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Abstract   

For patients with acute lymphoblastic leukemia (ALL), one of the main causes of 

cancer-related mortality, a timely and precise diagnosis is essential for improving their 

prognosis. To achieve this, this paper presents a sequential deep learning method for the 

classification of ALL based on the histopathological diagnosis of PBS images. The publicly 

accessible Kaggle dataset was used to extract image samples from 3256 benign patients and 

three types of malignancy (Initial Pre-B, Intermediate Pre-B, and Advanced Pro-B). Using data 

augmentation techniques, the database's size was increased to 6,512 photos to make the model 

more broadly applicable. After individual training and evaluation, the five pre-trained deep 

learning models—InceptionNetV3, EfficientNetB0, VGG19, ResNet50, and DenseNet201—

achieved accuracy rates of 93.2%, 92.5%, 91.8%, 90.3%, and 89.7%, respectively. The models' 

overall accuracy for a hierarchical class was evaluated at an astounding 98.15%. The 

performance evaluation indicates that the model is adjustable with an MCC of 0.973 and a 

Kappa of 0.97. In clinical use, the new approach significantly decreased the misclassification 

rate and outperformed the single models, indicating that it may be a dependable and effective 

diagnostic method for early detection of leukemia. 

Keywords: Acute Lymphoblastic Leukemia (ALL), Data Augmentation, Sequential Layered 

Framework, Deep Learning, Histopathological Images, Peripheral Blood Smear (PBS), 

Hierarchical Model. 

 Introduction 

Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic malignancy that 

involves the uncontrolled growth of immature lymphoid cells in the bone marrow and 

peripheral blood. Such aggressive growth interferes with normal hematopoiesis, and thus leads 

to impaired immune function and serious systemic consequences. Accurate and early diagnosis 

of ALL is crucial to enable early intervention and treatment, significantly improving patient 

survival and treatment outcomes. The conventional approach to diagnosis depends on 

pathologists performing microscopic examinations of peripheral blood smears and bone 

marrow aspirates. However, these methods are time-consuming, highly dependent on expert 
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interpretation, and susceptible to inconsistent outcomes. The subjectivity of manual diagnostics 

may lead to inconsistencies, possible misdiagnosis, and unnecessary delays in treatment 

initiation. The advent of artificial intelligence (AI) and deep learning (DL) technology has 

changed the face of medical imaging and diagnostic approaches. Sophisticated computational 

models with AI and DL-based systems enable the rapid processing of large amounts of data, 

detection of complex features in microscopic images, and discrimination between leukemia 

subtypes with extremely high accuracy. Advanced deep learning methods such as 

Convolutional Neural Networks (CNNs), transfer learning algorithms, and hybrid machine 

learning approaches have been found to be extremely accurate in distinguishing malignant 

lymphoblast cells from benign cells. These AI-based approaches significantly minimize the 

likelihood of human error, enhance the accuracy of diagnostics, and decrease the duration of 

clinical decision-making. 

While these developments have occurred, there are still barriers that prevent the 

optimization of AI-driven diagnostic systems for clinical application in the real-world. Current 

problems, including dataset imbalance, model explainability, and computational complexity, 

need to be solved to make such systems' robustness and reliability for applications. However, 

AI is all potential for transforming the practice of traditional pathological investigations, in 

bringing about early detection, and ultimately better prognosis in patients. Deep learning 

models such as ResNet, DenseNet, and Inception have been used for blood cell classification, 

showing better but inconsistent accuracy. Optimized CNNs with preprocessing offer a more 

reliable approach for leukemia diagnosis [1]. A superior performance CNN architecture has 

increased subtype detection accuracy to 96.2% via high-resolution cellular feature extraction 

[2]. Machine learning techniques like SVM and KNN have shown potential in automating 

detection but often suffer from limited accuracy and generalization. Hybrid approaches 

combining PSO with SVM significantly improve diagnostic performance, achieving an 

accuracy of 97.4% [3]. Transfer learning-based architecture such as VGG19, ResNet50 and 

EfficientNet-B3 achieved high precision rates of 96.64%, 98.28% and 99%, respectively [4]. 

