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Abstract

For patients with acute lymphoblastic leukemia (ALL), one of the main causes of
cancer-related mortality, a timely and precise diagnosis is essential for improving their
prognosis. To achieve this, this paper presents a sequential deep learning method for the
classification of ALL based on the histopathological diagnosis of PBS images. The publicly
accessible Kaggle dataset was used to extract image samples from 3256 benign patients and
three types of malignancy (Initial Pre-B, Intermediate Pre-B, and Advanced Pro-B). Using data
augmentation techniques, the database's size was increased to 6,512 photos to make the model
more broadly applicable. After individual training and evaluation, the five pre-trained deep
learning models—InceptionNetV3, EfficientNetB0, VGG19, ResNet50, and DenseNet201—
achieved accuracy rates of 93.2%, 92.5%, 91.8%, 90.3%, and 89.7%, respectively. The models'
overall accuracy for a hierarchical class was evaluated at an astounding 98.15%. The
performance evaluation indicates that the model is adjustable with an MCC of 0.973 and a
Kappa of 0.97. In clinical use, the new approach significantly decreased the misclassification
rate and outperformed the single models, indicating that it may be a dependable and effective
diagnostic method for early detection of leukemia.

Keywords: Acute Lymphoblastic Leukemia (ALL), Data Augmentation, Sequential Layered
Framework, Deep Learning, Histopathological Images, Peripheral Blood Smear (PBS),
Hierarchical Model.

1. Introduction

Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic malignancy that
involves the uncontrolled growth of immature lymphoid cells in the bone marrow and
peripheral blood. Such aggressive growth interferes with normal hematopoiesis, and thus leads
to impaired immune function and serious systemic consequences. Accurate and early diagnosis
of ALL is crucial to enable early intervention and treatment, significantly improving patient
survival and treatment outcomes. The conventional approach to diagnosis depends on
pathologists performing microscopic examinations of peripheral blood smears and bone
marrow aspirates. However, these methods are time-consuming, highly dependent on expert
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interpretation, and susceptible to inconsistent outcomes. The subjectivity of manual diagnostics
may lead to inconsistencies, possible misdiagnosis, and unnecessary delays in treatment
initiation. The advent of artificial intelligence (Al) and deep learning (DL) technology has
changed the face of medical imaging and diagnostic approaches. Sophisticated computational
models with Al and DL-based systems enable the rapid processing of large amounts of data,
detection of complex features in microscopic images, and discrimination between leukemia
subtypes with extremely high accuracy. Advanced deep learning methods such as
Convolutional Neural Networks (CNNs), transfer learning algorithms, and hybrid machine
learning approaches have been found to be extremely accurate in distinguishing malignant
lymphoblast cells from benign cells. These Al-based approaches significantly minimize the
likelihood of human error, enhance the accuracy of diagnostics, and decrease the duration of
clinical decision-making.

While these developments have occurred, there are still barriers that prevent the
optimization of Al-driven diagnostic systems for clinical application in the real-world. Current
problems, including dataset imbalance, model explainability, and computational complexity,
need to be solved to make such systems' robustness and reliability for applications. However,
Al is all potential for transforming the practice of traditional pathological investigations, in
bringing about early detection, and ultimately better prognosis in patients. Deep learning
models such as ResNet, DenseNet, and Inception have been used for blood cell classification,
showing better but inconsistent accuracy. Optimized CNNs with preprocessing offer a more
reliable approach for leukemia diagnosis [1]. A superior performance CNN architecture has
increased subtype detection accuracy to 96.2% via high-resolution cellular feature extraction
[2]. Machine learning techniques like SVM and KNN have shown potential in automating
detection but often suffer from limited accuracy and generalization. Hybrid approaches
combining PSO with SVM significantly improve diagnostic performance, achieving an
accuracy of 97.4% [3]. Transfer learning-based architecture such as VGG19, ResNet50 and
EfficientNet-B3 achieved high precision rates of 96.64%, 98.28% and 99%, respectively [4].

