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Abstract

Mitosis is a cell division mechanism vital for the growth of tissues and repair,
Histopathological images are used by pathologists to diagnose cancer, but mitosis classification
plays an important role in disease diagnosis. The mitotic counts are a proliferative indicator to
find the aggressiveness of breast cancer. Detecting the mitotic tumor cells in tissue areas is a
critical marker in cancer prognosis. Various researchers have focused on developing an
automatic detection framework to identify mitotic figures, but detecting and classifying mitosis
accurately remains a significant challenge in the medical field. Moreover, this research has
designed a proposed Aggressive Tracing Seeking Optimization (ATSO) based Deep
Convolutional Neural Network (Deep CNN) for the mitosis classification framework. The
proposed framework uses less memory and increases the convergence rate; hence, it is globally
efficient in achieving optimal solutions in the search space. The inspiration for considering the
ATSO is its excellent behavior, as well as its scalable and adaptable mechanism, which allows
optimization to move away from local optima. Moreover, it is computationally faster and
exhibits higher global convergence capability in searching for the best solution. ATSO
optimally trains a Deep CNN to generate higher classification accuracy by minimizing the false
rate using the loss function. More explicitly, the proposed ATSO-Deep CNN model attained
higher performance with an accuracy of 96.31%, an F1-score of 96.3%, precision of 96.84%,
and recall of 95.78% with a 90% training percentage for the BreCaHAD dataset.

Keywords: Mitosis Classification, Histopathological Images, Cancer Prognosis, Deep
Convolutional Neural Network, Feature Fusion, Segmentation.

1. Introduction

In recent decades, breast cancer has progressively amplified, and the age group affected
by this disease has gradually decreased. It is also a leading cause of death among women,
making the gradient an important measure for disease prognosis [1]. The Nottingham Grading
System (NGS) states that there are three significant morphological features in the Hematoxylin
and Eosin (H&E) slides used to grade breast cancer: mitotic count, nuclear pleomorphism, and
tubule development [2]. According to the NGS, mitosis is the most important indicator, offering
the strongest value among the three features. Achieving consensus on mitotic count among
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pathologists is very complex due to the subjectivity involved in identifying mitotic cells [3].
Mitosis is the process of nuclear division in living organisms, comprising four different phases:
metaphase, anaphase, prophase, and telophase [4]. In the procedure of cancer staging and
grading, cancer grading primarily detects the aggressiveness of cancer, while cancer staging
indicates how far it has progressed from the primary organ to other parts of the body [5]. Mitosis
detection serves as an index of the nuclear proliferation rate and is reported as the cancer class.
Therefore, mitosis detection and recognition play an essential role in accurate diagnosis and
grading systems, as well as in predicting effective treatment and survival [6]. Additionally,
mitotic count estimation mostly relies on the persistent identification of nuclei in whole slide
images (WSI). This identification is usually carried out by pathologists but is complex, time-
consuming, highly variable, and intensive. Therefore, it is essential to develop automated
methods in computer-assisted systems for mitosis classification [7]. Automated detection
techniques should aim to decrease time utilization, reduce labor costs, and minimize material
resources, in addition to enhancing diagnostic dependability. To develop an automatic
technique, one should first identify the nucleus and then properly identify mitosis in WSI.
Several machine-learning techniques have been introduced for identifying mitotic cells in
histopathological images [8] recently. Deep learning-based methods have attracted a lot of
interest among scholars in the field of disease diagnosis, particularly breast cancer
classification. The CNN model has made a tremendous contribution in many fields and has
automated most of the medical system's important processes. It is extremely challenging to
distinguish between normal partitions and mitotic partitions without high-resolution images
and the intervention of pathologists since mitotic partitions have textures and morphological
structures similar to those of normal partitions [9]. To understand the intricate structure of
mitosis, the U-Net model was created with segmentation maps and achieved quicker
segmentation using context-based learning. A series of advanced U-Net models have since been
proposed, including Attention U-Net, Inception U-Net, Residual U-Net, Dense U-Net, U-
Net++, and Adversarial U-Net, for different applications [10].

In the deep learning mechanism, the model fails to consider the weight transfer function
to improve detection performance. In multi-task deep learning, the Mask Mitosis model was
developed to detect mitosis with unlabeled and weakly annotated datasets, but it failed to
consider a fully annotated dataset [11]. The artificial intelligence-based method obtained better
performance but faced issues with computational cost. Moreover, it failed to use large datasets
to evaluate the accuracy of breast cancer cases. The deep mitosis detection framework showed
better detection results but failed to focus on generating accurate pixels for centroid
annotations, which enabled training a powerful detector. The mitosis detection method
designed in [12] performed well under small-sized datasets, but it does not consider large-sized
datasets for analyzing performance. It does not consider the ensemble model in analyzing
performance. The mitosis detection method in [13] analyzed performance without considering
the features of the deep learning framework. It achieved substantial improvement in both
reliability and accuracy, but determining the features resulted in a challenging task. To address
the above limitations in existing techniques, the proposed model was developed. The proposed
mitosis classification research utilizes effective preprocessing techniques, which overcome the
noisy, low-contrast, and external artifacts in the input histopathological images. Further, the
utilization of the ATSO algorithm with the U-Net model for segmentation selects the significant
features using segmentation maps, which helps to focus on accurate mitosis classification. The
proposed fused DpMIE-Net feature descriptor extracts the significant features from complex
structures, enabling the optimized DCNN for accurate detection. The substantial contribution
of this research is detailed as follows:

