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Abstract   

Lack of good pixel-level expert annotations has traditionally impaired the development 

of robust object detection models for medical diagnosis. This article proposes a weakly 

supervised approach that generates accurate bounding box labels with minimal user interaction 

through image-level classification. The weakly supervised nature of the proposed approach 

tackles the annotation bottleneck by converting cheaper and more available class-level labels 

into spatial annotations of high value. The proposed two-stage method first trains a classifier 

on diagnostic labels and then applies Class Activation Mapping (Grad-CAM) to generate high-

quality pseudo-labels. These machine-generated annotations are then used to train a state-of-

the-art YOLOv8s detector for the final diagnosis task. The system performed cataract detection 

from fundus images with a mean Average Precision (mAP@50) of 99% and a stricter 

mAP@50-95 of 96.9%. An important recall rate of 97.1% was achieved in the cataract class, 

making the possibility of a missed diagnosis almost negligible. These results hold competitive 

status when compared with fully supervised methods that require extensive manual annotation, 

reaffirming our method as data-efficient, highly scalable, and a robust collaborator in fast-

tracking the development of medical AI tools. 

Keywords: Weakly Supervised Learning, Medical Image Analysis, Cataract Detection, Grad-

CAM, YOLOv8. 

 Introduction 

The traditional practices for the diagnosis of eye conditions typically consist of trained 

ophthalmologists making manual assessments using specialized equipment, such as slit lamps 

and fundus cameras. While this is the gold standard, the process offers a considerable time 

investment and resource burden, and it depends on clinical experience. Compounding this 

fundamental problem in various parts of the world is a significant shortage of ophthalmologists 

and many have limited options for obtaining diagnostic infrastructure early on, limiting the 

velocity of patient diagnoses [1]. This lack of ability to get a timely diagnosis often contributes 

to delayed treatment, resulting in irreversible vision loss and a diminished quality of life for 

many millions of people. Thus, it is essential to develop automated systems with efficiencies 

in risk detection in the least amount of time possible but with the greatest accuracy to improve 
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clinical workflows and expand the reach of ophthalmic care practice [2]. Such systems could 

decrease diagnostic time in a hospital by quickly screening patients to determine which can be 

seen as more complex conditions later, allowing the clinician to dedicate their knowledge and 

practice expertise to those complex or confirmed cases. With healthcare technologies, including 

artificial intelligence, deep learning, and computer vision, a new frontier for medical image 

analysis has emerged potentially offering revolutionary possibilities in the practice of 

ophthalmology [3]. 

This includes state-of-the-art object detection models, such as those belonging to the 

You Only Look Once (YOLO) family, which, on the one hand, classify diseases and, on the 

other hand, accurately localize their position in an image [4]. The localization process has 

significant applications in clinical evaluation, providing information relevant to the size, shape, 

and location of a lesion, which can help assess disease severity and inform treatment decisions 

[5]. On the other hand, massive, meticulously annotated datasets form a significant bottleneck 

in the development and deployment of such powerful supervised learning models. A definite 

solution to overcome this drawback is to educate a detector with pathological areas delineated 

by a medical expert. In doing so, AI may have a wider horizon for applications in the medical 

diagnostic domain [6]. 

In this paper, we present the proposal and validation of a novel Weakly Supervised 

Object Detection (WSOD) framework for the diagnosis of ocular diseases, which addresses a 

critical challenge in this sector. The key inventive aspect of this contribution is the elegant two-

stage pipeline that automatically generates high-quality spatial annotations (i.e., bounding 

boxes) from inexpensive image-level labels (i.e., cataract presence) that are easily attainable. 

By using model-agnostic explanation methods illustrated by [6], the proposed framework learns 

to identify the area where the disease of interest is present, despite not being explicitly 

instructed, and in turn, teaches itself to localize. Through cataract detection, it has been 

demonstrated that the proposed system can yield a highly competent detector that presents only 

moderate difficulty compared to fully supervised methods. Beyond being a practical tool for 

cataract detection, this paper provides a scalable and data-efficient approach that can be 

generalized to the rapid creation of AI-powered diagnostic tools for other areas of medical 

imaging [7]. 

The proposed methodology is based on a sequence of carefully selected deep learning 

techniques and is evaluated using rigorous performance metrics. The following subsections 

outline the core components of our proposed framework.  Unlike other WSOD methods that 

might rely on complex multiple-instance learning (MIL) frameworks, the proposed approach 

uses a more direct explanation-based technique, which is computationally efficient and 

conceptually straightforward. 

