.01 0.01 0.03 0.02 0.03 0.01 
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F
1
-s

co
re

 T-statistic 2.55 3.79 2.89 3.67 3.59 3.47 3.01 3.19 3.21 4.08 

P-value 0.05 0.01 0.03 0.01 0.02 0.02 0.03 0.02 0.02 0.01 

P
re

ci
si

o
n

 T-statistic 2.46 3.81 2.97 3.71 3.65 3.56 3.04 3.20 3.29 4.10 

P-value 0.06 0.01 0.03 0.01 0.01 0.02 0.03 0.02 0.02 0.01 

R
ec

al
l 

T-statistic 2.64 3.77 2.80 3.63 3.50 3.37 2.98 3.19 3.13 4.05 

P-value 0.05 0.01 0.04 0.02 0.02 0.02 0.03 0.02 0.03 0.01 

M
IT

O
S

-A
T

Y
P

IA
-1

4
 d

at
as

et
 

A
cc

u
ra

cy
 T-statistic 3.90 2.64 3.10 3.42 3.39 3.30 3.18 3.44 3.83 3.81 

P-value 0.01 0.05 0.03 0.02 0.02 0.02 0.02 0.02 0.01 0.01 

F
1
-s

co
re

 T-statistic 3.91 2.64 3.11 3.42 3.40 3.30 3.18 3.44 3.83 3.81 

P-value 0.01 0.05 0.03 0.02 0.02 0.02 0.02 0.02 0.01 0.01 

P
re

ci
si

o
n

 T-statistic 4.05 3.10 3.35 3.47 3.49 3.28 3.06 3.34 3.66 3.97 

P-value 0.01 0.03 0.02 0.02 0.02 0.02 0.03 0.02 0.01 0.01 

R
ec

al
l T-statistic 3.75 2.18 2.80 3.36 3.28 3.31 3.30 3.54 3.92 3.61 

P-value 0.01 0.08 0.04 0.02 0.02 0.02 0.02 0.02 0.01 0.02 

4.8   Segmentation Analysis 

The proposed ATSO U-Net model is compared with existing models, such as MDFS, 

COADL-MNSC, W-UNET, U-Net++, Attention U-Net, and Trans U-Net, for the segmentation 

process. More specifically, the evaluation results show that the proposed ATSO U-Net model 

achieved an accuracy of 97.58% and outperformed the other models in segmentation. Further, 

the incorporation of the ATSO algorithm fine-tunes the U-Net for accurate segmentation. 

However, the existing models attain lower accuracy of 89.34% for MDFS, 91.86% for 

COADL-MNSC, 95.66% for W-UNET, 93.56% for U-Net++, 93.95% for Attention U-Net, 

and 96.57% for Tans U-Net.  Further, the proposed ATSO-U-Net model achieved high 

performance in segmentation. The segmentation analysis for the proposed model is depicted in 

Figure 11. 
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Figure 11. Segmentation Analysis 

4.9   Confusion Matrix 

The Confusion Matrix evaluates the performance of the proposed ATSO Deep CNN 

model and compares the predicted labels with actual labels to evaluate the model’s 

classification performance. The high values of true positives (TP) and true negatives (TN) 

indicate that the model effectively identified mitosis and non-mitosis patients. The proposed 

ATSO Deep CNN model correctly classifies 5532 instances as mitosis and 5102 instances as 

non-mitosis with fewer misclassifications, such as incorrectly identifying 132 instances as non-

mitosis and 131 instances as mitosis. Moreover, the proposed ATSO Deep CNN model 

provided robust results for mitosis classification. However, these misclassifications can have 

consequences in real-world applications, such as incorrect diagnosis, which may delay cancer 

treatment and increase the intensity of the disease. Figure 12 represents the confusion matrix 

of the proposed model.  