Multiple Instance Learning for Leukemia Identification (MILLIE), a weakly supervised 

method enables reliable leukemia subtype detection with minimal annotations, achieving high 

AUC values above 0.9 [5]. Traditional CNNs and real-time object detection models like 

YOLOv5s have been applied to detect leukemic cells, achieving high accuracy of 97.2% while 

processing up to 80 frames per second [6]. Deep learning models combined with Transfer 

Learning architecture EfficientNet-B3 achieve high performance with testing accuracies 

around 96–97% and strong F1-scores [7]. Advanced deep learning architectures, such as Deep 

Dilated Residual Convolutional Neural Networks (DDRNet), leverage residual, dilated, and 

attention-based blocks to achieve high performance, with testing accuracy around 92% and F1 

scores of 0.96 [8]. Deep learning models, such as CNN-based custom architectures like 

ALLNET, have been applied to classify leukemic and healthy blood cells from microscopic 

images, achieving high performance with an accuracy around 95.5%, an F1-score of 95.4%, 

and precision of 96% [9].  

Hybrid deep learning models, such as the HCNN-IAS algorithm, combine local and 

global feature extraction with self-attention mechanisms to classify multiple leukemia types 

effectively. Recent studies show that HCNN-IAS achieves high performance, with 

classification accuracy, precision, and recall around 99% [10]. A CNN model trained on more 

than 10000 images recorded a generalization accuracy of 96.5%, demonstrating the superiority 

of a large amount of training data in leukemia detection [11]. Deep learning models, particularly 

CNNs, have been applied for automated classification of B-ALL lymphoblasts and normal 
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cells, but individual models often struggle due to the similarity of nuclei. The study of ensemble 

approaches using multiple CNNs with majority voting can achieve high performance, with 

accuracy around 98.5%, sensitivity 99.4%, and specificity 96.7% [12]. Hybrid models 

combining deep learning feature extractors, such as Inception v3, with advanced classifiers like 

XGBoost have been shown to improve classification performance, with a weighted F1 score of 

0.986 [13]. An end to end deep learning model that integrates segmentation and classification 

performed at 96.8% accuracy and effectively extracts diagnostically relevant features while 

reducing noise [14]. Deep learning models, such as CNN-based classifiers, have been explored 

to distinguish leukemic cells, with efforts also focused on making these models explainable for 

clinical interpretation. Although initial results achieved moderate accuracy (68%), studies 

indicate that the models learn meaningful features, such as cell contours, highlighting the 

potential for further development of interpretable and automated leukemia detection systems 

[15]. 

The research aims to automate the detection of leukemia, aiding in early diagnosis and 

reducing the burden of pathology. The Kaggle ALL dataset was enlarged using data 

augmentation to expand the number of images from 3,256 to 6,512 which include both benign 

cases and four types of malignancies. A comparison of 5 pre-trained CNN models such as 

InceptionV3, EfficientNetB0, VGG19, ResNet50, and DenseNet201 was carried out. A new 

hybrid framework was proposed, combining transfer learning and a hierarchical approach, to 

address difficulties such as class imbalance and overlapping features in order to enhance 

accuracy. Unlike traditional ensemble or flat classification methods, our proposed hierarchical 

framework breaks down the complex leukemia classification task into stages that are 

meaningful in a clinical context. This approach improves both interpretability and performance. 

This study introduces a hierarchical classification framework for leukemia that mirrors clinical 

decision-making, progressively distinguishing between normal cases, leukemia types, and 

subtypes. Unlike prior approaches, our method improves interpretability, error handling, and 

performance by structuring the classification process rather than treating it as a flat or parallel 

ensemble task. This framework is significantly   superior in leukemia detection, achieving high 

accuracy and effective classification. 

 Dataset Collection and Preprocessing 

2.1   Dataset Overview 

3,256 high-resolution PBS images from the study are included in a large, high-quality 

dataset that is publicly available and was acquired from Kaggle. The dataset is classified into 

four classes: All, which is represented by a varied collection of ALL cases (807 images), Pro-

B (586 images), Early Pre-B (1,014 images), and Pre-B (849 images). Because it provides 

accurate and reliable ALL detection through histopathological Peripheral Blood Smear (PBS) 

image analysis, it is a valuable dataset for deep learning model training and validation. 