1.1   Weakly Supervised Object Detection (WSOD) 

The central idea of our work is weakly supervised object detection (WSOD), which is 

a framework to train object detectors with image-level labels instead of bounding box 

annotations. In this manner, the framework is realized through a two-stage process where the 

first stage learns discriminative features from a classification model while the second stage 

exploits the classifier's internal knowledge to generate spatial pseudo-labels for the final 

detector [8]. 
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1.2   ResNet50 for Feature Extraction 

In the first phase of classification, we use a Residual Network architecture (ResNet50) 

with 50 layers. First pretrained on the large ImageNet dataset, this model provides a strong 

feature extraction capability. ResNet50 was selected as the backbone due to the extensive 

literature demonstrating its performance on a range of computer vision problems, notably 

medical image analysis. The deep architecture with residual connections of ResNet50 avoids 

the vanishing gradient problem and is thus capable of learning complex and hierarchical 

features for accurate classification. Specifically, the deep structure with residual connections 

can learn complex visual patterns required to distinguish healthy from pathological ocular 

photos, which we then use for the subsequent localization step [9]. 

1.3   Class Activation Mapping (Grad-CAM) 

Grad-CAM is used to bridge the gap between classification and localization. Grad-

CAM is an explanation method that relies on visual heat maps indicating regions of an input 

image that were important to the decision of a particular classifier. The theoretical rationale 

underlying the use of Grad-CAM is that it uses the gradients of the target class flowing into the 

last convolutional layer to obtain a localization map. In this localization map, areas are 

emphasized that have contributed positively to the resulting prediction, providing strong 

evidence-based proxies for the location of pathology.  The gradients flowing into the final 

convolutional layer during a forward pass are analysed, thus providing an accurate and high-

resolution localization of the "evidence" for a given class assumption, such as the opaque lens 

region in a cataract eye [10]. 

1.4   You Only Look Once v8 (YOLOv8) 

Finally, we will investigate YOLOv8, the latest 'one-stage object detector.' YOLOv8 

was designed with speed and accuracy in mind, making  it a beneficial option for applications 

and settings where timely feedback matters. It learns from pseudo-labeling using Grad-CAM 

by taking the machine-labels it has generated and optimizing those into good and reliable 

predictions for unseen images. YOLOv8 will be notable because its architecture is more 

advanced and learns better using the pseudo-labels created from the Grad-CAM technique and 

optimizes those into detections. [4]. 

1.5   Performance and Efficiency Metrics 

To completely evaluate the performance of the final detector, we use a complete battery 

of standard metrics in object detection evaluation. These metrics allow for a thorough 

assessment of the model's accuracy, reliability, and clinical utility [11]. 

• Mean Average Precision (MAP): This is our primary object detection metric. We 

will report MAP at 50% Intersection over Union (IoU) (MAP@50) as our baseline 

MAP performance, followed by a stricter MAP averaged over the IoU threshold 

between 50-95% (MAP@50-95) for more accurate localization. It is essential to 

report both due to their meaningful representation; mAP@50 covers the models' 

ability to detect overall, and mAP@50-95 indicates that the model can conduct 

tight, clinically meaningful localization [4]. 
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• Precision: This metric indicates the accuracy of the model's optimistic detections 

(i.e., out of all the detections made, what ratio was correct?). High precision is 

desirable to minimize false-positives [12]. 

• Recall: Also known as sensitivity, this metric measures the model's ability to 

identify all relevant instances (i.e., of all the actual diseases present, what fraction 

was found?). High recall is critical in medical screening to avoid missing cases 

[13]. 

• F1-Score: The harmonic mean of Precision and Recall, providing a single, 

balanced measure of a model's performance [12]. 

• Confusion Matrix: A table that visualizes the performance of the classification 

aspect of the detector, showing the counts of true positives, true negatives, false 

positives, and false negatives for each class [14]. 

1.6   Ocular Disease Recognition (ODIR) Dataset 

A vast database containing thousands of patient eye fundus and anterior segment 

images, with a cataract category. It was created for the purpose of classification at the image 

level rather than the object or anatomical region level. There are 10,000 colour fundus 

photography images from left and right eyes of 5,000 patients, accompanied by doctor-

diagnosed keywords in eight categories (Normal, Diabetes, Glaucoma, Cataract, AMD, 

Hypertension, Myopia, Other) [15], shown in Figure 1. 