Journal of Innovative Image Processing, December 2025, Volume 7, Issue 4 1187



Deep Learning Model with Enhanced Segmentation and Combined Feature Activation for Mitosis Classification

e Optimized U-Net-based Segmentation:The segmentation process with the U-Net
model extracts deeper features from histological images, resulting in better
performance for mitosis classification. The integration of the ATSO algorithm tunes
the U-Net model for accurate segmentation with minimal errors.

e Fused DpMIE-Net Feature Extraction: The combination of Deep MobileNetV?2,
Inception-V3, and EfficientNet (DpMIE-Net) models in feature extraction extracts
significant and complex features from the segmented image. The feature fusion
mechanism increases the scalability and adaptability of the model, maximising the
accuracy of classification.

e Optimized Deep CNN-based Classification: The Deep CNN generates the feature
map at the convolution layer using different kernels. The ATSO optimization
incorporates different aggressive behaviors that improve convergence, which directly
impacts the Deep CNN model by reducing the computational cost and increasing
training speed.

The rest of the research paper is arranged as follows: Section 2 presents the problem
statement Section 3 describes the model of the system. Section 4 elaborates on the results and
experimentation details, and finally, Section 6 concludes the research.

2. Problem Statement

Different studies are analyzed to accurately detect the sample type in histopathology
images. However, a variety of partition shapes, sizes, colors, and scales in the histopathological
images make the detection task more complex. Moreover, the complex pattern of body
partitions, the similarity between malignant and benign samples, and low-quality images with
stain variations prevent the diagnosis mechanism from achieving higher accuracy. However,
the dataset has a class imbalance issue with mitosis and non-mitosis samples, which is
addressed by the loss function. Hence, the development of an effective deep learning model for
the early diagnosis of mitosis will help patients minimize the severity of the disease at an early
stage. Assume the image captured from the dataset, is used to detect normal or abnormal cases
by passing the image through various stages, like pre-processing, segmentation, feature
extraction, and d B etection.

D={B.B,,...B,...B,};1<i<n 0

The input images are processed effectively by eliminating external artifacts and are
segmented by the classifier model, and it is represented as, S, that is further trained by the
model to determine the optimal result. Further, the categorical cross-entropy loss is utilized to
overcome the class imbalance issues, where weights are assigned for the minority classes to
maintain the probability of each class. The loss function serves as the indicator used to
determine the performance of the learning mechanism in predicting accurate results. Here,
categorical cross-entropy is considered the loss function to analyze the performance of this
model.
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2)
Here, Lis the loss function, ¥ denotes the number of classes, § denotes the positive

score of the model, and & specifies the probability of the minority class. Each image undergoes
all the stages, and finally, the optimized network performs the detection mechanism to
determine whether the image is normal or abnormal.

3. Proposed Methodology

The early diagnosis of breast cancer significantly minimizes the mortality rate. For early
diagnosis, mitotic count plays an important role in predicting the prognosis, aggressiveness,
and grade. This research designs the ATSO-based Deep CNN model for the detection and
categorization of mitosis. The input image is sourced from the histopathological image dataset
that undergoes a pre-processing phase, where Gaussian blur and median filters are applied to
improve the quality of the image. The quality-enhanced image is taken to the image
segmentation module, in which an optimized U-net is implemented to generate the
segmentation results. The segmented image is passed to feature extraction, where DpMIE-Net
is used to capture the features independently and fuse them to generate the feature vector. The
feature map is fed to a Deep CNN tuned with ATSO optimization, where the input feature
vector is classified as mitosis or non-mitosis. Figure 1 illustrates the schematic view of the
proposed method.
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Figure 1. Workflow Diagram of the Proposed ATSO-based Deep CNN Model
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3.1 Input Image Collection

The input histopathological images are acquired from the MITOS-ATYPIA-14 [14] and
the BreCaHAD dataset [15]. However, these images are used to diagnose the disease in its
initial phase, which aids in improving the rate of survival of human beings. Consider the dataset
as Dwith nnumber of histopathological images and it is modeled as,

D={B};ie{l,..n} 3)

-th

Here, B, implying the image is placed at i" index in the dataset.

