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Abstract

Lack of good pixel-level expert annotations has traditionally impaired the development
of robust object detection models for medical diagnosis. This article proposes a weakly
supervised approach that generates accurate bounding box labels with minimal user interaction
through image-level classification. The weakly supervised nature of the proposed approach
tackles the annotation bottleneck by converting cheaper and more available class-level labels
into spatial annotations of high value. The proposed two-stage method first trains a classifier
on diagnostic labels and then applies Class Activation Mapping (Grad-CAM) to generate high-
quality pseudo-labels. These machine-generated annotations are then used to train a state-of-
the-art YOLOvSs detector for the final diagnosis task. The system performed cataract detection
from fundus images with a mean Average Precision (mAP@50) of 99% and a stricter
mAP@50-95 of 96.9%. An important recall rate of 97.1% was achieved in the cataract class,
making the possibility of a missed diagnosis almost negligible. These results hold competitive
status when compared with fully supervised methods that require extensive manual annotation,
reaffirming our method as data-efficient, highly scalable, and a robust collaborator in fast-
tracking the development of medical Al tools.

Keywords: Weakly Supervised Learning, Medical Image Analysis, Cataract Detection, Grad-
CAM, YOLOVS.

1. Introduction

The traditional practices for the diagnosis of eye conditions typically consist of trained
ophthalmologists making manual assessments using specialized equipment, such as slit lamps
and fundus cameras. While this is the gold standard, the process offers a considerable time
investment and resource burden, and it depends on clinical experience. Compounding this
fundamental problem in various parts of the world is a significant shortage of ophthalmologists
and many have limited options for obtaining diagnostic infrastructure early on, limiting the
velocity of patient diagnoses [1]. This lack of ability to get a timely diagnosis often contributes
to delayed treatment, resulting in irreversible vision loss and a diminished quality of life for
many millions of people. Thus, it is essential to develop automated systems with efficiencies
in risk detection in the least amount of time possible but with the greatest accuracy to improve
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clinical workflows and expand the reach of ophthalmic care practice [2]. Such systems could
decrease diagnostic time in a hospital by quickly screening patients to determine which can be
seen as more complex conditions later, allowing the clinician to dedicate their knowledge and
practice expertise to those complex or confirmed cases. With healthcare technologies, including
artificial intelligence, deep learning, and computer vision, a new frontier for medical image
analysis has emerged potentially offering revolutionary possibilities in the practice of
ophthalmology [3].

This includes state-of-the-art object detection models, such as those belonging to the
You Only Look Once (YOLO) family, which, on the one hand, classify diseases and, on the
other hand, accurately localize their position in an image [4]. The localization process has
significant applications in clinical evaluation, providing information relevant to the size, shape,
and location of a lesion, which can help assess disease severity and inform treatment decisions
[5]. On the other hand, massive, meticulously annotated datasets form a significant bottleneck
in the development and deployment of such powerful supervised learning models. A definite
solution to overcome this drawback is to educate a detector with pathological areas delineated
by a medical expert. In doing so, Al may have a wider horizon for applications in the medical
diagnostic domain [6].

In this paper, we present the proposal and validation of a novel Weakly Supervised
Object Detection (WSOD) framework for the diagnosis of ocular diseases, which addresses a
critical challenge in this sector. The key inventive aspect of this contribution is the elegant two-
stage pipeline that automatically generates high-quality spatial annotations (i.e., bounding
boxes) from inexpensive image-level labels (i.e., cataract presence) that are easily attainable.
By using model-agnostic explanation methods illustrated by [6], the proposed framework learns
to identify the area where the disease of interest is present, despite not being explicitly
instructed, and in turn, teaches itself to localize. Through cataract detection, it has been
demonstrated that the proposed system can yield a highly competent detector that presents only
moderate difficulty compared to fully supervised methods. Beyond being a practical tool for
cataract detection, this paper provides a scalable and data-efficient approach that can be
generalized to the rapid creation of Al-powered diagnostic tools for other areas of medical
imaging [7].

The proposed methodology is based on a sequence of carefully selected deep learning
techniques and is evaluated using rigorous performance metrics. The following subsections
outline the core components of our proposed framework. Unlike other WSOD methods that
might rely on complex multiple-instance learning (MIL) frameworks, the proposed approach
uses a more direct explanation-based technique, which is computationally efficient and
conceptually straightforward.