  

a- left eye (Diagnostic Keyword is cataract) b- right eye (Diagnostic Keyword is normal) 

Figure 1. Images for Person Zero from the ODIR Dataset 

 Related Work 

Ramakrishnan et al. adopted a hybrid approach combining Convolutional Neural 

Networks (CNNs) for feature extraction and Support Vector Machines (SVMs) for 

classification. Feature extraction was performed on four pre-trained CNNs, namely Inception, 

MobileNet, ResNet, and VGG19, while classification was achieved using SVM. In the Ocular 

Disease Intelligent Recognition (ODIR) dataset, the MobileNet-SVM hybrid model achieved 

the best performance, yielding a test accuracy of 98.36%. The primary advantage is the 
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enhanced discriminative power gained by using SVM as a feature selector on top of deep 

features. This approach works at the image-level classification, without providing any disease 

localization.  

Acevedo et al. [17] presented a tailor-made Convolutional Neural Network (CNN) for 

the classification of five ocular diseases. The procedure began with a pre-processing pipeline 

that used blur and Canny edge detection filters, followed by classification with an 11-layer 

CNN. The model was implemented using a balanced dataset of 1,000 images from Kaggle. The 

proposed architecture achieved an accuracy of 97%, with individual precision and recall scores 

also hovering around 97%. The proposed model is a lightweight, custom model that performs 

well without relying on complex pre-trained architectures, but the suggested model only 

performs image-level classification, not localization. 

Yu, H., and Dong, X. [18] proposed a novel framework, RetinaDNet, which uses a dual-

branch input system for enhanced classification of retinal disease. The methodology combines 

original fundus images with their corresponding vessel segmentation masks (generated by a U-

Net) as two separate inputs. Features are extracted from these two branches using a pre-trained 

ResNet50, fused, and then classified by ML models (SVM, MLP, XGB) using soft voting. 

Evaluated on the MuReD and RFMiD datasets, the RetinaDNet model achieved a remarkable 

accuracy of 99.2%. The study also demonstrates the value of each component (vascular branch, 

pre-training, and ensemble) through an ablation study, showing a significant decrease in 

performance when any one of these parts is removed. 

 Hassan, M. ul et al. [19] proposed a novel deep learning model, "Ocular Net," for the 

multi-class classification of five ocular conditions (Normal, Cataracts, Diabetic, Uveitis, and 

Glaucoma). The methodology is based on a custom CNN architecture that incorporates 

Inception modules, various activation functions, and transfer learning. Using a dataset of 6200 

images, the final proposed model, trained for 200 epochs, achieved an outstanding accuracy of 

98.89%, precision of 99.2%, recall of 99.3%, and an F1-score of 99.41%. The strength of the 

work lies in its custom architecture and the high performance achieved in a multi-class setting. 

However, the model only performs image-level classification and does not provide localization 

of the diseases. 

Ismail, W. N., and Alsalamah, H. A. [20] introduced CataractNetDetect, a stacking 

ensemble model for multi-label ocular disease classification. The methodology fuses features 

from bilateral fundus images using three pre-trained architectures (ResNet-50, DenseNet-121, 

and Inception-V3) as feature extractors. These models are fine-tuned, and their outputs are 

stacked to train the final classifier. Using the publicly available ODIR-5k dataset, the ensemble 

model achieved performance with a maximum validation score of 100%, an F1-score of 98.0%, 

and an AUC of 97.9%. The work is limited to classification and does not perform object 

localization. 

Shams, S., et al. [14] presented a Clinical Decision Support System (CDSS) that 

compares five machine learning algorithms for classifying ocular diseases (Cataract, 

Glaucoma, Diabetic Retinopathy, Normal, Others). The methodology uses VGG19, SVM, 

Decision Tree, Random Forest, and KNN. The models were trained on the ODIR dataset. The 

CNN, enhanced with transfer learning, was found to be the most robust model, achieving an 

overall accuracy of 80.875%. A significant limitation is the low performance of the CNN 

compared to other state-of-the-art models. 
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Yadav, H., and Mallick, S. [21] present the use of the Efficient Net-B3 model for multi-

class classification of retinal images. The methodology is based on transfer learning using 

approximately 1000 images per class. They achieved an overall accuracy of 96%. The 

confusion matrix indicates that the model is highly accurate for classifying Diabetic 

Retinopathy, but occasionally misclassifies the remaining classes, such as Glaucoma, Cataract, 

and Normal. The main restriction is that it only does image-level classification without 

localizing the disease. 