3.2 Image Pre-processing

The Input image B undergoes the pre-processing phase, where the Gaussian blur and
median filter methods are utilized to remove noise, external artifacts, and rectify the low-
contrast in the input images, which effectively increases the quality of the image compared to
other denoising techniques. These techniques will enhance the input images with good quality,
making them more suitable for further processing.

Gaussian blur: It is the filter commonly used to smooth the given image B The
Gaussian blur [16] method generates a preprocessed image by smoothing the input image
through the application of the Gaussian function to minimize the noise level. In general, this is
accomplished by convolving the image with a Gaussian kernel, modeled as,

1 _02 +h?

e 202

G(a,b,0)=

2

2ro 4)

Here, @and ?are location indices, O represent standard deviation and G denote a
Gaussian kernel.

Median filter: It serves as the non-linear model used to remove noise from images by
replacing each pixel value with the median value. It is a type of filter that uses a square-shaped
window with an adjustable size to perform the filtering process [17]. The pre-processed image
is denoted as S that is filtered by applying the pre-processing mechanism, and it is shown
below,

S=PP(B);ie{l,..n} 5)
Here, PPis referred to as the pre-processing phase, which includes a Gaussian blur and

a median filter mechanism to eliminate noise that exists in images, and the resulting image is

[Nx512x512x3]

represented as Shaving the dimension of , which is further sent for

segmentation.

3.3 Image Segmentation

The medical image segmentation process is crucial for complex anatomical structures,
and previous research has faced difficulties in achieving accurate segmentation. However, U-
Net has a deep learning architecture and is effective for accurate segmentation of complex
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medical images. U-Net segmentation extracts deeper image features from histological images.
Hence, U-Net is utilized in the proposed ATSO-Deep CNN model for segmentation, which
leads to accurate mitosis classification. Furthermore, the incorporation of the ATSO algorithm
tunes the parameters of U-Net for accurate segmentation. Segmentation is an image processing
method used to separate the image into several regions, and it also refers to the process of
specifying boundaries among separate semantic entities of the image. It is the procedure of
assigning a label to every pixel in an image in such a way that pixels with the same labels are
linked together based on some semantic property. The pre-processed image S is passed into a
segmentation mechanism, where the U-Net model [10] is applied to determine the segmented
image G . U-Net plays an essential role in the area of image analysis in medical research. The
major purpose of using the U-Net model is that images with fixed dimensions are reduced to
make the size of the image more visible in the display area and to create thumbnails of
consistent images for extracting deeper image features. It is mainly modeled with up-sampling
and down-sampling layers, and holds two different paths, the contracting path and the
expansive path. Accordingly, up-sampling is employed to enlarge an image, and the features
obtained from each layer of up-sampling and down-sampling are fused through a copy or crop
mechanism. Each block located in the contracting path contains two successive convolutions
with a specific size [3x3], a ReLU activation, and a maximum pooling layer. However, the

structural arrangement is continuous for a number of times, and more novelty of this structure
exists in an expansive path, and here, at every stage, the feature maps are upsampled by [2x2]

convolution. Accordingly, the feature map obtained from a respective layer of the contracting
path is allowed to crop and concatenate, and further, it is used with a feature map placed at the
up-sample layer, followed by this, [3x3]convolution and a ReLU activation is employed. A

[1x1] convolution is used to minimize the feature map to a number of channels and generate
segmented results, which is represented as, Ghaving a dimension [Nx512x512x3].
Accordingly, the energy function is calculated pixel-wise at the softmax layer using the cross-
entropy loss function given as,

CE = Zw logP

(6)
B(x): Cexp(Ac(x))
Sen(4.(x) .

Here, W(x)denotes the weight map, 4.(x) implies activation in the feature channel ¢ at

pixel position ¥, £ (x) specifies the approximated maximum function, and ¢ 'is the true label
of each pixel. The major benefit of using the U-Net model is that it contains a greater number
of feature channels on the upsampling side, which allows the network to broadcast contextual
details to the higher resolution layers. The U-Net is more effective in solving medical
segmentation issues, and it effectively performs segmentation for large images. Figure 2 shows
the architecture of the U-Net model [10].
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Figure 2. Architecture of the U-Net Model

3.4 Fused Feature Extraction

The segmented G as input and performs a feature extraction strategy, where optimal
features are effectively captured to determine mitosis detection. In this, the DpMIE-Net feature
descriptor employed three feature extraction mechanisms, such as Deep MobileNetV2,
Inception-V3, and EfficientNet, for effective feature extraction. Further, these models extract
more discriminative features from complex structures and fuse them to generate more
significant features that enhance mitosis classification. The fused feature extraction process
captures intricate patterns from the segmented results that are used to form a feature vector.
This feature vector is then used by the classifier for recognizing mitosis classification.