2.2   Data Augmentation 

These advanced data augmentation methods were used to overcome overfitting and 

increase the generalization ability of models [16]. Through a range of adjustments, including 

flipping, zooming, brightness, shifting, and spatial rotation, the dataset grew to 6,512 images. 

benign (1,614 images). Pre-B (2,028 images) Early B (1,698 images), and Pro-B (1,172 

images). Robust deep learning models are trained and validated for image preprocessing, 
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dataset splitting, and the accurate and consistent detection of ALL from histopathological PBS 

images using this data augmentation dataset. To avoid data leaks, Macenko stain normalization 

is applied only to the training set. Only training data is used to train stain normalization in order 

to prevent data leaks and preserve objective validation/test set evaluation. 

In order to maintain uniformity in the results concerning the preserved core 

morphological characteristics to enable proper classification, the images were resized to a 

standard size of 224 × 224 pixels. The distribution of strategic data among training, test, and 

validation sets was 80%, 10%, and 10% in order to guarantee a robust model with thorough 

testing and to avoid overfitting. 

2.3   Using Pre-trained Models for Transfer Learning 

For the detection of all subtypes of ALL, 5 pre-trained models i.e., InceptionNetV3, 

EfficientNetB0, VGG19, ResNet50, and DenseNet201 were used via a transfer learning 

approach to identify the microscopic characteristics. Hierarchical structure architecture reduced 

misclassification by combining models progressively to downscale misclassification. Model 

performance was validated by different performance metrics in order to find the proper as well 

as efficient classification [17]. The proposed methodology for classifying leukemia cancer is 

shown in Figure 1. 

 

Figure 1. Methodology Proposed for Leukemia Cancer Classification 
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2.4   Framework for a Hierarchical Model  

A stratified structure was constructed that maximized detection precision using stepwise 

combining of such models in proportion to their individual precision. This layered structure 

provided substantial data that reduced misclassification errors while increasing aggregate 

diagnostic accuracy. A broad set of performance measures was used to validate the model’s 

effectiveness, hence guaranteeing reliable and accurate classification. These metrics enabled a 

full measurement of the prediction algorithm’s proficiency in distinguishing various subtypes 

of ALL with the highest level of reliability.  

 Deep Learning Models for Feature Extraction 

This work proposes a novel hierarchical scheme that uses preestablished deep neural 

network architectures to enhance ALL classification performance via histopathological PBS 

images. Our approach gradually increases attribute recognition and classification using the 

models based on degrees of accuracy. The models applied are EfficientNetB0, InceptionNetV3, 

VGG19, ResNet50 and DenseNet201, these are adapted to fit this application. InceptionV3, 

EfficientNetB0, VGG19, ResNet50, and DenseNet201 model selected because they offer 

different feature extraction abilities. EfficientNetB0 is a lightweight model. ResNet50 includes 

deep residual networks. DenseNet201 features densely connected structures. InceptionV3 is 

based on inception architectures, and VGG19 is a classic deep CNN. This variety ensures 

strength and minimizes architectural bias. 

3.1   EfficientNetB0 

EfficientNetB0, one model from Google’s EfficientNet family, is designed to achieve 

high accuracy at a low computational cost. It applies a unified scaling method to optimally 

scale the depth, width, and resolution of the network. Some architectural features used to help 

preserve key characteristics while minimizing computational complexity include inverted 

residual bottlenecks and squeeze-and-excitation (SE) modules. The smooth activation 

functions of the model also enhance prediction quality. In a hierarchical model, EfficientNetB0 

serves as the first layer, effectively capturing main image features while filtering out noise. Its 

compact form makes it an excellent choice for starting with large datasets, allowing other 

models to focus on finer analysis. Figure 2 shows the EfficientNetB0 model architecture.  

 

Figure 2. EfficientNetB0 Model Architecture 
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3.2   InceptionNetV3 

InceptionNetV3 is an optimized convolutional neural network developed by Google, 

which is meant to achieve high-accuracy and high efficiency in large-scale image classification 

design. It utilizes inception modules, which facilitate both parallel convolutions for different 

sizes of filters, which can be used to capture features at different scales. Notable improvements 

include split convolutions to achieve maximum utility, other classifiers to facilitate stronger 

gradient propagation to avoid the vanishing gradient issue and global average pooling to reduce 

overfitting. Figure 3 shows the InceptionNetV3 model architecture. On the hierarchical level, 

InceptionNetV3 enhances the features gained by EfficientNetB0 due to multi-scale analysis. 