Multiple Instance Learning for Leukemia Identification (MILLIE), a weakly supervised
method enables reliable leukemia subtype detection with minimal annotations, achieving high
AUC values above 0.9 [5]. Traditional CNNs and real-time object detection models like
YOLOvVSs have been applied to detect leukemic cells, achieving high accuracy of 97.2% while
processing up to 80 frames per second [6]. Deep learning models combined with Transfer
Learning architecture EfficientNet-B3 achieve high performance with testing accuracies
around 96-97% and strong F1-scores [7]. Advanced deep learning architectures, such as Deep
Dilated Residual Convolutional Neural Networks (DDRNet), leverage residual, dilated, and
attention-based blocks to achieve high performance, with testing accuracy around 92% and F1
scores of 0.96 [8]. Deep learning models, such as CNN-based custom architectures like
ALLNET, have been applied to classify leukemic and healthy blood cells from microscopic
images, achieving high performance with an accuracy around 95.5%, an F1-score of 95.4%,
and precision of 96% [9].

Hybrid deep learning models, such as the HCNN-IAS algorithm, combine local and
global feature extraction with self-attention mechanisms to classify multiple leukemia types
effectively. Recent studies show that HCNN-IAS achieves high performance, with
classification accuracy, precision, and recall around 99% [10]. A CNN model trained on more
than 10000 images recorded a generalization accuracy of 96.5%, demonstrating the superiority
of'a large amount of training data in leukemia detection [11]. Deep learning models, particularly
CNNs, have been applied for automated classification of B-ALL lymphoblasts and normal
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cells, but individual models often struggle due to the similarity of nuclei. The study of ensemble
approaches using multiple CNNs with majority voting can achieve high performance, with
accuracy around 98.5%, sensitivity 99.4%, and specificity 96.7% [12]. Hybrid models
combining deep learning feature extractors, such as Inception v3, with advanced classifiers like
XGBoost have been shown to improve classification performance, with a weighted F1 score of
0.986 [13]. An end to end deep learning model that integrates segmentation and classification
performed at 96.8% accuracy and effectively extracts diagnostically relevant features while
reducing noise [14]. Deep learning models, such as CNN-based classifiers, have been explored
to distinguish leukemic cells, with efforts also focused on making these models explainable for
clinical interpretation. Although initial results achieved moderate accuracy (68%), studies
indicate that the models learn meaningful features, such as cell contours, highlighting the
potential for further development of interpretable and automated leukemia detection systems
[15].

The research aims to automate the detection of leukemia, aiding in early diagnosis and
reducing the burden of pathology. The Kaggle ALL dataset was enlarged using data
augmentation to expand the number of images from 3,256 to 6,512 which include both benign
cases and four types of malignancies. A comparison of 5 pre-trained CNN models such as
InceptionV3, EfficientNetB0, VGG19, ResNet50, and DenseNet201 was carried out. A new
hybrid framework was proposed, combining transfer learning and a hierarchical approach, to
address difficulties such as class imbalance and overlapping features in order to enhance
accuracy. Unlike traditional ensemble or flat classification methods, our proposed hierarchical
framework breaks down the complex leukemia classification task into stages that are
meaningful in a clinical context. This approach improves both interpretability and performance.
This study introduces a hierarchical classification framework for leukemia that mirrors clinical
decision-making, progressively distinguishing between normal cases, leukemia types, and
subtypes. Unlike prior approaches, our method improves interpretability, error handling, and
performance by structuring the classification process rather than treating it as a flat or parallel
ensemble task. This framework is significantly superior in leukemia detection, achieving high
accuracy and effective classification.

2. Dataset Collection and Preprocessing
2.1 Dataset Overview

3,256 high-resolution PBS images from the study are included in a large, high-quality
dataset that is publicly available and was acquired from Kaggle. The dataset is classified into
four classes: All, which is represented by a varied collection of ALL cases (807 images), Pro-
B (586 images), Early Pre-B (1,014 images), and Pre-B (849 images). Because it provides
accurate and reliable ALL detection through histopathological Peripheral Blood Smear (PBS)
image analysis, it is a valuable dataset for deep learning model training and validation.