3.4.1 Deep MobileNet Version 2

Inputimage [~ = lution [ ReLU block-lJ
G) | | I |

ReLU block-n J [ConvolutionJ

Residual block Fully connected
layer
Conv Add
[1 X 1]
F

Figure 3. Architecture of MobileNetV2
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The structure of Deep MobileNetV2 [18] is based on the depth-wise separation of
convolutional layers. Here, standard convolution is used to process the input image directly for
generating output features. After generating a filtered output channel, these channels are
stacked and filtered using [1x1] convolution to integrate the stacked results into a single

channel. The process of depth-wise convolution is similar to standard convolution, but the
advantage of depth-wise convolution is that it minimizes the number of parameters used in the
process. However, it takes the input G with dimension [N x512x512x3]pixels and generates

the feature map as output F, with dimension [N X 28x28] , respectively. Figure 3 explains the
architecture of MobileNetV2.

3.4.2 Inception-Version 3

¢ |

—> Average — Maximum — Concatenation — Dropout
Convolution Pooling Pooling l
FC layer

<« Softmax

Figure 4. Architecture of Inception-V3

On the other hand, the segmented result G is fed as input to the Inception V3 model for
generating the feature map. Inception-V3 [19] is a deep-learning network used to generate
better feature maps by solving overfitting issues. The major benefit of using this feature
mechanism is that it employs convolution [Ix1]to minimize the number of feature channels

and increase training speed. It takes the input of segmented images G with size
[Nx512x512x3] and computes the feature map F, with dimensions [N x28x 28] by involving

different layers, like pooling, concatenation, dropout, and fully connected layers. Each layer
performs its functions and generates the output feature map with reduced dimensionality.
Figure 4 shows the structure of Inception-V3.

3.4.3 EfficientNet

Convolution MB MB Convolution

[3%3] Convolution Convolution [1x1]

Fully connected Maxpooling

F, layer

Figure 5. Structure of EfficientNet
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The Efficient Net takes the input as G with size [Nx512x512x3] and computes the
feature map as F, with size of [N x28x28], respectively. The efficient Net model [20] is an

effective learning mechanism utilized to generate a feature map by reducing the number of
channels. Accordingly, the benefit of using this network is the use of mobile inverted bottleneck
(MB) convolution in depth which eventually minimizes the kernel size. Figure 5 illustrates the
structure of EfficientNet.

More specifically, the features extracted through Deep MobileNetV2, Inception-V3,
and Efficient Net have dimensions [N X 28 x 28] that are concatenated as feature vectors. This

process helps improve performance by reducing dimensionality and noise from the input
images.

Finally, the feature vectors extracted from the Deep MobileNetV2, Inception-V3, and
Efficient Net models are concatenated to generate significant features, expressed as,

E} (8)

Here, Deep MobileNetV2, denoted as F;, Inception-V3 as F,and Efficient Net as F; , F
implying a feature vector with the size of [N x28x28x3], further used to detect mitosis.

F={F|.F,

3.5 Optimized Deep Convolutional Neural Network for Mitosis Classification

The features extracted from the models are integrated and fused into a feature vector F
that is given as input to the Deep CNN for classifying mitosis as normal or abnormal. The deep
CNN [21] model effectively learns and extracts higher levels of features that can differentiate
among various class labels in the classification scenario. The internal functions are performed
in the hidden layer, which is typically composed of various convolutional, pooling, and fully
connected layers. Here, extra layers are utilized to learn complicated features in order to achieve
a proper decision strategy. The input layer takes the feature vector F as input with a dimension
of [Nx28x28x3], which is further passed into the convolution layer with a dimension of

[N x28x 28 % 16] . The CNN architecture consists of 3 convolutional layers as well as 3 pooling

layers built to extract features from a training set, using small filter with sizes of (16, 32, 64),
and employs ReLU and softmax activation functions with one fully connected layer or dense
layer. The output retrieved after applying the ReLU activation function to the convolutional
layer is expressed as,

M=f(W=F+K) )

Here, fis the function, W and K the weight and the bias. Further, the features are
applied using the batch normalization technique to improve convergence speed for training the
model. Then, the max pooling layer is considered to limit the dimension of the feature map
while preserving confidential information. The max pooling output is sent to the next
convolutional layer with a dimension of [Nx28x28x32], and the process continues for
multiple layers. Then the dropout layer receives features with defined dimensions,
[N x 28 %28 x 64], which removes the irrelevant features during training, preventing overfitting

issues in the model. A flattened layer is used to reduce the dimension [N ><50176] . The dense
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layer receives features with a dimension of [N x1024], and the proposed ATSO algorithm is

applied in the dense layer, which tunes the parameters for accurate classification. Further, the
features are passed through the ReLU activation function and batch normalization layer, which
normalize the activations of the data and forward it to the dropout layer. The dense layer
computes output classes based on the input value through the softmax activation function, and
the output is mathematically specified as, O, with the dimension of [N x2], which shows two

classes: mitosis or non-mitosis. Accordingly, the loss function used to analyze the model's
performance of in predicting results is specified in Eq. (2). the training procedure of this model
is conducted by the ATSO algorithm that trains the hyperparameters, reducing the error rate
and enabling the achievement of the global best solution. Figure 6 demonstrates the structure
of the Deep CNN.