This phase enhances intermediate representations, providing a more complex feature set for the 

subsequent models. 

 

Figure 3. InceptionNetV3 Model Architecture 

3.3   VGG19 

VGG19 is a strong deep network of CNN defined by its simple and homogeneous 

architecture consisting of 16 convolutional layers and 3 fully connected layers that use small 

3×3 filters for accurate feature extraction with great computational efficiency. VGG19 builds 

on the results of previous models by feeding intermediate features into a sequence of its layers. 

Such architecture allows this model to reach its full potential in identifying fine features with 

high accuracy in PBS images and can therefore differentiate between ALL subtypes. Figure 4 

shows the VGG19 model architecture.  

3.4   ResNet50 

ResNet50, a 50-layer deep neural network addresses the vanishing gradient problem 

due to its residual learning architecture. Through the use of skip connections, the network 

provides a mechanism for re-using features from one layer to the next thus facilitating the 

extraction of deep representations with performance invariance. By refining the complex 

patterns that have been fragmented as a result of processing by the previous models, ResNet50 

becomes very important in the hierarchical framework. Figure 5 shows the ResNet50 model 

architecture.  
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Figure 4. VGG19 Model Architecture 

 

Figure 5. ResNet50 Model Architecture 

3.5   DenseNet201 

DenseNet201 connects each layer to all previous layers, enabling efficient feature reuse 

and mitigating the vanishing gradient issue. It utilizes dense blocks and transition layers to 

retain detailed features while reducing dimensionality. As the final stage in the hierarchical 

framework, it consolidates extracted features for precise ALL subtype classification, effectively 

preserving hierarchical information from earlier models. Figure 6 shows the DenseNet 

201model architecture.  

3.6   Hierarchical Framework 

The hierarchical approach increases classification by utilizing the models’ strengths in 

a cascade. Figure 7 shows the EfficientNetB0, which focuses on efficiency and noise reduction, 

while DenseNet201 perfects the finer details. The organization of the models by ascending 

accuracy reduces errors at every step and enhances ALL detection. This layered framework 

outperforms single model methods positioning it as a strong asset for analysis of medical 

images with accuracy. The average inference time per image for the hierarchical framework 
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was studied that of standalone CNNs. It is slightly higher because of multi-stage processing; 

however, the framework remains efficient enough to be used for near real-time diagnosis. 

 

Figure 6. DenseNet201 Model Architecture 

 

Figure 7. EfficientNetB0 model Architecture 

In the hierarchy, if a classifier predicts with low confidence, the sample moves to the 

next stage for re-evaluation. This is called error propagation. Final decisions are made using a 

majority voting scheme. The class with the highest combined confidence is selected. The order 

of models is set based on their validation accuracy for each subtype and their computational 

efficiency. Lightweight models handle the initial filtering, while deeper models refine the final 

classification. 

3.7   Error Propagation, Decision Combination, and Model Order 

In the suggested hierarchical structure, handling errors and decision flow are clearly 

defined. Error propagation occurs when a classifier issues a prediction with low certainty. In 

such cases, the samples are handed over to the next classifier in the hierarchy with a lower 

Errors passed with reduced 

confidence 

Decisions combined by confidence voting 
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confidence weight, which allows potential incorrect classifications to be deliberated at further 

levels in the hierarchy. Data augmentation with varying magnification and color jittering is 

applied to improve robustness.  

A majority voting scheme is used to reach a final prediction by gathering the outputs of 

the various classifiers that were established. The final decision is based on the class with the 

highest accumulated confidence score. 

The model hierarchy is not arbitrary. It was developed around two core concepts: 

• Validation accuracy per subtype – models that produced higher accuracy for 

specific leukemia subtypes were developed earlier to better filter out samples. 

• Computational efficiency – models that are lighter to run are designed at the start 

to easily screen images, while heavier or more complex models are used at later 

levels to classify more accurately. 

Overall, this design allows for a manageable degree of both efficiency and accuracy 

while minimizing error propagation across levels. 