2.2 Data Augmentation

These advanced data augmentation methods were used to overcome overfitting and
increase the generalization ability of models [16]. Through a range of adjustments, including
flipping, zooming, brightness, shifting, and spatial rotation, the dataset grew to 6,512 images.
benign (1,614 images). Pre-B (2,028 images) Early B (1,698 images), and Pro-B (1,172
images). Robust deep learning models are trained and validated for image preprocessing,
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dataset splitting, and the accurate and consistent detection of ALL from histopathological PBS
images using this data augmentation dataset. To avoid data leaks, Macenko stain normalization
is applied only to the training set. Only training data is used to train stain normalization in order
to prevent data leaks and preserve objective validation/test set evaluation.

In order to maintain uniformity in the results concerning the preserved core
morphological characteristics to enable proper classification, the images were resized to a
standard size of 224 x 224 pixels. The distribution of strategic data among training, test, and
validation sets was 80%, 10%, and 10% in order to guarantee a robust model with thorough
testing and to avoid overfitting.

2.3 Using Pre-trained Models for Transfer Learning

For the detection of all subtypes of ALL, 5 pre-trained models i.e., InceptionNetV3,
EfficientNetB0, VGG19, ResNet50, and DenseNet201 were used via a transfer learning
approach to identify the microscopic characteristics. Hierarchical structure architecture reduced
misclassification by combining models progressively to downscale misclassification. Model
performance was validated by different performance metrics in order to find the proper as well
as efficient classification [17]. The proposed methodology for classifying leukemia cancer is
shown in Figure 1.
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Figure 1. Methodology Proposed for Leukemia Cancer Classification
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2.4 Framework for a Hierarchical Model

A stratified structure was constructed that maximized detection precision using stepwise
combining of such models in proportion to their individual precision. This layered structure
provided substantial data that reduced misclassification errors while increasing aggregate
diagnostic accuracy. A broad set of performance measures was used to validate the model’s
effectiveness, hence guaranteeing reliable and accurate classification. These metrics enabled a
full measurement of the prediction algorithm’s proficiency in distinguishing various subtypes
of ALL with the highest level of reliability.

3. Deep Learning Models for Feature Extraction

This work proposes a novel hierarchical scheme that uses preestablished deep neural
network architectures to enhance ALL classification performance via histopathological PBS
images. Our approach gradually increases attribute recognition and classification using the
models based on degrees of accuracy. The models applied are EfficientNetBO0, InceptionNetV3,
VGG19, ResNet50 and DenseNet201, these are adapted to fit this application. InceptionV3,
EfficientNetB0, VGG19, ResNet50, and DenseNet201 model selected because they offer
different feature extraction abilities. EfficientNetBO is a lightweight model. ResNet50 includes
deep residual networks. DenseNet201 features densely connected structures. InceptionV3 is
based on inception architectures, and VGG19 is a classic deep CNN. This variety ensures
strength and minimizes architectural bias.

3.1 EfficientNetB0

EfficientNetB0, one model from Google’s EfficientNet family, is designed to achieve
high accuracy at a low computational cost. It applies a unified scaling method to optimally
scale the depth, width, and resolution of the network. Some architectural features used to help
preserve key characteristics while minimizing computational complexity include inverted
residual bottlenecks and squeeze-and-excitation (SE) modules. The smooth activation
functions of the model also enhance prediction quality. In a hierarchical model, EfficientNetB0
serves as the first layer, effectively capturing main image features while filtering out noise. Its
compact form makes it an excellent choice for starting with large datasets, allowing other
models to focus on finer analysis. Figure 2 shows the EfficientNetB0O model architecture.
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Figure 2. EfficientNetBO Model Architecture
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3.2 InceptionNetV3