1.1 Weakly Supervised Object Detection (WSOD)

The central idea of our work is weakly supervised object detection (WSOD), which is
a framework to train object detectors with image-level labels instead of bounding box
annotations. In this manner, the framework is realized through a two-stage process where the
first stage learns discriminative features from a classification model while the second stage
exploits the classifier's internal knowledge to generate spatial pseudo-labels for the final
detector [8].
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1.2 ResNet50 for Feature Extraction

In the first phase of classification, we use a Residual Network architecture (ResNet50)
with 50 layers. First pretrained on the large ImageNet dataset, this model provides a strong
feature extraction capability. ResNet50 was selected as the backbone due to the extensive
literature demonstrating its performance on a range of computer vision problems, notably
medical image analysis. The deep architecture with residual connections of ResNet50 avoids
the vanishing gradient problem and is thus capable of learning complex and hierarchical
features for accurate classification. Specifically, the deep structure with residual connections
can learn complex visual patterns required to distinguish healthy from pathological ocular
photos, which we then use for the subsequent localization step [9].

1.3 Class Activation Mapping (Grad-CAM)

Grad-CAM is used to bridge the gap between classification and localization. Grad-
CAM is an explanation method that relies on visual heat maps indicating regions of an input
image that were important to the decision of a particular classifier. The theoretical rationale
underlying the use of Grad-CAM is that it uses the gradients of the target class flowing into the
last convolutional layer to obtain a localization map. In this localization map, areas are
emphasized that have contributed positively to the resulting prediction, providing strong
evidence-based proxies for the location of pathology. The gradients flowing into the final
convolutional layer during a forward pass are analysed, thus providing an accurate and high-
resolution localization of the "evidence" for a given class assumption, such as the opaque lens
region in a cataract eye [10].

1.4 You Only Look Once v8 (YOLOVS)

Finally, we will investigate YOLOVS, the latest 'one-stage object detector.! YOLOVS
was designed with speed and accuracy in mind, making it a beneficial option for applications
and settings where timely feedback matters. It learns from pseudo-labeling using Grad-CAM
by taking the machine-labels it has generated and optimizing those into good and reliable
predictions for unseen images. YOLOv8 will be notable because its architecture is more
advanced and learns better using the pseudo-labels created from the Grad-CAM technique and
optimizes those into detections. [4].

1.5 Performance and Efficiency Metrics

To completely evaluate the performance of the final detector, we use a complete battery
of standard metrics in object detection evaluation. These metrics allow for a thorough
assessment of the model's accuracy, reliability, and clinical utility [11].

o Mean Average Precision (MAP): This is our primary object detection metric. We
will report MAP at 50% Intersection over Union (IoU) (MAP@50) as our baseline
MAP performance, followed by a stricter MAP averaged over the IoU threshold
between 50-95% (MAP@50-95) for more accurate localization. It is essential to
report both due to their meaningful representation; mAP@50 covers the models'
ability to detect overall, and mAP@50-95 indicates that the model can conduct
tight, clinically meaningful localization [4].
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o Precision: This metric indicates the accuracy of the model's optimistic detections
(i.e., out of all the detections made, what ratio was correct?). High precision is
desirable to minimize false-positives [12].

o Recall: Also known as sensitivity, this metric measures the model's ability to
identify all relevant instances (i.e., of all the actual diseases present, what fraction
was found?). High recall is critical in medical screening to avoid missing cases
[13].

e F1-Score: The harmonic mean of Precision and Recall, providing a single,
balanced measure of a model's performance [12].

o Confusion Matrix: A table that visualizes the performance of the classification
aspect of the detector, showing the counts of true positives, true negatives, false
positives, and false negatives for each class [14].

1.6 Ocular Disease Recognition (ODIR) Dataset

A vast database containing thousands of patient eye fundus and anterior segment
images, with a cataract category. It was created for the purpose of classification at the image
level rather than the object or anatomical region level. There are 10,000 colour fundus
photography images from left and right eyes of 5,000 patients, accompanied by doctor-
diagnosed keywords in eight categories (Normal, Diabetes, Glaucoma, Cataract, AMD,
Hypertension, Myopia, Other) [15], shown in Figure 1.

a- left eye (Diagnostic Keyword is cataract) b- right eye (Diagnostic Keyword is normal)

Figure 1. Images for Person Zero from the ODIR Dataset

2. Related Work

Ramakrishnan et al. adopted a hybrid approach combining Convolutional Neural
Networks (CNNs) for feature extraction and Support Vector Machines (SVMs) for
classification. Feature extraction was performed on four pre-trained CNNs, namely Inception,
MobileNet, ResNet, and VGG19, while classification was achieved using SVM. In the Ocular
Disease Intelligent Recognition (ODIR) dataset, the MobileNet-SVM hybrid model achieved
the best performance, yielding a test accuracy of 98.36%. The primary advantage is the
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enhanced discriminative power gained by using SVM as a feature selector on top of deep
features. This approach works at the image-level classification, without providing any disease
localization.