Dropout
(NV,28,28,16)
Input layer (V,28,28,32) N 28,28, 64 layer ATSO

e

_— '(N,50176)
(N,28,283) uput ayer
*  Mitosis 47:4___
*  Non mitosis i
: A
- (N1024)

’ Convolutional Layer ‘ Max pooling Layer

’ ReL.U activation Layer i Flatten Layer

Batch Normalization Dense Layer

Figure 6. Architecture of an Optimized Deep CNN for Mitosis Classification

3.5.1 Aggressive Tracing Seeking Optimization

The proposed ATSO algorithm is developed through the integration of the seeking and
tracing characteristics of Cat Swarm Optimization (CSO) [22] with the chasing and fighting
behavior of Rat Swarm Optimization (RSO) [23], respectively. These behaviors are very
aggressive and highly effective in solving optimization issues and avoiding convergence
towards a local optimum. However, these behaviors are the major motivation for building the
optimization model for tuning the U-Net model and Deep CNN model for accurate mitosis
segmentation and classification, which also reduces false errors and enhances the convergence
rate. The mathematical formulation of tuning the model to achieve high accuracy is explained
as follows.

Initialization: The initialization is made chaotically with the enhanced mechanism,
where the parameters can prevent the model from falling into the local minimum solution [22].
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The optimization is built as to be unpredictable with a random nature, providing an easy and
faster way of generating and storing information. The random solution is initialized in the
search space, let us assume, A, as v"" dimension of " individual, and the chaotic map factor

as Q. Hence, the chaotic sequence used to initialize the solution is mathematically modeled as,

H\ =H, i + O (H, e = H,y iy ) su €{L U ve {1V} (10)

Here, H represents the upper bound factor,

u,vmin

shows the lower bound factor, H

Q" represents the chaotic map at m” iteration, U indicates population size, and ¥ indicates total
dimension.

Fitness function: In this algorithm, the fitness function is tuned to measure the high
accuracy of the model in the classification process. The fitness function F, is evaluated as,

F =Max[Accuracy(H . )}

u,v

(11)

The maximum fitness value or maximum accuracy defines the solution to attain the
global best value by eliminating the local optima.

Solution Update: To find the optimal solution, the random solution is classified based
on the characteristics of rat and cat optimization, which is explained in the following section.

Case (i) Quick search phase: If ||H "

u,v

e T satisfied, the quick search phase is activated

by inheriting the resting characteristic features of rats and seeking the characteristics of cats.
The updated solution at this phase is given as,

vaﬂ:%[H:jv(l"'Rl*R2+X_Y+Ywat)] "

H" = (1+R, *2R2)H”’V +%[(X.H:fv)+Y(Hbest _HZV)} (13)
L . ” m

1y =S (0 Rox R HE, + X, +Y (Hy, —HL )| (14)

|E(H) - ()
VIR (HL) R (HL)) (15)
o
m,,. (16)
Y =2.rand( ) (17)

where & shows the fitness measure of the current and previous value and it lies between

0 and 1, R, denotes seeking range of selected dimension, 7 specifies current iteration, "max
denotes the maximum iteration, X and Y are the parameters, and ” and denotes the random
number.
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¢ T satisfied, the aggressive tracking phase

begins by incorporating the fighting behavior of rats and tracing the character of cats. The

position update solution of cat is defined as,

m+l __ m m
H =H +Z]

u,v (1 8)
Here, Z;' is the velocity at the previous iteration.
The fighting behavior of rats is given as,
m+l _ m _ m
Hu,v _‘Hbas‘t (X'Hu,v)-i_Y(Hbest Hu,v) (19)
With Eq. (18) and Eq. (19), the position update solution at this phase is modeled as,
L _ H' +Z" + ‘wa —(Xx.H],)+Y(H,, - H],)
2 (20)
m __ rzm—1 _ m
Zu,v _Zu,v +y'Z(Hbest Hu,v) (21)

m

Here, H,,, denotes the best search agent, y= e "= and its value lies between [0,1] and

z1s a constant value.
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Figure 7. Flowchart of Aggressive Tracing and Seeking Optimization
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Termination: The fitness function is evaluated for each result at every single iteration
to find high accuracy, and the optimization continues until the best result is obtained. After
reaching the best solution, the iteration is terminated. The ATSO trains the hyperparameters of
the model to determine optimal solutions for mitosis classification with a high convergence rate
and minimum misclassifications. Figure 7 shows the flowchart of the ATSO algorithm.