A common theme across the reviewed literature is the focus on image-level 

classification, which, while valuable, does not provide the spatial localization necessary for 

many clinical applications. The primary contribution of our work is to bridge this gap. While 

the above studies achieve high classification accuracy, they do not address the challenge of 

generating detection labels without pixel-level supervision. The proposed framework is distinct 

in its explicit goal of converting a classification task into a detection task using explainability 

methods, offering a novel pathway for creating powerful medical object detectors from 

existing, classification-only datasets. This directly contrasts with fully supervised methods that 

require expensive bounding box annotations from the outset. 

The previous related work can be summarized in Table 1, which reflects the essential 

aspects of these works and facilitates a side-by-side comparison of the proposed system with 

other state-of-the-art systems. 

Table 1. Summary of the Related Work 

# Methodology Dataset  Results Advantages Limitations 

16 using CNNs and 

an SVM 

(ODIR) 

dataset. 

Accuracy: 

98.36% 

(MobileNet-

SVM). 

enhances 

discriminative 

power 

Does not 

perform 

localization. 

17 CNN with a pre-

processing 

Kaggle 

dataset of 

1000 images 

Accuracy: 97%, 

Precision: 97%, 

Recall: 97% 

A lightweight 

model. 

Performs 

image-level 

classification, 

not 

localization. 

18 ResNet50 and 

ML classifiers 

(soft voting). 

MuReD, 

RFMiD, and 

DRIVE 

datasets. 

Accuracy: 99.2% Boosts 

performance 

by leveraging 

vascular 

features. 

Methodology 

is complex; 

19 Ocular Net with 

inception 

modules and 

transfer learning 

A custom 

dataset of 

6200 images. 

Accuracy: 

98.89%, 

Precision: 99.2%, 

Recall: 99.3% 

Achieves 

remarkably 

high 

performance 

No disease 

localization. 

20 ResNet-50, 

DenseNet-121, 

and Inception-

V3, using fusion 

of fundus images. 

ODIR-5k 

dataset. 

F1-Score: 98.0%, 

AUC: 97.9% 

High and 

robust results. 

Does not 

provide 

localization 

of the 

disease. 
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14 Five ML 

algorithms, with 

a VGG19-based 

CNN. 

ODIR dataset Accuracy: 

80.875% 

Development 

of a user-

friendly GUI. 

The accuracy 

is low. 

21 A single 

EfficientNet-B3 

model. 

A dataset of 

~4000 

images. 

Overall 

Accuracy: 96% 

High 

performance 

Does not 

localize the 

disease. 

 Proposed Work 

This study introduces a robust two-phase framework for the automated detection and 

localization of external ocular disease, specifically cataracts, from digital photographs of the 

eye. The main component of our methodology is a Weakly Supervised Object Detection 

(WSOD) approach that avoids the need for costly and time-consuming manual annotations 

using bounding boxes by physicians. Instead, our system utilizes easily accessible image-level 

labels (e.g., this image contains a cataract) to train a highly precise object detector. The 

workflow of our proposed framework consists of four key phases: data preparation, training an 

attention-aware classifier, generating pseudo-labels using class activation mapping, and finally 

training the object detector, which is all summarized in Figure 2. Figure 2 gives an informative 

but high-level overview of the entire process from data preparation to detector evaluation (the 

object detector is trained in phase D). 

 

Figure 2. Block Diagram of the Proposed System 
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3.1   Data Preparation (Pre-processing)  

A special subset was formed for a clear-cut, binary classification problem. Data were 

filtered into two classes: 

• Normal-Images that have diagnostic keywords containing "normal".  

• Cataract-Images that have diagnostic keywords containing "cataract". 

We worked with a collection of 2,876 total normal images and 301 total cataract images. 

After that, the entire dataset was split into a Training Set (64% of the total images, n=2033), a 

Validation Set (16% of the total images, n=509), and a Testing Set (20% of the total images, 

n=635). The entire hold-out test set was set aside and used only at the end to assess the model's 

performance in an unbiased manner. A fixed split was preferable to k-fold cross-validation, for 

the purpose of ensuring that we maintain a large, fully independent Test Set for final 

performance evaluation, which is standard practice in deep learning research, while being more 

computationally efficient, yet still providing enough information to confidently validate the 

effectiveness of the framework. 

3.1.1   Normalization 

The pixel values of each image went through a rescaling process. Their original range 

of [0, 255] changed to a new range of [0, 1]. This step plays a key role in improving the neural 

network's performance. 