InceptionNetV3 is an optimized convolutional neural network developed by Google,
which is meant to achieve high-accuracy and high efficiency in large-scale image classification
design. It utilizes inception modules, which facilitate both parallel convolutions for different
sizes of filters, which can be used to capture features at different scales. Notable improvements
include split convolutions to achieve maximum utility, other classifiers to facilitate stronger
gradient propagation to avoid the vanishing gradient issue and global average pooling to reduce
overfitting. Figure 3 shows the InceptionNetV3 model architecture. On the hierarchical level,
InceptionNetV3 enhances the features gained by EfficientNetBO due to multi-scale analysis.
This phase enhances intermediate representations, providing a more complex feature set for the
subsequent models.
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Figure 3. InceptionNetV3 Model Architecture

3.3 VGGI19

VGGI19 is a strong deep network of CNN defined by its simple and homogeneous
architecture consisting of 16 convolutional layers and 3 fully connected layers that use small
3x3 filters for accurate feature extraction with great computational efficiency. VGG19 builds
on the results of previous models by feeding intermediate features into a sequence of its layers.
Such architecture allows this model to reach its full potential in identifying fine features with
high accuracy in PBS images and can therefore differentiate between ALL subtypes. Figure 4
shows the VGG19 model architecture.

3.4 ResNet50

ResNet50, a 50-layer deep neural network addresses the vanishing gradient problem
due to its residual learning architecture. Through the use of skip connections, the network
provides a mechanism for re-using features from one layer to the next thus facilitating the
extraction of deep representations with performance invariance. By refining the complex
patterns that have been fragmented as a result of processing by the previous models, ResNet50
becomes very important in the hierarchical framework. Figure 5 shows the ResNet50 model
architecture.
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Figure 4. VGG19 Model Architecture
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Figure 5. ResNet50 Model Architecture

3.5 DenseNet201

DenseNet201 connects each layer to all previous layers, enabling efficient feature reuse
and mitigating the vanishing gradient issue. It utilizes dense blocks and transition layers to
retain detailed features while reducing dimensionality. As the final stage in the hierarchical
framework, it consolidates extracted features for precise ALL subtype classification, effectively
preserving hierarchical information from earlier models. Figure 6 shows the DenseNet
201model architecture.

3.6 Hierarchical Framework

The hierarchical approach increases classification by utilizing the models’ strengths in
a cascade. Figure 7 shows the EfficientNetB0, which focuses on efficiency and noise reduction,
while DenseNet201 perfects the finer details. The organization of the models by ascending
accuracy reduces errors at every step and enhances ALL detection. This layered framework
outperforms single model methods positioning it as a strong asset for analysis of medical
images with accuracy. The average inference time per image for the hierarchical framework
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was studied that of standalone CNN:Ss. It is slightly higher because of multi-stage processing;
however, the framework remains efficient enough to be used for near real-time diagnosis.
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Figure 6. DenseNet201 Model Architecture
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Figure 7. EfficientNetBO model Architecture

In the hierarchy, if a classifier predicts with low confidence, the sample moves to the
next stage for re-evaluation. This is called error propagation. Final decisions are made using a
majority voting scheme. The class with the highest combined confidence is selected. The order
of models is set based on their validation accuracy for each subtype and their computational
efficiency. Lightweight models handle the initial filtering, while deeper models refine the final
classification.

3.7 Error Propagation, Decision Combination, and Model Order

In the suggested hierarchical structure, handling errors and decision flow are clearly
defined. Error propagation occurs when a classifier issues a prediction with low certainty. In
such cases, the samples are handed over to the next classifier in the hierarchy with a lower
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confidence weight, which allows potential incorrect classifications to be deliberated at further
levels in the hierarchy. Data augmentation with varying magnification and color jittering is
applied to improve robustness.

A majority voting scheme is used to reach a final prediction by gathering the outputs of
the various classifiers that were established. The final decision is based on the class with the
highest accumulated confidence score.

The model hierarchy is not arbitrary. It was developed around two core concepts:

e Validation accuracy per subtype — models that produced higher accuracy for
specific leukemia subtypes were developed earlier to better filter out samples.

e Computational efficiency — models that are lighter to run are designed at the start
to easily screen images, while heavier or more complex models are used at later
levels to classify more accurately.

Overall, this design allows for a manageable degree of both efficiency and accuracy
while minimizing error propagation across levels.