Acevedo et al. [17] presented a tailor-made Convolutional Neural Network (CNN) for
the classification of five ocular diseases. The procedure began with a pre-processing pipeline
that used blur and Canny edge detection filters, followed by classification with an 11-layer
CNN. The model was implemented using a balanced dataset of 1,000 images from Kaggle. The
proposed architecture achieved an accuracy of 97%, with individual precision and recall scores
also hovering around 97%. The proposed model is a lightweight, custom model that performs
well without relying on complex pre-trained architectures, but the suggested model only
performs image-level classification, not localization.

Yu, H., and Dong, X. [18] proposed a novel framework, RetinaDNet, which uses a dual-
branch input system for enhanced classification of retinal disease. The methodology combines
original fundus images with their corresponding vessel segmentation masks (generated by a U-
Net) as two separate inputs. Features are extracted from these two branches using a pre-trained
ResNet50, fused, and then classified by ML models (SVM, MLP, XGB) using soft voting.
Evaluated on the MuReD and RFMiD datasets, the RetinaDNet model achieved a remarkable
accuracy of 99.2%. The study also demonstrates the value of each component (vascular branch,
pre-training, and ensemble) through an ablation study, showing a significant decrease in
performance when any one of these parts is removed.

Hassan, M. ul et al. [19] proposed a novel deep learning model, "Ocular Net," for the
multi-class classification of five ocular conditions (Normal, Cataracts, Diabetic, Uveitis, and
Glaucoma). The methodology is based on a custom CNN architecture that incorporates
Inception modules, various activation functions, and transfer learning. Using a dataset of 6200
images, the final proposed model, trained for 200 epochs, achieved an outstanding accuracy of
98.89%, precision of 99.2%, recall of 99.3%, and an F1-score of 99.41%. The strength of the
work lies in its custom architecture and the high performance achieved in a multi-class setting.
However, the model only performs image-level classification and does not provide localization
of the diseases.

Ismail, W. N., and Alsalamah, H. A. [20] introduced CataractNetDetect, a stacking
ensemble model for multi-label ocular disease classification. The methodology fuses features
from bilateral fundus images using three pre-trained architectures (ResNet-50, DenseNet-121,
and Inception-V3) as feature extractors. These models are fine-tuned, and their outputs are
stacked to train the final classifier. Using the publicly available ODIR-5k dataset, the ensemble
model achieved performance with a maximum validation score of 100%, an F1-score of 98.0%,
and an AUC of 97.9%. The work is limited to classification and does not perform object
localization.

Shams, S., et al. [14] presented a Clinical Decision Support System (CDSS) that
compares five machine learning algorithms for classifying ocular diseases (Cataract,
Glaucoma, Diabetic Retinopathy, Normal, Others). The methodology uses VGG19, SVM,
Decision Tree, Random Forest, and KNN. The models were trained on the ODIR dataset. The
CNN, enhanced with transfer learning, was found to be the most robust model, achieving an
overall accuracy of 80.875%. A significant limitation is the low performance of the CNN
compared to other state-of-the-art models.
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Yadav, H., and Mallick, S. [21] present the use of the Efficient Net-B3 model for multi-
class classification of retinal images. The methodology is based on transfer learning using
approximately 1000 images per class. They achieved an overall accuracy of 96%. The
confusion matrix indicates that the model is highly accurate for classifying Diabetic
Retinopathy, but occasionally misclassifies the remaining classes, such as Glaucoma, Cataract,
and Normal. The main restriction is that it only does image-level classification without
localizing the disease.

A common theme across the reviewed literature is the focus on image-level
classification, which, while valuable, does not provide the spatial localization necessary for
many clinical applications. The primary contribution of our work is to bridge this gap. While
the above studies achieve high classification accuracy, they do not address the challenge of
generating detection labels without pixel-level supervision. The proposed framework is distinct
in its explicit goal of converting a classification task into a detection task using explainability
methods, offering a novel pathway for creating powerful medical object detectors from
existing, classification-only datasets. This directly contrasts with fully supervised methods that
require expensive bounding box annotations from the outset.