4. Results and Discussion

This division demonstrates the results as well as a discussion of the ATSO-Deep CNN
model by showing the improvement of the deep learning model through analysis with existing
methods.

4.1 Experimental Setup

The research on mitosis detection using the ATSO-Deep CNN model is executed in
PyCharm software with the Python 3.7 programming language, which requires Windows 11
0OS, 16 GB of RAM, 128 GB of ROM, an Intel 17-13770K processor, and 12GB of GPU
memory. The initial parameter settings involve a batch size of 32, learning rate of 0.001, 500
epochs, a dropout rate of 0.5, an activation function of ‘linear’, a loss function of ‘MSE’, 45
LSTM units and the default optimizer Adam. The input data is split with a 90:10 ratio for return
rate prediction, where 90% is used for training and 10% for testing purposes.

4.2 Dataset Description

MITOS-ATYPIA-14 dataset [14]: The dataset comprises a set of breast cancer biopsy
slides collected from the Pitié-Salpétriere Hospital in Paris, which contains 284 frames at X20
magnification and 1,136 frames at X40 magnification. These pathological images are stored in
CSV file format with frames of RGB bitmap images in TIFF format. Furthermore, the frames
at X20 magnification are subdivided into four different frames of X40 magnification, which
are used for annotating mitosis. The dimensions of the X20 frame are 1539 x 1376 pixels, and
the size of the magnification located inside tumors is 755.649 x 675.616 um?. The X40 frames
are annotated as mitosis or not mitosis by three pathologists. Likewise, nuclear atypia is
categorized into six types, size of nuclei, size of nucleoli, density of chromatin, thickness of
nuclear membrane, regularity of nuclear contour, and anisonucleosis.

BreCaHAD dataset [15]: The dataset, called the Breast Cancer Histopathological
Annotation and Diagnosis dataset (BreCaHAD), contains 162 breast cancer histopathology
images. This dataset is annotated into six classes based on their histological structures; mitosis,
apoptosis, tumor nuclei, non-tumor nuclei, tubule, and non-tubule. This diagnostic dataset has
492 files in 2 columns, stored in 1.06GB. The BreCaHAD dataset contains microscopic biopsy
images taken over a duration of 2 to 20 years and saved in (.TIFF) format, with RGB and 8-bit
depth in the channels. The dimensions of the annotated images are 1360 x 1024 pixels, and the
annotation data is given in JSON format. Also, this dataset includes four types of malignant
breast cancer; ductal carcinoma (DC), lobular carcinoma (LC), mucinous carcinoma (MC), and
tubular carcinoma (TC).
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4.3 Experimental Results

The experimental results of the ATSO-Deep CNN model for the mitosis classification
process are showcased in this section, which is illustrated in Figure 8.
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Gaussian
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Median
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Feature MobileNet
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EfficientN
et
Output

Figure 8. Experimental Results for Mitosis Classification

4.4 Performance Metrics

The performance of the proposed ATSO-Deep CNN model is evaluated using metrics
such as accuracy, F1-Score, precision, and recall, which are mathematically expressed as,
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Accuracy = £ (22)
B
F,
Precision = L (23)
P +P
cp inp
P,
Recall =—* (24)
P
mp
FScore = 2xPr e‘a'swn x Recall 25)
Precision x Recall

where, F,is the correct prediction, P is the total prediction, P, is the correct positive

prediction, P, is the missed positive prediction, P, is the correct negative prediction, P, and

is the incorrect positive prediction.

4.5 Comparative Analysis

The performance of the proposed ATSO Deep CNN model for mitosis classification is
evaluated against existing models, such as SVM [6], A-FCN [7], Random Forest (RF) [16],
LSTM [24], Deep CNN [21], RSO-Deep CNN [23], CSO-Deep CNN [22], Mi-DETR [13], and
MDEFS based on various training percentages to enhance performance for mitosis classification.

4.5.1 Comparative Analysis with MITOS-ATYPIA-14 Dataset

Figure 9 shows the evaluation of the proposed ATSO Deep CNN model for mitosis
classification using the MITOS-ATYPIA-14 dataset based on training percentages. At 90%
training, the proposed model achieved high performance compared to other existing models.
Moreover, the model achieved a high accuracy of 94.49%, which is 2.44% higher than the Mi-
DETR model. Likewise, the proposed model’s F1-score is 94.48%, which is 2.72% greater than
the Mi-DETR model. Similarly, the model attained a precision of 95.28% and a recall of 93.7%,
which are 2.22% and 3.21% greater than the Mi-DETR model.
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Figure 9. Comparative Analysis with the MITOS-ATYPIA-14 Dataset
4.5.2 Comparative Analysis with BreCaHAD Dataset