4.10   Computational Complexity 

The computational complexity explains the amount of time taken for the ATSO 

algorithm for segmentation and classification of mitosis. The proposed ATSO Deep CNN 

model utilized less computation time of 20.59s compared with other existing models, which 

enabled high-speed computation with minimal loss.  The execution time required for the 

existing models is as follows: RF of 20.83s, SVM of 20.60s, A-FCN of 20.64s, LSTM of 

20.72s, Mi-DETR of 20.72s, MDFS of 20.74s, Deep CNN of 20.80s, CSO-Deep CNN of 

20.80s, and RSO-Deep CNN of 20.81s. Which is higher compared with the proposed model. 

Figure 13 demonstrates the computational complexity of the proposed model. 
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Figure 12. Confusion Matrix 

 

Figure 13. Computational Complexity 

4.11   Ablation Study 

The fused feature extraction using the DpMIE-Net feature descriptor is incorporated 

into the MobileNetV2, InceptionV3, and EfficientNet models, which helps to extract complex 

and intricate patterns from the segmented images. The evaluation of these models attained 

accuracies of 0.92%, 0.92%, and 0.91% respectively, which shows the effectiveness of 

extracting significant features for accurate mitosis classification. Figure 14 depicts the 

effectiveness of the individual feature extraction models. 
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Figure 14. Ablation Study 

4.12   Convergence Analysis 

The proposed ATSO algorithm is analyzed based on the loss function and compared 

with other optimizations over 100 epochs to reduce the loss during performance. Specifically, 

the proposed ATSO algorithm attained a minimum loss value of 0.00001 at the 10th epoch, 

which explains the effectiveness of the proposed ATSO algorithm. Moreover, the remaining 

optimization techniques required more iterations to achieve the minimum loss. Fig. 15 

illustrates the performance of the ATSO algorithm compared to other existing algorithms in 

terms of the loss function. 

 

Figure 15. Convergence Analysis 

4.13   Error Analysis 

The Error analysis of the proposed ATSO Deep CNN model is compared with other 

existing models conducted across 100 epochs. The proposed model achieved a minimum loss 



Deep Learning Model with Enhanced Segmentation and Combined Feature Activation for Mitosis Classification 

 

 

 

ISSN: 2582-4252  1208 

 

of 0 at the 99th epochs, and the Deep CNN attained a loss of 0.003 at the 100th epochs. 

Similarly, the CSO-Deep CNN and RSO-Deep CNN models achieved a minimum loss of 0 at 

the 100th epoch. More specifically, the mitosis classification of the proposed model reduces 

errors and enhances classification accuracy. Figure 16 depicts the error analysis of the proposed 

ATSO Deep CNN model compared with other existing models. 

 

Figure 16. Error Analysis 

 Conclusion 

The detection of mitotic cells and their counting using histopathological image results 

is an important factor in assessing the risk of metastasis. This research developed the proposed 

ATSO-Deep CNN model to detect mitotic cells using histopathological images. Moreover, it 

considers segmentation and feature fusion mechanisms that adaptively tackle the challenges 

associated with medical images. The segmentation with the U-Net model yields informative 

patterns for mitosis classification, leading to high accuracy in the segmentation process. The 

utilization of fused feature extraction through DpMIE-Net yields the best performance with the 

MITOS-ATYPIA-14 and BreCaHAD datasets. It also computes pixel-wise values, which 

perform better with a smaller volume of training data. The Deep CNN classifier effectively 

learns complex patterns and reduces overfitting, enhancing the performance of the model for 

mitosis classification. The incorporation of the proposed Deep CNN model with the hybrid 

ATSO algorithm provides a faster convergence rate and tends to create optimal solutions, 

improving the accuracy rate and reducing errors. More specifically, the proposed ATSO-Deep 

CNN model achieved better performance in terms of an accuracy of 96.31%, an F1-score of 

96.3%, a precision of 96.84%, and a recall of 95.78% with a 90% training percentage for the 

BreCaHAD dataset. Moreover, the future direction of work will include a hybrid deep-learning 

classifier for better mitosis classification and grading of mitosis with histopathological images.  
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