The previous related work can be summarized in Table 1, which reflects the essential
aspects of these works and facilitates a side-by-side comparison of the proposed system with
other state-of-the-art systems.

Table 1. Summary of the Related Work

# Methodology Dataset Results Advantages | Limitations

16 | using CNNs and | (ODIR) Accuracy: enhances Does not
an SVM dataset. 98.36% discriminative | perform

(MobileNet- power localization.
SVM).
17 | CNN with a pre- | Kaggle Accuracy: 97%, | A lightweight | Performs
processing dataset of Precision: 97%, model. image-level
1000 images | Recall: 97% classification,
not
localization.

18 | ResNet50 and MuReD, Accuracy: 99.2% | Boosts Methodology
ML classifiers RFMiD, and performance | is complex;
(soft voting). DRIVE by leveraging

datasets. vascular
features.

19 | Ocular Net with | A custom Accuracy: Achieves No disease
inception dataset of 98.89%, remarkably localization.
modules and 6200 images. | Precision: 99.2%, | high
transfer learning Recall: 99.3% performance

20 | ResNet-50, ODIR-5k F1-Score: 98.0%, | High and Does not
DenseNet-121, dataset. AUC: 97.9% robust results. | provide
and Inception- localization
V3, using fusion of the
of fundus images. disease.
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14 | Five ML ODIR dataset | Accuracy: Development | The accuracy
algorithms, with 80.875% of a user- is low.
a VGG19-based friendly GUL
CNN.

21 | A single A dataset of | Overall High Does not
EfficientNet-B3 | ~4000 Accuracy: 96% performance | localize the
model. images. disease.

3. Proposed Work

This study introduces a robust two-phase framework for the automated detection and
localization of external ocular disease, specifically cataracts, from digital photographs of the
eye. The main component of our methodology is a Weakly Supervised Object Detection
(WSOD) approach that avoids the need for costly and time-consuming manual annotations
using bounding boxes by physicians. Instead, our system utilizes easily accessible image-level
labels (e.g., this image contains a cataract) to train a highly precise object detector. The
workflow of our proposed framework consists of four key phases: data preparation, training an
attention-aware classifier, generating pseudo-labels using class activation mapping, and finally
training the object detector, which is all summarized in Figure 2. Figure 2 gives an informative
but high-level overview of the entire process from data preparation to detector evaluation (the
object detector is trained in phase D).

1. Data Preparation

4. Detector Training & Evaluation (Phase II)

»(_ YOLOVS Data P@
YOLOVS Detector Training

Final Trained Detector (best.pt)

ODIR-5K Dataset
Raw Images & Diagnostic Keywords

Data Filtering & DataFrame Creation

Data Splitting (Train / Validation / Test Sets)

Balanced Training Set (Undersampling)

!

2. Classifier Training (Phase I) BRRRE= == e e
Grad-CAM Heatmap Generation ;'

3. Pseudo-Label Generation (WSOD Core)

- *\_ =
il il -l 3 - —— ——
ResNet50 Classifier Training - I
-
"
-
-
-
- ———— —
- — | ] ;
- < Bounding Box Extraction

Saved Classifier Model
(resnet_classitierh5)

i

p=—— e
( Pseudo-Labels Dictionary )

Figure 2. Block Diagram of the Proposed System
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3.1 Data Preparation (Pre-processing)

A special subset was formed for a clear-cut, binary classification problem. Data were
filtered into two classes:

o Normal-Images that have diagnostic keywords containing "normal".
o Cataract-Images that have diagnostic keywords containing "cataract".

We worked with a collection of 2,876 total normal images and 301 total cataract images.
After that, the entire dataset was split into a Training Set (64% of the total images, n=2033), a
Validation Set (16% of the total images, n=509), and a Testing Set (20% of the total images,
n=635). The entire hold-out test set was set aside and used only at the end to assess the model's
performance in an unbiased manner. A fixed split was preferable to k-fold cross-validation, for
the purpose of ensuring that we maintain a large, fully independent Test Set for final
performance evaluation, which is standard practice in deep learning research, while being more
computationally efficient, yet still providing enough information to confidently validate the
effectiveness of the framework.