Figure 10 illustrates the evaluation of the proposed ATSO Deep CNN model for mitosis
classification using the BreCaHAD Dataset based on various training percentages. At 90% of
training, the proposed model achieved high performance and outperformed all the other
existing models with an accuracy of 96.31%, which is 2.42% higher than the Mi-DETR model.
Likewise, the proposed model’s F1-score is 96.3%, which is 2.24% more than the Mi-DETR
model. Similarly, the model attained a precision of 96.84% and a recall of 95.78%, which is
3.58% and 1.25% greater than those of the Mi-DETR model.
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Figure 10. Comparative Analysis with the BreCaHAD Dataset

4.6 Comparative Discussion

The proposed ATSO-Deep CNN model is compared with other existing models to
enhance the classification performance of the model. Generally, the conventional deep learning
approaches used for mitosis classification attained better accuracy. However, those models
have limitations such as complexity, time consumption, high computational cost, struggles with
large datasets, and difficulty in complex feature extraction. Therefore, it is more important to
design automated techniques in computer-aided systems for classifying mitosis. Most of the
existing techniques obtained poor performance due to unbalanced data, computational issues,
and noisy images, and failed to evaluate the mitosis level using the whole-slide image. Due to
the above complex issues, the proposed ATSO-Deep CNN model is developed for classifying
mitotic cells more accurately, which is highly suitable for medical research for the diagnosis of
diseases with histopathological images. Here, the input histopathological image is pre-
processed, and segments are formed to generate the features for mitosis classification.
Moreover, a filtering approach is utilized for enhancing the image quality, from which the
segments are formed using the U-Net model with the ATSO algorithm, such that the features
acquired from the segments yield informative patterns for mitosis classification. Applying the
feature fusion mechanism in the classification approach maximizes the accuracy of a
classification and helps to learn images fully with their rich internal information. The inclusion
of the DpMIE-Net features for feature fusion extracts intricate patterns from the input, which
reduces the complexity of the model. The hybrid ATSO optimization fine-tunes the parameters
of the proposed DCNN model to find optimal solutions with high accuracy, which increases
the convergence rate with minimum loss. More specifically, the evaluation results show that
the proposed model achieved high accuracy based on a large dataset of the MITOS-ATYPIA-
14 dataset and the BreCaHAD dataset. Table 1 illustrates the comparative discussion of the
ATSO-Deep CNN model.
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Table 1. Comparative Discussion of the Proposed ATSO Deep CNN Model

Metrics/ MITOS-ATYPIA-14 dataset BreCaHAD Dataset
Methods

Accuracy|F1-score|Precision|Recall|Accuracy [F1-score|Precision|Recall

(%) (%) (%) | o) | () (%) (%) | ()

RF 93.97 | 9391 | 94.19 |93.64| 9391 | 93.89 | 92.54 |95.27
SVM 82.41 82.39 | 83.48 |81.34| 90.05 | 89.96 | 87.20 |92.90
A-FCN 91.05 | 91.05 | 91.65 [90.45| 91.77 | 91.74 | 90.05 |93.49
LSTM 91.31 91.30 | 92.00 [90.61| 93.40 | 93.40 | 92.62 |94.18
Mi-DETR 92.19 | 9191 | 93.16 |90.69| 93.98 | 93.97 | 9337 |94.58
MDEFS 9236 | 93.01 | 9439 [91.67| 94.42 | 9442 | 94.11 |94.73
Deep CNN 9326 | 93.24 | 9471 |91.81| 95.10 | 95.10 | 95.28 |94.91

CSO-Deep CNN | 93.63 | 93.61 | 94.81 [92.45| 9552 | 9552 | 95.64 [95.40

RSO-Deep CNN | 9395 | 9394 | 95.00 |9291| 95.79 | 95.79 | 96.11 |95.46

ATSO Deep CNN | 94.49 | 9448 | 95.28 |93.70| 96.31 96.30 | 96.84 |95.78

4.7 Statistical T-test Analysis

The significance of the proposed ATSO Deep CNN model is evaluated based on
statistical t-test analysis and compared with other existing models. The evaluation values show
that the model attained p-values less than 0.05, indicating that the proposed model is
statistically significant. Further, the statistical significance values are tabulated in Table 2.