 Result and discussion 

By simulating the clinical decision-making process and gradually improving 

classification at each step, the hierarchy introduces novelty. Compared to parallel ensembling, 

this structured method improves error handling and interpretability. The hierarchy simulates 

clinical decision-making through a step-by-step refinement of predictions with broad-to-fine 

levels, whereas ensemble methods parallelize output aggregation. Additionally, this improves 

interpretability, lessens the spread of errors, and has positive clinical implications. In this 

section, we examine the ability of five distinct deep learning models (EfficientNetB0, 

InceptionNetV3, VGG19, ResNet50, and DenseNet201) and the proposed hierarchical 

framework to differentiate histopathological PBS images from Acute Lymphoblastic Leukemia 

(ALL). Model performance is measured using indicators extracted from the models' operations.  

Accuracy refers to the proportion of correct predictions to the entire population of cases, 

which is a general indicator of how well the model performs. High accuracy indeed means 

lower rate of errors, but in data that are imbalanced, it is not a valid measure. Consequently, 

the use of additional evaluation indicators is needed for a better analysis.  

Accuracy   : (TP+TN)/(TP+FN+FP+TN) 

By dividing the number of accurate positive predictions by the total number of predicted 

positives, one can determine the accuracy of positive detection. It is particularly useful in fields 

like medicine where false positives are important. A highly accurate model ensures the accurate 

identification of positive cases by successfully reducing false positives. 

                                        Precision    : TP/(TP+FP) 

Recall (Sensitivity) assesses the model’s   capability to accurately detect all actual 

positive cases by comparing true positives to total positives It is important in scenarios where 

missing positive instances can have severe consequences. A model with strong recall 

successfully identifies most of the true positive instances. 
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                                          Recall      :  TP/(TP+FN) 

F1-Score is a metric that balances Precision and Recall in such a way that both 

mislabeled positive and negative samples get fairly assessed. It proves to be useful where 

maintaining such balance enhances overall performance in imbalanced datasets. The model 

works well for both errors where the F1-score is best. 

F1-score    : 2*Precision*Recall/ Precision+Recall 

F1-Score is one measure that balances Precision and Recall, ensuring both incorrectly 

labeled positive and negative examples are properly evaluated in a fair manner. It comes in 

handy where keeping this balance improves overall performance in datasets that are 

imbalanced. The model performs well for both types of mistakes where the F1-score is optimal.  

MCC : (TP * TN - FP * FN) / ((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN))1/2 

A more detailed breakdown is provided by the Matthews Correlation Coefficient 

(MCC), which considers all elements of the confusion matrix. MCC is reliable, unlike accuracy, 

even when class distributions are heavily skewed. Since it provides a balanced measure, it is 

an informative measure for binary classification. 

                                           Kappa      : (P₀ - Pₑ) / (1 - Pₑ) 

Cohen's Kappa estimates the level of agreement between predicted and true 

classifications. The higher the Kappa value, the more accurate the model predictions are. It is 

commonly employed to measure inter-rater reliability in categorical classification problems. 

To address imbalanced subtypes, we applied class weights and data augmentation, and 

evaluated performance using MCC and Kappa metrics to ensure balanced results. 

 

Figure 8. EfficientNetB0 Model: Performance Trends of Accuracy and Loss 

Throughout Model Development 

Figure 8 shows the performance of the EfficientNetB0 model over 10 epochs. Training 

accuracy steadily increases to 96%, while validation accuracy fluctuates but generally trends 

upward. Early training loss steeply decreases and saturates after the fourth epoch, showing good 
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convergence. Total validation loss reduces, despite   occasional mid-epoch dips, which 

indicates excellent generalization. 

 

Figure 9. InceptionV3 Model: Performance Trends of Accuracy and Loss Throughout 

Model Development 

Figure 9 illustrates the InceptionV3 model's performance during 10 epochs. Training 

accuracy increases to 77%, whereas validation accuracy oscillates but continues to rise, 

indicating successful learning. Training loss decreases very rapidly, indicating strong 

convergence, while validation loss follows a similar diminishing trend with little oscillation. 

Overall, the model is performs well with hardly any signs of overfitting. 

 

Figure 10. VGG19 Model: Performance Trends of Accuracy and Loss Throughout 

Model Development 

As can be observed in Figure 10, the VGG19 model was trained for 10 epochs. Training 

accuracy is 96% whereas validation accuracy plateaus at around 94%, which indicates excellent 

generalization. As training becomes more rigorous, the training error will continue to decline, 

though the validation error remains oscillating, but it is trending downward. Although the 
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model's departures from the uniform pattern were small, it is clear that it was a good learner 

and overall performed well. 