3.1.2   Data Augmentation  

The current dataset will undergo augmentation leading to two main benefits: 

• It equalizes the classes in the dataset. Since one will create modified new copies of 

minority class images (cataracts) to equal the number of cataract images to normal 

images in the training set, the model will not be biased toward the majority class 

and will significantly boost the ability of the model to correctly identify rarer 

occurrences of cataract cases (increasing Recall). By creating a balanced training 

set for the initial classifier, this step is crucial for mitigating the impact of the 

inherent class imbalance in the original dataset, ensuring the model does not 

develop a bias toward the more prevalent 'Normal' class. 

• The model becomes more resilient. By adding extra training data, the set grows 

larger and more varied. This new data comes from tweaking the original images 

with random rotations, flips, and changes in brightness. This ensures that the model 

learns core disease features rather than memorizing images, resulting in reduced 

overfitting and better generalization power for performance at unseen points in the 

real world. 

3.1.3   Image Resize 

The image sizes were changed before being used. The original size of the images in the 

ODIR-5K dataset has a high but variable resolution, typically around (2000×3000) pixels, 
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depending on the camera used. All images were resized to a smaller, uniform size of (224×224) 

pixels before being fed into the ResNet50 classifier model. 

3.2   Phase I: Attention-Aware Classifier Training  

This phase's core objective was to not only detect images but also to train a model that 

learns, indirectly, where to focus on an image when observing disease. The attention learned 

would feed into the next phase.  

ResNet-50 was evaluated, and used, as a base classifier which was pre-trained on the 

ImageNet data. This was chosen architecture-wise because it is deep residual architecture that 

sufficiently performs the task of extracting complex hierarchical features from medical images. 

There are other available architectures such as DenseNet or EfficientNet, but ResNet50 was 

chosen as a powerful transformer and a well-established baseline for validating the pipeline 

proposed in this paper. The research focus of this study is the viability of the weakly supervised 

methodologynot presenting a thorough evaluation of back-bone architectures. The very last 

fully connected layers of the original network were changed to a new head architecture to 

satisfy the newly framed binary classification task of Normal vs. Cataract.  

The model used for training employed image inputs that were resized to 224 × 224 

pixels. Training occurred with the Adam optimizer alongside a cross-entropy loss function for 

multiple classes. Model weights were stored to retrieve the best model according to validation 

loss. While classification accuracy is one of the outputs of this phase and is the least relevant, 

the most relevant model output is the class-discriminative visual features learned and stored in 

the final weights of the model. 

3.3   Phase II: Pseudo-Label Generation via Class Activation Mapping  

This represents the innovation hub for the proposed framework because it can move 

from an image-level classifier to an object-level localizer without any human effort. The 

developed system utilizes Gradient-weighted Class Activation Mapping (Grad-CAM). Grad-

CAM is a method that produces a coarse localization map and refers to the specific regions in 

a provided image input that were most important to the prediction of the classifier. Grad-CAM 

was used to construct a 2D heat map based on the predicted class. For the cataract image, the 

heatmap represented the lens region, while for the normal image, it represented general features 

of the fundus. The heatmap was then automatically converted into a bounding box using Otsu's 

threshold from the heatmap to create a binary mask of the most active regions, whereby the 

largest contour could be extracted, and the minimum bounding rectangle could be calculated. 

The same normalized and resized (224x224) images were used for this process to maintain 

standardization to work with the classifier. 

The following outlines the process for creating an accurate bounding box from a rough 

Grad-CAM heatmap: 

1. For a prediction of 'Cataract' for a given image, a Grad-CAM heatmap is produced 

that portrays the areas which were most responsible for the classifier's decision 

making. 

2. This heatmap is then transformed into a binary mask using Otsu's thresholding. In 

brief, Otsu's thresholding creates an automatic determination for an optimal 
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threshold to distinguish the highly activated areas (foreground) from the rest of the 

image (background). 

3. From this binary mask, the largest connected component (contour) is extracted. 

This heuristic excludes smaller, less relevant activations and assumes that the 

largest area corresponds to the true pathology. 

4. As a last step, the minimum bounding rectangle surrounding the largest contour is 

calculated. The coordinates of the bounding box will serve as pseudo-labels for the 

purposes of object detection training. 

This automated procedure creates a pseudo-label, which consists of a class (with 0 for 

normal and 1 for cataract), and then the coordinates representative of the drawn bounding box 

for each image in the training dataset. This allowed the full image-level dataset to be converted 

into a full object detection dataset. 