Table 2. Statistical T-test Analysis

Models z z %

Z Z &)
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4.8 Segmentation Analysis

The proposed ATSO U-Net model is compared with existing models, such as MDFS,
COADL-MNSC, W-UNET, U-Net++, Attention U-Net, and Trans U-Net, for the segmentation
process. More specifically, the evaluation results show that the proposed ATSO U-Net model
achieved an accuracy of 97.58% and outperformed the other models in segmentation. Further,
the incorporation of the ATSO algorithm fine-tunes the U-Net for accurate segmentation.
However, the existing models attain lower accuracy of 89.34% for MDFS, 91.86% for
COADL-MNSC, 95.66% for W-UNET, 93.56% for U-Net++, 93.95% for Attention U-Net,
and 96.57% for Tans U-Net.
performance in segmentation. The segmentation analysis for the proposed model is depicted in

Figure 11.
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Figure 11. Segmentation Analysis

4.9 Confusion Matrix

The Confusion Matrix evaluates the performance of the proposed ATSO Deep CNN
model and compares the predicted labels with actual labels to evaluate the model’s
classification performance. The high values of true positives (TP) and true negatives (TN)
indicate that the model effectively identified mitosis and non-mitosis patients. The proposed
ATSO Deep CNN model correctly classifies 5532 instances as mitosis and 5102 instances as
non-mitosis with fewer misclassifications, such as incorrectly identifying 132 instances as non-
mitosis and 131 instances as mitosis. Moreover, the proposed ATSO Deep CNN model
provided robust results for mitosis classification. However, these misclassifications can have
consequences in real-world applications, such as incorrect diagnosis, which may delay cancer
treatment and increase the intensity of the disease. Figure 12 represents the confusion matrix
of the proposed model.

4.10 Computational Complexity

The computational complexity explains the amount of time taken for the ATSO
algorithm for segmentation and classification of mitosis. The proposed ATSO Deep CNN
model utilized less computation time of 20.59s compared with other existing models, which
enabled high-speed computation with minimal loss. The execution time required for the
existing models is as follows: RF of 20.83s, SVM of 20.60s, A-FCN of 20.64s, LSTM of
20.72s, Mi-DETR of 20.72s, MDFS of 20.74s, Deep CNN of 20.80s, CSO-Deep CNN of
20.80s, and RSO-Deep CNN of 20.81s. Which is higher compared with the proposed model.
Figure 13 demonstrates the computational complexity of the proposed model.
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Figure 13. Computational Complexity
4.11 Ablation Study

The fused feature extraction using the DpMIE-Net feature descriptor is incorporated
into the MobileNetV2, InceptionV3, and EfficientNet models, which helps to extract complex
and intricate patterns from the segmented images. The evaluation of these models attained
accuracies of 0.92%, 0.92%, and 0.91% respectively, which shows the effectiveness of
extracting significant features for accurate mitosis classification. Figure 14 depicts the
effectiveness of the individual feature extraction models.
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Figure 14. Ablation Study

4.12 Convergence Analysis

The proposed ATSO algorithm is analyzed based on the loss function and compared
with other optimizations over 100 epochs to reduce the loss during performance. Specifically,
the proposed ATSO algorithm attained a minimum loss value of 0.00001 at the 10th epoch,
which explains the effectiveness of the proposed ATSO algorithm. Moreover, the remaining
optimization techniques required more iterations to achieve the minimum loss. Fig. 15
illustrates the performance of the ATSO algorithm compared to other existing algorithms in
terms of the loss function.
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Figure 15. Convergence Analysis

4.13 Error Analysis

The Error analysis of the proposed ATSO Deep CNN model is compared with other
existing models conducted across 100 epochs. The proposed model achieved a minimum loss
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of 0 at the 99th epochs, and the Deep CNN attained a loss of 0.003 at the 100th epochs.
Similarly, the CSO-Deep CNN and RSO-Deep CNN models achieved a minimum loss of 0 at
the 100th epoch. More specifically, the mitosis classification of the proposed model reduces
errors and enhances classification accuracy. Figure 16 depicts the error analysis of the proposed
ATSO Deep CNN model compared with other existing models.
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Figure 16. Error Analysis

5. Conclusion

The detection of mitotic cells and their counting using histopathological image results
is an important factor in assessing the risk of metastasis. This research developed the proposed
ATSO-Deep CNN model to detect mitotic cells using histopathological images. Moreover, it
considers segmentation and feature fusion mechanisms that adaptively tackle the challenges
associated with medical images. The segmentation with the U-Net model yields informative
patterns for mitosis classification, leading to high accuracy in the segmentation process. The
utilization of fused feature extraction through DpMIE-Net yields the best performance with the
MITOS-ATYPIA-14 and BreCaHAD datasets. It also computes pixel-wise values, which
perform better with a smaller volume of training data. The Deep CNN classifier effectively
learns complex patterns and reduces overfitting, enhancing the performance of the model for
mitosis classification. The incorporation of the proposed Deep CNN model with the hybrid
ATSO algorithm provides a faster convergence rate and tends to create optimal solutions,
improving the accuracy rate and reducing errors. More specifically, the proposed ATSO-Deep
CNN model achieved better performance in terms of an accuracy of 96.31%, an F1-score of
96.3%, a precision of 96.84%, and a recall of 95.78% with a 90% training percentage for the
BreCaHAD dataset. Moreover, the future direction of work will include a hybrid deep-learning
classifier for better mitosis classification and grading of mitosis with histopathological images.
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