3.1.1 Normalization

The pixel values of each image went through a rescaling process. Their original range
of [0, 255] changed to a new range of [0, 1]. This step plays a key role in improving the neural
network's performance.

3.1.2 Data Augmentation

The current dataset will undergo augmentation leading to two main benefits:

o Itequalizes the classes in the dataset. Since one will create modified new copies of
minority class images (cataracts) to equal the number of cataract images to normal
images in the training set, the model will not be biased toward the majority class
and will significantly boost the ability of the model to correctly identify rarer
occurrences of cataract cases (increasing Recall). By creating a balanced training
set for the initial classifier, this step is crucial for mitigating the impact of the
inherent class imbalance in the original dataset, ensuring the model does not
develop a bias toward the more prevalent 'Normal' class.

o The model becomes more resilient. By adding extra training data, the set grows
larger and more varied. This new data comes from tweaking the original images
with random rotations, flips, and changes in brightness. This ensures that the model
learns core disease features rather than memorizing images, resulting in reduced
overfitting and better generalization power for performance at unseen points in the
real world.

3.1.3 Image Resize

The image sizes were changed before being used. The original size of the images in the
ODIR-5K dataset has a high but variable resolution, typically around (2000x3000) pixels,
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depending on the camera used. All images were resized to a smaller, uniform size of (224x224)
pixels before being fed into the ResNet50 classifier model.

3.2 Phase I: Attention-Aware Classifier Training

This phase's core objective was to not only detect images but also to train a model that
learns, indirectly, where to focus on an image when observing disease. The attention learned
would feed into the next phase.

ResNet-50 was evaluated, and used, as a base classifier which was pre-trained on the
ImageNet data. This was chosen architecture-wise because it is deep residual architecture that
sufficiently performs the task of extracting complex hierarchical features from medical images.
There are other available architectures such as DenseNet or EfficientNet, but ResNet50 was
chosen as a powerful transformer and a well-established baseline for validating the pipeline
proposed in this paper. The research focus of this study is the viability of the weakly supervised
methodologynot presenting a thorough evaluation of back-bone architectures. The very last
fully connected layers of the original network were changed to a new head architecture to
satisfy the newly framed binary classification task of Normal vs. Cataract.

The model used for training employed image inputs that were resized to 224 x 224
pixels. Training occurred with the Adam optimizer alongside a cross-entropy loss function for
multiple classes. Model weights were stored to retrieve the best model according to validation
loss. While classification accuracy is one of the outputs of this phase and is the least relevant,
the most relevant model output is the class-discriminative visual features learned and stored in
the final weights of the model.

3.3 Phase II: Pseudo-Label Generation via Class Activation Mapping

This represents the innovation hub for the proposed framework because it can move
from an image-level classifier to an object-level localizer without any human effort. The
developed system utilizes Gradient-weighted Class Activation Mapping (Grad-CAM). Grad-
CAM is a method that produces a coarse localization map and refers to the specific regions in
a provided image input that were most important to the prediction of the classifier. Grad-CAM
was used to construct a 2D heat map based on the predicted class. For the cataract image, the
heatmap represented the lens region, while for the normal image, it represented general features
of the fundus. The heatmap was then automatically converted into a bounding box using Otsu's
threshold from the heatmap to create a binary mask of the most active regions, whereby the
largest contour could be extracted, and the minimum bounding rectangle could be calculated.
The same normalized and resized (224x224) images were used for this process to maintain
standardization to work with the classifier.

The following outlines the process for creating an accurate bounding box from a rough
Grad-CAM heatmap:

1. For a prediction of 'Cataract' for a given image, a Grad-CAM heatmap is produced
that portrays the areas which were most responsible for the classifier's decision
making.

2. This heatmap is then transformed into a binary mask using Otsu's thresholding. In
brief, Otsu's thresholding creates an automatic determination for an optimal
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threshold to distinguish the highly activated areas (foreground) from the rest of the
image (background).

3. From this binary mask, the largest connected component (contour) is extracted.
This heuristic excludes smaller, less relevant activations and assumes that the
largest area corresponds to the true pathology.

4. As alast step, the minimum bounding rectangle surrounding the largest contour is
calculated. The coordinates of the bounding box will serve as pseudo-labels for the
purposes of object detection training.

This automated procedure creates a pseudo-label, which consists of a class (with 0 for
normal and 1 for cataract), and then the coordinates representative of the drawn bounding box
for each image in the training dataset. This allowed the full image-level dataset to be converted
into a full object detection dataset.