 

Figure 11. ResNet50 Model: Performance Trends of Accuracy and Loss Throughout 

Model Development 

Figure 11 captures the performance trends of the ResNet50 model in terms of 

performance over 10 training epochs. The model has a training accuracy of 97% and a very 

high validation accuracy of 95%, reflecting its strong generalization. Although there is a 

decreasing loss in training, there are oscillating trends in validation loss, which depend on the 

datasets. Overall, the performance reflected by the model is quite high, except for some subtle 

indications of overfitting. 

 

Figure 12. DenseNet201 Model: Performance Trends of Accuracy and Loss 

Throughout Model Development 

Figure 12 displays the performance of DenseNet201 over 10 epochs. Training accuracy 

rises to around 96%, while validation accuracy oscillates but shows a trend of increase, 

indicating steady learning.  
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Figure 13. Hierarchical Approach: Performance Trends of Accuracy and Loss 

Throughout Model Development 

Training loss drops and stabilizes, showing effective convergence. Validation loss 

oscillates initially but settles in. The difference in training and validation accuracy demonstrates 

moderate overfitting in some epochs, but the model's overall performance on both datasets 

indicates consistency. To perform optimally, we meticulously optimized key hyperparameters 

for each backbone network. Exactly, we separately optimized the learning rate, batch size, and 

dropout rate in order to obtain the best trade-off between the rate of convergence and 

generalizability. These hyperparameter tuning details are incorporated within the Methodology 

section.  

Figure 13 indicates the model's performance over 10 epochs. Training accuracy ranges 

from 36.94% to 91.75%, while validation accuracy of 95.99% in the 6th epoch is plateaued. By 

reducing overfitting and enhancing ALL classification with better precision and recall at an 

average accuracy of 98.15%, the approach is more efficient. 

 

Figure 14. Assessment of Model Performance Using Precision, Recall, and F1-Score 

Across Various Classes 
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Figure 15. Analysis of Model Performance Based on Accuracy, Kappa, MCC, and 

Error Rate 

Figure 14 and Figure 15 compare the performances of five deep models—DenseNet201, 

EfficientNetB0, InceptionV3, ResNet50, and VGG19—for ALL classification from 

histopathological images. DenseNet201 achieved the highest accuracy (95.8%) with good 

precision, recall, and F1-score along with the lowest error rate (4.2%). EfficientNetB0 achieved 

89.66% accuracy but struggled in Pre-B classification, resulting in a higher error rate (10.3%). 

InceptionV3 achieved the lowest accuracy (78.62%) and the highest error rate (21%). ResNet50 

(94.01%) and VGG19 (93.55%) performed well, particularly for Pro-B, with minimal error 

rates (6%) and excellent MCC and Kappa values, which are measures of reliability.  The 

hierarchy of the best-performing individual backbone is compared. Although the hierarchy 

introduces additional computational steps, the measurable benefits in accuracy, interpretability, 

and error recovery justify the increased complexity. 

Table 1. Performance Of Hierarchical Approach 

Model Accuracy Precision Recall F1-Score Kappa 

Hierarchical 

approach 

0.9815 Non-

Malignant: 

94% 

Non-

Malignant: 

0.96 

Non-Malignant: 

0.95 

 

0.97 

Initial Pre-B: 

98% 

Initial Pre-B: 

0.96 

, Initial Pre-B: 

0.97 

Intermediate 

Pre-B: 100% 

Intermediate 

Pre-B: 1.00 

Intermediate Pre-

B: 1.00 

Advanced Pro-

B: 99% 

Advanced Pro-

B: 1.00 

Advanced Pro-B: 

0.99 

Table 1 highlights the superior performance of the Hierarchical Approach, which 

arranges models from lower to higher accuracy—InceptionV3, EfficientNetB0, VGG19, 

ResNet50, and DenseNet201. Achieving 98.15% accuracy, it surpasses individual models with 

high precision, recall, and F1-scores. The precision values are as follows: Non-Malignant: 0.94, 

Initial Pre-B: 0.98, Intermediate Pre-B: 1.00, and Advanced Pro-B: 0.99. Recall scores show 

strong results, with Non-Malignant: 0.96, Initial Pre-B: 0.96, Intermediate Pre-B: 1.00, and 

Advanced Pro-B: 1.00. The F1-scores further validate the model’s reliable classification 
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performance, with Non-Malignant: 0.95, Initial Pre-B: 0.97, Intermediate Pre-B: 1.00, and 

Advanced Pro-B: 0.99, indicating its consistent ability to classify accurately across all classes. 