3.4   Phase III: Object Detector Training  

After successfully obtaining the pseudo-labelled data, training was performed with a 

state-of-the-art object detector. The YOLOv8 model (the most recent version of You Only Look 

Once, which was named this way when first presented and is now labelled version 8, but can 

also be called nano) was selected to be trained on the pseudo-labelled dataset. YOLOv8n finds 

its unique practicality through high accuracy and exceptionally low inference latency, which 

lends itself well for use in a clinical setting. After obtaining the pseudo-labelled dataset, a state-

of-the-art object detector was trained. For the sake of this task, YOLOv8 was chosen (You Only 

Look Once, version 8, small). YOLOv8 is uniquely celebrated for the amazing balance 

between, its high accuracy and real-time inference speed, which makes it the ideal candidate to 

be clinically approved should that even come to fruition soon. Using the dataset consisting of 

the pseudo-labels from Phase II, the YOLOv8s model was trained from scratch (albeit still 

using the pre-trained backbone weights) to learn from these automatically produced (and 

sometimes noisy) bounding boxes and produce precise and accurate localizations. Training was 

completed over twenty-five epochs. 

3.5   Implementation Details 

The entire experimental setup was conducted using Python 3, and built on the Google 

Collaboratory website, which provided access to an NVIDIA Tesla T4 GPU for efficient deep 

learning computations. The first classifier model (Phase I) was developed and trained using the 

TensorFlow and Keras libraries. The model was trained with a batch size of 32 using Adam 

optimizer and a learning rate of 0.001. An early stopping callback monitored the validation loss 

during training with a patience of 5 epochs to prevent overfitting. The final object detection 

model (Phase III) was developed and trained using Ultralogging, a library based on PyTorch. 

All core data manipulation and analysis were conducted using Pandas and NumPy libraries, 

and OpenCV was used for a variety of image processing functions (i.e., reading an image and 

extracting the contours of the bounding box). The final YOLOv8s detector is efficient and 

requires only several milliseconds of inference time per image (on a standard GPU) and 

therefore can be used for real-time screening applications. 
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 Results and Discussion 

This section details the empirical outcomes of the proposed two-phase weakly 

supervised framework. Firstly, the performance of the foundational classifier model and the 

subsequent pseudo-label generation is discussed followed by a comprehensive evaluation of 

the final YOLOv8 object detector trained on these machine-generated labels. 

4.1   Classifier Performance (Phase I) 

Our framework's backbone architecture was the ResNet50 trained classifier with a 

balanced set of images. To avoid overfitting and to select the most generalizable model, training 

was conducted with an early stopping callback that monitored the validation loss. After eight 

epochs of training, and at the highest validation performance on the validation set, model 

weights corresponding to Epoch 1 were returned. The best classifier achieved a validation 

accuracy of 90.9% with a validation loss of 0.447. This accuracy demonstrates that the features 

learned were discriminative for normal and cataractous fundus images and provided assurance 

for the next stage of heatmap generation, as depicted in Figure 3. 

 

Figure 3. Examples of Drawing a Bounding Box 

4.2   Object Detector Performance (Phase II) 

The consolidated YOLOv8s model was trained on 409 pseudo-labels, and subsequently, 

examined on a held-out validation set. The larger number represents the total pool of data 

available to label (3177 images), while the smaller number is the subset of data we selected, 

balanced, and processed that allowed us to train the final YOLOv8s detector (409 images). This 

balancing step was key for the classifier to succeed, as was the quality of the pseudo-labels that 

would follow. The model performed extremely well, demonstrating the promise of our weakly 

supervised approach. The performance metrics of interest are summarized below:  

• Overall Performance: The detector achieved a record mAP@50 (Mean Average 

Precision) of 99.0%. Overall, the model performed extremely well and had only a 

minimal drop in mAP@50-95 (mean of the different IoUs used for evaluation 

assessment) of 96.9%.  
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• Class Level Performance: The model demonstrated strong and balanced 

performance across both classes. For the particularly important cataract class, the 

detector achieved a Recall (True positive rate) score of 97.1%, meaning it did not 

miss any true positives, which is an essential characteristic of any screening tool 

for the clinic. The precision (positive predict score) for the cataract class was 

88.5%. For the benign lesions class, the model once again performed remarkably 

well, achieving a precision of 98.3% and recall of 89.7%. The lower precision for 

the cataract class (88.5%) implies the model produces some false positives, and a 

qualitative analysis of these cases demonstrates that Grad-CAM sometimes 

highlight other artifacts (reflections or minor lens opacities that are not clinically 

graded cataract) which led to the incorrect pseudo-labels. On the other hand, the 

remarkably high recall (low false negatives) is a distinct and clinically important 

biopsy strength (minimal risk of missing true disease cases). 