3.4 Phase I1I: Object Detector Training

After successfully obtaining the pseudo-labelled data, training was performed with a
state-of-the-art object detector. The YOLOvS model (the most recent version of You Only Look
Once, which was named this way when first presented and is now labelled version 8, but can
also be called nano) was selected to be trained on the pseudo-labelled dataset. YOLOv8n finds
its unique practicality through high accuracy and exceptionally low inference latency, which
lends itself well for use in a clinical setting. After obtaining the pseudo-labelled dataset, a state-
of-the-art object detector was trained. For the sake of this task, YOLOvV8 was chosen (You Only
Look Once, version 8, small). YOLOVS is uniquely celebrated for the amazing balance
between, its high accuracy and real-time inference speed, which makes it the ideal candidate to
be clinically approved should that even come to fruition soon. Using the dataset consisting of
the pseudo-labels from Phase 11, the YOLOv8s model was trained from scratch (albeit still
using the pre-trained backbone weights) to learn from these automatically produced (and
sometimes noisy) bounding boxes and produce precise and accurate localizations. Training was
completed over twenty-five epochs.

3.5 Implementation Details

The entire experimental setup was conducted using Python 3, and built on the Google
Collaboratory website, which provided access to an NVIDIA Tesla T4 GPU for efficient deep
learning computations. The first classifier model (Phase I) was developed and trained using the
TensorFlow and Keras libraries. The model was trained with a batch size of 32 using Adam
optimizer and a learning rate of 0.001. An early stopping callback monitored the validation loss
during training with a patience of 5 epochs to prevent overfitting. The final object detection
model (Phase III) was developed and trained using Ultralogging, a library based on PyTorch.
All core data manipulation and analysis were conducted using Pandas and NumPy libraries,
and OpenCV was used for a variety of image processing functions (i.e., reading an image and
extracting the contours of the bounding box). The final YOLOvVS8s detector is efficient and
requires only several milliseconds of inference time per image (on a standard GPU) and
therefore can be used for real-time screening applications.
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4. Results and Discussion

This section details the empirical outcomes of the proposed two-phase weakly
supervised framework. Firstly, the performance of the foundational classifier model and the
subsequent pseudo-label generation is discussed followed by a comprehensive evaluation of
the final YOLOV8 object detector trained on these machine-generated labels.

4.1 Classifier Performance (Phase I)

Our framework's backbone architecture was the ResNet50 trained classifier with a
balanced set of images. To avoid overfitting and to select the most generalizable model, training
was conducted with an early stopping callback that monitored the validation loss. After eight
epochs of training, and at the highest validation performance on the validation set, model
weights corresponding to Epoch 1 were returned. The best classifier achieved a validation
accuracy of 90.9% with a validation loss of 0.447. This accuracy demonstrates that the features
learned were discriminative for normal and cataractous fundus images and provided assurance
for the next stage of heatmap generation, as depicted in Figure 3.

Image: 638 _right.jpg Image: 330_left.jpg
Predicted Box for Class: 'normal’ Predicted Box for Class: ‘cataract’

Figure 3. Examples of Drawing a Bounding Box

4.2 Object Detector Performance (Phase II)

The consolidated YOLOv8s model was trained on 409 pseudo-labels, and subsequently,
examined on a held-out validation set. The larger number represents the total pool of data
available to label (3177 images), while the smaller number is the subset of data we selected,
balanced, and processed that allowed us to train the final YOLOVS8s detector (409 images). This
balancing step was key for the classifier to succeed, as was the quality of the pseudo-labels that
would follow. The model performed extremely well, demonstrating the promise of our weakly
supervised approach. The performance metrics of interest are summarized below:

e Overall Performance: The detector achieved a record mAP@50 (Mean Average
Precision) of 99.0%. Overall, the model performed extremely well and had only a
minimal drop in mAP@50-95 (mean of the different IoUs used for evaluation
assessment) of 96.9%.
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Class Level Performance: The model demonstrated strong and balanced
performance across both classes. For the particularly important cataract class, the
detector achieved a Recall (True positive rate) score of 97.1%, meaning it did not
miss any true positives, which is an essential characteristic of any screening tool
for the clinic. The precision (positive predict score) for the cataract class was
88.5%. For the benign lesions class, the model once again performed remarkably
well, achieving a precision of 98.3% and recall of 89.7%. The lower precision for
the cataract class (88.5%) implies the model produces some false positives, and a
qualitative analysis of these cases demonstrates that Grad-CAM sometimes
highlight other artifacts (reflections or minor lens opacities that are not clinically
graded cataract) which led to the incorrect pseudo-labels. On the other hand, the
remarkably high recall (low false negatives) is a distinct and clinically important
biopsy strength (minimal risk of missing true disease cases).