When we analyzed subtype results, we concluded that performance drops slightly when there 

is very high visual similarity between classes (Pre-B versus Pro-B). On the other hand, the 

hierarchical arrangement reduces misclassification by gradually narrowing the set of 

alternatives, all the while maintaining very high Kappa (0.97) and MCC (0.973) values. 

The Hierarchical Approach demonstrates high reliability with an MCC of 0.973 and a 

Kappa value of 0.97. It achieves an error rate of just 1.85%, confirming its robustness. The 

classification report further highlights its strong performance, with an overall accuracy of 98% 

and a macro average of 98%, proving its superiority over individual models. Besides internal 

testing, the model was tested on a separate external dataset to verify domain shift. Results 

revealed consistent performance, showing high generalization ability. 

4.1   Comparative Analysis 

The comparative assessment revealed differences in the performance of the selected 

models. DenseNet201 performed the best in terms of accuracy and robustness because of its 

dense connectivity and feature reuse which underpins improvement in gradient flow and 

representation of subtle morphological details between leukemia subtypes. Conversely, 

EfficientNetB0, as a lightweight model, provided   faster inference and lower computational 

costs, but its slightly lower accuracy shows the balance between efficiency and classification.  

VGG19 and ResNet50 were similarly balanced but their shallow depth, compared to 

DenseNet201, limited their performance in representing fine graphical details of the H&E 

stained histopathology.  

This analysis demonstrates that model selection is often a function of the application 

DenseNet201 would provide maximal accuracy in a research clinic context, while 

EfficientNetB0 is best suited to resource-constrained or real-time situations. Table 2 shows the 

comparative models performance.  

Table 2. Comparative Performance of Hierarchical Approach 

Model Key Strengths Limitations Observed 

Performance 

DenseNet201 Feature reuse, deep 

connectivity (better 

gradient flow) 

High computational 

demand 

Best overall accuracy 

and robustness 

ResNet50 Residual connections 

(avoids vanishing 

gradients) 

Moderate depth limits 

fine-grained feature 

capture 

Good balanced 

performance 

VGG19 Simplicity, strong 

baseline 

Very high parameter 

count, slower training 

Moderate accuracy, 

higher cost 

InceptionV3 Multi-scale feature 

extraction 

More complex 

architecture 

Performs well but less 

robust than 

DenseNet201 

EfficientNetB0 Lightweight, efficient, 

fast inference 

Lower representational 

power 

Faster execution, 

slightly reduced 

accuracy 
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 Conclusion And Future Work 

This study compares the performance of five different deep learning models for the 

classification of acute lymphoblastic leukemia (ALL) using a hierarchical approach: 

DenseNet201, EfficientNetB0, InceptionV3, VGG19, and ResNet50. The overall result 

significantly improves when models are ranked from worst to best in terms of accuracy, with 

98.15% outperforming each model separately. Among these, DenseNet201 has the highest 

accuracy at 95.8%, followed by ResNet50 and VGG19 with 94.01% and 93.55% accuracy, 

respectively; however, EfficientNetB0 and InceptionV3, with 89.66% and 78.62% accuracy, 

respectively, cannot classify all of the subtypes of ALL. Through hierarchical architecture, the 

individual strengths of each model enhance the accuracy of classification in Non-Malignant, 

Initial Pre-B, Intermediate Pre-B, and Advanced Pro-B subtypes. Additionally, the method 

reduces errors in classification and provides more consistent performance across subtypes. The 

high matrix correlation coefficient (MCC) of 0.973, Kappa statistic of 0.97, and very low error 

rate of 1.85% prove its reliability and robustness as a method for ALL diagnosis. The 

application of such models offers a diagnostic method that is both precise and clinically 

efficient. There is no large external data access, pre-trained CNN dependency, or potential stain 

variation issues. External validations, transformer models, and stain normalization 

improvements are the way forward.  
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