4. Result and discussion

By simulating the clinical decision-making process and gradually improving
classification at each step, the hierarchy introduces novelty. Compared to parallel ensembling,
this structured method improves error handling and interpretability. The hierarchy simulates
clinical decision-making through a step-by-step refinement of predictions with broad-to-fine
levels, whereas ensemble methods parallelize output aggregation. Additionally, this improves
interpretability, lessens the spread of errors, and has positive clinical implications. In this
section, we examine the ability of five distinct deep learning models (EfficientNetBO,
InceptionNetV3, VGG19, ResNet50, and DenseNet201) and the proposed hierarchical
framework to differentiate histopathological PBS images from Acute Lymphoblastic Leukemia
(ALL). Model performance is measured using indicators extracted from the models' operations.

Accuracy refers to the proportion of correct predictions to the entire population of cases,
which is a general indicator of how well the model performs. High accuracy indeed means
lower rate of errors, but in data that are imbalanced, it is not a valid measure. Consequently,
the use of additional evaluation indicators is needed for a better analysis.

Accuracy : (TP+TN)/(TP+FN+FP+TN)

By dividing the number of accurate positive predictions by the total number of predicted
positives, one can determine the accuracy of positive detection. It is particularly useful in fields
like medicine where false positives are important. A highly accurate model ensures the accurate
identification of positive cases by successfully reducing false positives.

Precision : TP/(TP+FP)

Recall (Sensitivity) assesses the model’s capability to accurately detect all actual
positive cases by comparing true positives to total positives It is important in scenarios where
missing positive instances can have severe consequences. A model with strong recall
successfully identifies most of the true positive instances.
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Recall : TP/(TP+FN)

F1-Score is a metric that balances Precision and Recall in such a way that both
mislabeled positive and negative samples get fairly assessed. It proves to be useful where
maintaining such balance enhances overall performance in imbalanced datasets. The model
works well for both errors where the F1-score is best.

Fl-score :2*Precision*Recall/ Precision+Recall

F1-Score is one measure that balances Precision and Recall, ensuring both incorrectly
labeled positive and negative examples are properly evaluated in a fair manner. It comes in
handy where keeping this balance improves overall performance in datasets that are
imbalanced. The model performs well for both types of mistakes where the F1-score is optimal.

MCC : (TP * TN - FP * FN) / (TP + FP) * (TP + FN) * (TN + FP) * (TN + FN))1/2

A more detailed breakdown is provided by the Matthews Correlation Coefficient
(MCC), which considers all elements of the confusion matrix. MCC is reliable, unlike accuracy,
even when class distributions are heavily skewed. Since it provides a balanced measure, it is
an informative measure for binary classification.

Kappa :(Po-P)/(1-Pe)

Cohen's Kappa estimates the level of agreement between predicted and true
classifications. The higher the Kappa value, the more accurate the model predictions are. It is
commonly employed to measure inter-rater reliability in categorical classification problems.

To address imbalanced subtypes, we applied class weights and data augmentation, and
evaluated performance using MCC and Kappa metrics to ensure balanced results.
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Figure 8. EfficientNetBO Model: Performance Trends of Accuracy and Loss
Throughout Model Development

Figure 8 shows the performance of the EfficientNetBO model over 10 epochs. Training
accuracy steadily increases to 96%, while validation accuracy fluctuates but generally trends
upward. Early training loss steeply decreases and saturates after the fourth epoch, showing good
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Figure 9. InceptionV3 Model: Performance Trends of Accuracy and Loss Throughout

Model Development

Figure 9 illustrates the InceptionV3 model's performance during 10 epochs. Training
accuracy increases to 77%, whereas validation accuracy oscillates but continues to rise,
indicating successful learning. Training loss decreases very rapidly, indicating strong
convergence, while validation loss follows a similar diminishing trend with little oscillation.
Overall, the model is performs well with hardly any signs of overfitting.
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Figure 10. VGG19 Model: Performance Trends of Accuracy and Loss Throughout