These results confirm that a trustworthy object detection model can be trained with
purely machine-generated bounding boxes without any manual labelling, as illustrated in
Figure 4. The resulting model successfully learned how to correctly detect the disease,
converting noisy pseudo-labels into accurate localizations.

Image: 2185_left.jpg Image: 2553 _left.jpg
True Label: Cataract True Label: Normal

Figure 4. Results of Yolo8 Network

4.3 Performance Metrics

The system's metrics can be summarized in Table 2 and illustrated in Figure 5.
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Table 2. Performance Metrics of the Proposed System

Class Box Recall mAPS0 mAP50-95
All 0.965 0.971 0.991 0.957
Normal 0.974 0.972 0.992 0.957
Cataract 0.956 0.971 0.99 0.957
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Recall vs. Epoch

mAP30 vs. Epoch

Figure 5. Yolo8 Performance Metrics vs Epoch Numbers

Figure 5 shows the performance evaluation of the YOLOvS8s detector during training.
The left plot shows the recall metric for the cataract class per epoch. The right plot illustrates
the mean Average Precision at an IoU threshold of 0.50 (mAP@50) per epoch. Both metrics
stabilize, indicating successful model convergence.

4.4 Compression with Other Systems

Table 3. Performance Comparison with State-of-the-Art Models

Study Annotation Type Key Metric | Result (%)
The Proposed Work | Machine-Generated (Weakly mAP@50 99.1
Supervised) Recall 97.1
(Cataract)
mAP50-95 95.7
Ismail & Alsalamah | Fully Supervised (Classification F1-Score 98.0
[20] Labels)
Hassan et al. [19A] Fully Supervised (Classification Accuracy 98.9
Labels)
Yu & Dong [1A8] Fully Supervised (Classification Accuracy 99.2
Labels)
Fung et al. [22] Fully Supervised (Classification Accuracy 96.0
Labels)

Analysis of Table 3

o The proposed model's mAP@50 of 99.1% is at the absolute top tier, signifying that

the weakly supervised approach does not sacrifice end performance.

o Itis much more concerning in the Annotation Type column since it clearly conveys
that the proposed system achieved these state-of-the-art results using machine-
generated labels, as opposed to other work requiring total manual supervision,
which is the crux of this proposed work.
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o High recall (97.1%) is a powerful clinical metric that the system can present as one
of its significant advantages.

4.5 Ablation Study
Ablation studies will demonstrate the contributions of individual key components to the
framework, whereby each part of the proposed best-performing model will be systematically

removed or replaced. Each variation was trained and evaluated under the same conditions on
the ODIR-5K dataset, as shown in Table 4.

Table 4. Ablation Study Results

Model Configuration Description mAP@50 Recall
(%) (Cataract)
(%)

Model 1: Full The complete 99.1 97.1
Framework (Proposed) system: ResNet50 classifier

for pseudo-labels, training

a YOLOvSs detector.
Model 2: No Pseudo- A standard YOLOVS8s ~40 ~35
Labels (ImageNet Pre- model, pre-trained on
training Only) ImageNet/COCO, was then

fine-tuned directly on
balanced training images
(using image-level labels for
classification loss).

Model 3: Simpler The same pipeline but using 92.3 88.5
Classifier (MobileNetV2) | a
weaker MobileNetV2 instead
of ResNet50 to generate the

pseudo-labels for YOLOVSs.

Model 4: Simpler The same pipeline 98.5 96.2
Detector (YOLOv8n) (ResNet50 pseudo-labels)
but training a

smaller YOLOv8n (nano)
detector instead of
YOLOVSs (small).