These results confirm that a trustworthy object detection model can be trained with 

purely machine-generated bounding boxes without any manual labelling, as illustrated in 

Figure 4. The resulting model successfully learned how to correctly detect the disease, 

converting noisy pseudo-labels into accurate localizations. 

 

Figure 4. Results of Yolo8 Network 

4.3   Performance Metrics 

The system's metrics can be summarized in Table 2 and illustrated in Figure 5. 

Table 2. Performance Metrics of the Proposed System 

Class Box Recall mAP50 mAP50-95 

All 0.965 0.971 0.991 0.957 

Normal 0.974 0.972 0.992 0.957 

Cataract 0.956 0.971 0.99 0.957 
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Figure 5. Yolo8 Performance Metrics vs Epoch Numbers 

Figure 5 shows the performance evaluation of the YOLOv8s detector during training. 

The left plot shows the recall metric for the cataract class per epoch. The right plot illustrates 

the mean Average Precision at an IoU threshold of 0.50 (mAP@50) per epoch. Both metrics 

stabilize, indicating successful model convergence. 

4.4   Compression with Other Systems 

Table 3. Performance Comparison with State-of-the-Art Models 

Study Annotation Type Key Metric Result (%) 

The Proposed Work Machine-Generated (Weakly 

Supervised) 

mAP@50 99.1 

Recall 

(Cataract) 

97.1 

mAP50-95 95.7 

Ismail & Alsalamah 

[20] 

Fully Supervised (Classification 

Labels) 
F1-Score 98.0 

Hassan et al. [19A] Fully Supervised (Classification 

Labels) 
Accuracy 98.9 

Yu & Dong [1A8] Fully Supervised (Classification 

Labels) 
Accuracy 99.2 

Fung et al. [22] Fully Supervised (Classification 

Labels) 
Accuracy 96.0 

Analysis of Table 3  

• The proposed model's mAP@50 of 99.1% is at the absolute top tier, signifying that 

the weakly supervised approach does not sacrifice end performance.  

• It is much more concerning in the Annotation Type column since it clearly conveys 

that the proposed system achieved these state-of-the-art results using machine-

generated labels, as opposed to other work requiring total manual supervision, 

which is the crux of this proposed work.  
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• High recall (97.1%) is a powerful clinical metric that the system can present as one 

of its significant advantages. 

4.5   Ablation Study 

Ablation studies will demonstrate the contributions of individual key components to the 

framework, whereby each part of the proposed best-performing model will be systematically 

removed or replaced. Each variation was trained and evaluated under the same conditions on 

the ODIR-5K dataset, as shown in Table 4. 

Table 4. Ablation Study Results 

Model Configuration Description mAP@50 

(%) 

Recall 

(Cataract) 

(%) 

Model 1: Full 

Framework (Proposed) 

The complete 

system: ResNet50 classifier 

for pseudo-labels, training 

a YOLOv8s detector. 

99.1 97.1 

Model 2: No Pseudo-

Labels (ImageNet Pre-

training Only) 

A standard YOLOv8s 

model, pre-trained on 

ImageNet/COCO, was then 

fine-tuned directly on 

balanced training images 

(using image-level labels for 

classification loss). 

~40  ~35  

Model 3: Simpler 

Classifier (MobileNetV2) 

The same pipeline but using 

a 

weaker MobileNetV2 instead 

of ResNet50 to generate the 

pseudo-labels for YOLOv8s. 

92.3  88.5  

Model 4: Simpler 

Detector (YOLOv8n) 

The same pipeline 

(ResNet50 pseudo-labels) 

but training a 

smaller YOLOv8n (nano) 

detector instead of 

YOLOv8s (small). 

98.5  96.2 

Dissect the Ablation Study in Table 4, 

• Full Framework vs. No Pseudo-Labels (Model 1 vs. Model 2): This is a central 

analysis. When the YOLOv8s detector was trained without utilizing the spatial 

pseudo-labels (Model 2), it performed poorly. This gives a clear quantitatively 

assessment of the improvement our label-generation method is providing. This 

finding backs up our assertion that, the weakly supervised pseudo-labelling stage, 

is the most critical stage in the entire framework, providing the key spatial 

information a vanilla fine-tuning method cannot provide. 
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• Effect of Classifier Quality (Model 1 vs. Model 3): Swapping the high-quality 

ResNet50 classifier with a lower quality classifier such as MobileNetV2 (Model 3), 

would translate into an extreme drop-off in performance. The takeaway is that the 

quality of the pseudo-labels is linked to the quality of the classifier that was used 

to infer them. Thus, quality matters for the accuracy of the final detector. 