Model Development

As can be observed in Figure 10, the VGG19 model was trained for 10 epochs. Training
accuracy is 96% whereas validation accuracy plateaus at around 94%, which indicates excellent
generalization. As training becomes more rigorous, the training error will continue to decline,
though the validation error remains oscillating, but it is trending downward. Although the
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model's departures from the uniform pattern were small, it is clear that it was a good learner
and overall performed well.
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Figure 11. ResNet50 Model: Performance Trends of Accuracy and Loss Throughout
Model Development

Figure 11 captures the performance trends of the ResNet50 model in terms of
performance over 10 training epochs. The model has a training accuracy of 97% and a very
high validation accuracy of 95%, reflecting its strong generalization. Although there is a
decreasing loss in training, there are oscillating trends in validation loss, which depend on the
datasets. Overall, the performance reflected by the model is quite high, except for some subtle
indications of overfitting.
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Figure 12. DenseNet201 Model: Performance Trends of Accuracy and Loss
Throughout Model Development

Figure 12 displays the performance of DenseNet201 over 10 epochs. Training accuracy
rises to around 96%, while validation accuracy oscillates but shows a trend of increase,
indicating steady learning.
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Figure 13. Hierarchical Approach: Performance Trends of Accuracy and Loss
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Training loss drops and stabilizes, showing effective convergence. Validation loss
oscillates initially but settles in. The difference in training and validation accuracy demonstrates
moderate overfitting in some epochs, but the model's overall performance on both datasets
indicates consistency. To perform optimally, we meticulously optimized key hyperparameters
for each backbone network. Exactly, we separately optimized the learning rate, batch size, and
dropout rate in order to obtain the best trade-off between the rate of convergence and
generalizability. These hyperparameter tuning details are incorporated within the Methodology
section.

Figure 13 indicates the model's performance over 10 epochs. Training accuracy ranges
from 36.94% to 91.75%, while validation accuracy of 95.99% in the 6th epoch is plateaued. By
reducing overfitting and enhancing ALL classification with better precision and recall at an
average accuracy of 98.15%, the approach is more efficient.
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Figure 14. Assessment of Model Performance Using Precision, Recall, and F1-Score
Across Various Classes
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Figure 14 and Figure 15 compare the performances of five deep models—DenseNet201,
EfficientNetB0, InceptionV3, ResNet50, and VGGI19—for ALL classification from
histopathological images. DenseNet201 achieved the highest accuracy (95.8%) with good
precision, recall, and F1-score along with the lowest error rate (4.2%). EfficientNetBO achieved
89.66% accuracy but struggled in Pre-B classification, resulting in a higher error rate (10.3%).
InceptionV3 achieved the lowest accuracy (78.62%) and the highest error rate (21%). ResNet50
(94.01%) and VGG19 (93.55%) performed well, particularly for Pro-B, with minimal error
rates (6%) and excellent MCC and Kappa values, which are measures of reliability. The
hierarchy of the best-performing individual backbone is compared. Although the hierarchy
introduces additional computational steps, the measurable benefits in accuracy, interpretability,
and error recovery justify the increased complexity.

Table 1. Performance Of Hierarchical Approach

Model Accuracy Precision Recall F1-Score Kappa
Hierarchical | 0.9815 Non- Non- Non-Malignant:
approach Malignant: Malignant: 0.95 0.97
94% 0.96
Initial Pre-B: Initial Pre-B: , Initial Pre-B:
98% 0.96 0.97
Intermediate Intermediate Intermediate Pre-
Pre-B: 100% Pre-B: 1.00 B: 1.00
Advanced Pro- | Advanced Pro- | Advanced Pro-B:
B: 99% B: 1.00 0.99