Dissect the Ablation Study in Table 4,

o Full Framework vs. No Pseudo-Labels (Model 1 vs. Model 2): This is a central
analysis. When the YOLOvS8s detector was trained without utilizing the spatial
pseudo-labels (Model 2), it performed poorly. This gives a clear quantitatively
assessment of the improvement our label-generation method is providing. This
finding backs up our assertion that, the weakly supervised pseudo-labelling stage,
is the most critical stage in the entire framework, providing the key spatial
information a vanilla fine-tuning method cannot provide.
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Effect of Classifier Quality (Model 1 vs. Model 3): Swapping the high-quality
ResNet50 classifier with a lower quality classifier such as MobileNetV2 (Model 3),
would translate into an extreme drop-off in performance. The takeaway is that the
quality of the pseudo-labels is linked to the quality of the classifier that was used
to infer them. Thus, quality matters for the accuracy of the final detector.

Effect of Detector Size (Model 1 vs. Model 4): Training an even smaller detector,
such as YOLOv8n (Model 4), on the same high-quality pseudo-labels will lead to
a minimal drop in accuracy and considerable gain in inference speed. This
comparison highlights the trade-off between size, accuracy, and speed, which
corresponds to our choice of YOLOvSs as a reasonable compromise for this
diagnostic task.

Hence, based on the prior analysis of the ablation study, one can conclude that this study
demonstrates the essential role of all components in the proposed framework for achieving
state-of-the-art performance. The removal of the pseudo-labelling stage results in an utter
failure of the detection task, while the quality of both the initial classifier and the final detector
architecture significantly contribute to the final efficiency.

4.6 Advantages of the Proposed System

The suggested weakly supervised system has some crucial advantages over the fully
supervised approaches to training medical object detection.

1.
2.
3.
4,

Annotation cost and effort are drastically reduced.
Excellent diagnostic accuracy and reliability.
Scalability and generalizability.

With the highly optimized YOLOvVS architecture, the final detector is not only
accurate but also computationally efficient.

4.7 Limitations of the Proposed System

Although the suggested framework shows impressive results, it is important to
recognize its limitations, all of which can spark a future branch of research:

1.

Classifier Performance Dependency: The performance of the final detector is
directly tied to the performance of the initial classifier.

Potential for Noisy Pseudo-Labels: Grad-CAM can sometimes create heatmaps of
regions that are class-discriminative but non-pathological (e.g., optic disc or
vessels), potentially adding a noise component to the pseudo-labels. While using
the largest area contour method reduces some of the noise, the methodology does
not function as an effective filter.

Binary Constraint: Because this proof-of-concept study is focused on a binary
classification (Cataract vs. Normal), another future direction for the framework is
to develop into a multi-class ocular disease detection framework, which presents a
challenge of being reliable in pseudo-labelling across multiple diseases that may
exist concurrently.
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4. Lack of Direct Granularity Control: The bounding boxes are generated
algorithmically, offering no direct manual control for refinement.

5. Generalizability to Diverse Imaging Devices: The presented system was trained
and utilized on images obtained from the ODIR dataset. We have not evaluated the
systems performance on images procured onboard different devices, such as
smartphone-based imaging systems (or low-resolution fundus cameras), which
should be studied further in the future.

6. No Ground-Truth Bounding Box Comparison: As this work is weakly supervised,
we could not utilize a direct quantitative comparison between pseudo-labels
generated for every image and the expert-drawn ground-truth bounding boxes in
our evaluation. The addition of a study for future work would be beneficial to
formally prove the geometric accuracy of the pseudo-labels.

5. Conclusion

This paper presents the design, implementation, and validation of a uniquely weakly
supervised strategy for ocular disease detection and localization. The most significant hurdle
in the development of medical Al has been the resource cost, both expenditures and time,
associated with expert manual annotations. Using an initial classifier to produce high-quality
spatial pseudo labels based on Class Activation Mapping, we have shown that a state-of-the-
art object detector can be trained without requiring the drawing of bounding boxes.

Our final model based on YOLOVS performed extraordinarily well in cataract detection,
achieving a mean Average Precision (mAP@50) of 99.1% and a clinically meaningful Recall
of 97.1% for the cataract class. This is highly competitive with results produced by traditional
fully supervised engagement strategies, suggesting that a data-efficient approach can be entirely
congruous with the final performance criteria of the application. The main contribution of this
work is the validation of a high-throughput, automated, and fiscally efficient pipeline that
allows the development of robust object detection models from existing image-level
classification datasets. There is reason to believe this methodology may be significant in
speeding up the development of Al-based diagnostic tools in ophthalmology and other areas of
medical imaging and applications that have limited annotated data. Future work will focus on
extending this to more complex, multi-class diagnostic problems and exploring its application
in real-time clinical screening environments, as well as validating its performance across
different imaging modalities and hardware.
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