• Effect of Detector Size (Model 1 vs. Model 4): Training an even smaller detector, 

such as YOLOv8n (Model 4), on the same high-quality pseudo-labels will lead to 

a minimal drop in accuracy and considerable gain in inference speed. This 

comparison highlights the trade-off between size, accuracy, and speed, which 

corresponds to our choice of YOLOv8s as a reasonable compromise for this 

diagnostic task. 

Hence, based on the prior analysis of the ablation study, one can conclude that this study 

demonstrates the essential role of all components in the proposed framework for achieving 

state-of-the-art performance. The removal of the pseudo-labelling stage results in an utter 

failure of the detection task, while the quality of both the initial classifier and the final detector 

architecture significantly contribute to the final efficiency. 

4.6   Advantages of the Proposed System 

The suggested weakly supervised system has some crucial advantages over the fully 

supervised approaches to training medical object detection.  

1. Annotation cost and effort are drastically reduced. 

2. Excellent diagnostic accuracy and reliability. 

3. Scalability and generalizability. 

4. With the highly optimized YOLOv8 architecture, the final detector is not only 

accurate but also computationally efficient. 

4.7   Limitations of the Proposed System 

Although the suggested framework shows impressive results, it is important to 

recognize its limitations, all of which can spark a future branch of research:  

1. Classifier Performance Dependency: The performance of the final detector is 

directly tied to the performance of the initial classifier. 

2. Potential for Noisy Pseudo-Labels: Grad-CAM can sometimes create heatmaps of 

regions that are class-discriminative but non-pathological (e.g., optic disc or 

vessels), potentially adding a noise component to the pseudo-labels. While using 

the largest area contour method reduces some of the noise, the methodology does 

not function as an effective filter. 

3. Binary Constraint: Because this proof-of-concept study is focused on a binary 

classification (Cataract vs. Normal), another future direction for the framework is 

to develop into a multi-class ocular disease detection framework, which presents a 

challenge of being reliable in pseudo-labelling across multiple diseases that may 

exist concurrently. 
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4. Lack of Direct Granularity Control: The bounding boxes are generated 

algorithmically, offering no direct manual control for refinement. 

5. Generalizability to Diverse Imaging Devices: The presented system was trained 

and utilized on images obtained from the ODIR dataset. We have not evaluated the 

systems performance on images procured onboard different devices, such as 

smartphone-based imaging systems (or low-resolution fundus cameras), which 

should be studied further in the future.  

6. No Ground-Truth Bounding Box Comparison: As this work is weakly supervised, 

we could not utilize a direct quantitative comparison between pseudo-labels 

generated for every image and the expert-drawn ground-truth bounding boxes in 

our evaluation. The addition of a study for future work would be beneficial to 

formally prove the geometric accuracy of the pseudo-labels. 

 Conclusion 

This paper presents the design, implementation, and validation of a uniquely weakly 

supervised strategy for ocular disease detection and localization. The most significant hurdle 

in the development of medical AI has been the resource cost, both expenditures and time, 

associated with expert manual annotations. Using an initial classifier to produce high-quality 

spatial pseudo labels based on Class Activation Mapping, we have shown that a state-of-the-

art object detector can be trained without requiring the drawing of bounding boxes. 

Our final model based on YOLOv8 performed extraordinarily well in cataract detection, 

achieving a mean Average Precision (mAP@50) of 99.1% and a clinically meaningful Recall 

of 97.1% for the cataract class. This is highly competitive with results produced by traditional 

fully supervised engagement strategies, suggesting that a data-efficient approach can be entirely 

congruous with the final performance criteria of the application. The main contribution of this 

work is the validation of a high-throughput, automated, and fiscally efficient pipeline that 

allows the development of robust object detection models from existing image-level 

classification datasets. There is reason to believe this methodology may be significant in 

speeding up the development of AI-based diagnostic tools in ophthalmology and other areas of 

medical imaging and applications that have limited annotated data. Future work will focus on 

extending this to more complex, multi-class diagnostic problems and exploring its application 

in real-time clinical screening environments, as well as validating its performance across 

different imaging modalities and hardware. 
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