Table 1 highlights the superior performance of the Hierarchical Approach, which

arranges models from lower to higher accuracy—InceptionV3, EfficientNetB0, VGGI19,
ResNet50, and DenseNet201. Achieving 98.15% accuracy, it surpasses individual models with
high precision, recall, and F1-scores. The precision values are as follows: Non-Malignant: 0.94,
Initial Pre-B: 0.98, Intermediate Pre-B: 1.00, and Advanced Pro-B: 0.99. Recall scores show
strong results, with Non-Malignant: 0.96, Initial Pre-B: 0.96, Intermediate Pre-B: 1.00, and
Advanced Pro-B: 1.00. The Fl-scores further validate the model’s reliable classification
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performance, with Non-Malignant: 0.95, Initial Pre-B: 0.97, Intermediate Pre-B: 1.00, and
Advanced Pro-B: 0.99, indicating its consistent ability to classify accurately across all classes.
When we analyzed subtype results, we concluded that performance drops slightly when there
is very high visual similarity between classes (Pre-B versus Pro-B). On the other hand, the
hierarchical arrangement reduces misclassification by gradually narrowing the set of
alternatives, all the while maintaining very high Kappa (0.97) and MCC (0.973) values.

The Hierarchical Approach demonstrates high reliability with an MCC of 0.973 and a
Kappa value of 0.97. It achieves an error rate of just 1.85%, confirming its robustness. The
classification report further highlights its strong performance, with an overall accuracy of 98%
and a macro average of 98%, proving its superiority over individual models. Besides internal
testing, the model was tested on a separate external dataset to verify domain shift. Results
revealed consistent performance, showing high generalization ability.

4.1 Comparative Analysis

The comparative assessment revealed differences in the performance of the selected
models. DenseNet201 performed the best in terms of accuracy and robustness because of its
dense connectivity and feature reuse which underpins improvement in gradient flow and
representation of subtle morphological details between leukemia subtypes. Conversely,
EfficientNetB0, as a lightweight model, provided faster inference and lower computational
costs, but its slightly lower accuracy shows the balance between efficiency and classification.
VGG19 and ResNet50 were similarly balanced but their shallow depth, compared to
DenseNet201, limited their performance in representing fine graphical details of the H&E
stained histopathology.

This analysis demonstrates that model selection is often a function of the application
DenseNet201 would provide maximal accuracy in a research clinic context, while
EfficientNetBO is best suited to resource-constrained or real-time situations. Table 2 shows the
comparative models performance.

Table 2. Comparative Performance of Hierarchical Approach

Model Key Strengths Limitations Observed
Performance

DenseNet201 | Feature reuse, deep High computational Best overall accuracy
connectivity (better demand and robustness
gradient flow)

ResNet50 Residual connections | Moderate depth limits Good balanced
(avoids vanishing fine-grained feature performance
gradients) capture

VGG19 Simplicity, strong Very high parameter Moderate accuracy,
baseline count, slower training higher cost

InceptionV3 Multi-scale feature More complex Performs well but less
extraction architecture robust than

DenseNet201

EfficientNetBO | Lightweight, efficient, | Lower representational | Faster execution,
fast inference power slightly reduced

accuracy

ISSN: 2582-4252
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5. Conclusion And Future Work

This study compares the performance of five different deep learning models for the
classification of acute lymphoblastic leukemia (ALL) using a hierarchical approach:
DenseNet201, EfficientNetB0, InceptionV3, VGG19, and ResNet50. The overall result
significantly improves when models are ranked from worst to best in terms of accuracy, with
98.15% outperforming each model separately. Among these, DenseNet201 has the highest
accuracy at 95.8%, followed by ResNet50 and VGG19 with 94.01% and 93.55% accuracy,
respectively; however, EfficientNetBO and InceptionV3, with 89.66% and 78.62% accuracy,
respectively, cannot classify all of the subtypes of ALL. Through hierarchical architecture, the
individual strengths of each model enhance the accuracy of classification in Non-Malignant,
Initial Pre-B, Intermediate Pre-B, and Advanced Pro-B subtypes. Additionally, the method
reduces errors in classification and provides more consistent performance across subtypes. The
high matrix correlation coefficient (MCC) of 0.973, Kappa statistic of 0.97, and very low error
rate of 1.85% prove its reliability and robustness as a method for ALL diagnosis. The
application of such models offers a diagnostic method that is both precise and clinically
efficient. There is no large external data access, pre-trained CNN dependency, or potential stain
variation issues. External validations, transformer models, and stain normalization
improvements are the way forward.
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