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Abstract   

Cauliflower (Brassica oleracea var. botrytis) is one of the most popular crops that are 

subject to a variety of diseases affecting the leaf apparatus, which impact quality and 

production. Despite the progress in deep learning, appropriate disease detection under real-field 

conditions remains a serious problem. This paper introduces an expert system GNN-PDP, 

which is a novel Graph Neural Network based model for the automated classification of 

cauliflower leaf diseases using images taken with a smartphone. A Region Growing 

Segmentation (RGS) is used to extract perceptual regions in this structure and statistical 

features are utilized as graph node features. The Salp Swarm Algorithm (SSA) finds optimal 

features that result in better generalization. A total of 750 images were gathered in four 

categories of diseases. The assessment was made based on accuracy, precision, sensitivity, 

specificity, and F1-score, in relation to Linear Discriminant Analysis (LDA), Random Forest 

(RF), Deep Neural Networks (DNN), and CNN classifiers. GNN-PDP achieved a superior 

classification accuracy of 89.0%, outperforming all other experiments. The model has great 

potential for smart agriculture in disease management. 

Keywords: Cauliflower Disease Detection, Deep Learning, Graph Neural Networks, Feature 

Optimization, Smart Agriculture. 

 Introduction 

Agriculture is an essential field in the global economy as it is the core of food supply, 

revenues, and rural growth. The agri-food supply chain (AFSC) encompasses the stages of 

production, harvesting, storage, processing and distribution whereby each stage is essential in 

preserving food security and stabilizing the market. The issue of AFSC management has 

attracted more concern over the past few decades following the increasing demand, variability 

in climate and issues with sustainability [1]. Cauliflower is a high-nutritional cruciferous crop, 

which is widely grown in different environments across the entire world. This is because many 

diets consist of it due to its rich content of fiber, vitamins, carotenoids, glucosinolates and 

phenolic compounds that are related to anticancer and cardio protective properties [2]. Nations 

such as India (approximately 7.8 million tons per year) and Bangladesh (73,000 tons on 9,400 

acres) depend largely on cauliflower both nutritionally and economically as well as for their 
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agricultural efficiency [3]. Regardless of its worth, this product is immensely vulnerable to 

various destructive afflictions including bacterial spot rot, black leg, white rust, downy mildew, 

black rot, powdery mildew, and ring spot diseases. Without early detection, these diseases can 

result in the loss of up to 30-50 percent and threaten the food security of the region as well as 

the revenue of farmers [4]. Factors such as unseasonable weather conditions, inappropriate 

agronomic treatment, and a lack of diagnostic means contribute to the increased transmission 

and worsen the progress of these infections. Traditional disease detection techniques are labour-

intensive, usually require expert knowledge, and have low efficiency and ergonomics. These 

constraints do not allow for timely action and the consequence of this is usually massive crop 

loss. Recent developments in machine vision and deep-learning mechanisms have introduced 

automation tools that can facilitate the diagnosis of plant diseases using leaf imagery. 

Convolutional Neural Networks (CNNs) have already been widely applied to the task of disease 

classification based on images [5], but these networks do not model the spatial relationships 

among regions in an image. Early and accurate classification of cauliflower leaf diseases in the 

real remains a key parameter due to a combination of visual indicators, inconsistent light, and 

the drawbacks of traditionally applied machine learning and deep learning models that overlook 

spatial correlations in leaves across imagery. Current techniques like CNNs and K-means-based 

classifiers cannot easily handle segmentation accuracy, class imbalance, and generic outdoor 

conditions in noisy data. This urgently requires a resilient, end-to-end solution that combines 

spatial reasoning, adaptive feature optimization and meaningful segmentation that are 

perceptual to enhance the performance of disease diagnosis in real-world agricultural contexts. 

The contributions are: 

• Creation of a GNN-based model that can learn relationships between the regions of 

the leaves spatially by using segmented patches as the nodes in a graph and exploit 

the graph structure to learn the context of the patterns associated with diseases.  

• RGS--designed integration with perceptually consistent segmentation of the 

diseased and healthy parts that proves to be more efficient than traditional K-means 

clustering involving structural preservation integrity.  

• Implements the SSA to generate the optimal feature set to control high-dimensional 

feature noise and enhance the generalization of the models with reference to the 

selection of the most discrimative color and texture features.  

• Real-field mobile-captured datasets of images taken, making the project more 

relevant and deployable in the wild with regard to uncontrollable agricultural 

conditions relevant to the proposed model.  

• A full performance-based analysis of GNN-PDP versus baseline classifiers that 

exhibit higher performance across all disease classes. 

 Literature Review 

Numerous studies have been conducted on computer vision and machine learning 

methods for the automatic identification of plant diseases in high-demand crops, such as 

cauliflower. This winter crop, crucial to Bangladesh due to its high nutritional value and 

economic importance, is susceptible to diseases like black rot and downy mildew, which 

significantly affect crop productivity. Early detection is critical for managing these diseases 

effectively [6]. A study surveyed control methods for black rot in Brassicaceae vegetables 
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caused by Xanthomonas campestris, categorizing them as physical (e.g., hot water seed 

treatment), chemical (e.g., bactericides), and biological (e.g., beneficial microbes), with a focus 

on integrated management [7]. Similarly, the environmental and health consequences of 

pesticide overuse have been addressed, advocating for eco-friendly bioremediation methods 

through bacteria, fungi, plants, and microalgae [8]. 

A study introduced "Cauli-Det," an enhanced cauliflower disease detection model using 

a modified YOLOv8 approach [9]. Another work utilized an agro-medical expert system based 

on k-means segmentation and 10 statistical/texture features for cauliflower disease diagnosis, 

showing improvements in feature selection and augmentation [10]. CNN models and transfer 

learning were used to classify four cauliflower diseases (e.g., black rot, white rust), obtaining 

the highest accuracy with the InceptionV3 algorithm [11]. A comparison between traditional 

machine learning (ML) and deep learning (DL) models for cauliflower disease recognition 

showed the superiority of DL models like InceptionV3, ResNet50, MobileNetV2, and VGG16 

[12]. Crop-conditional CNNs were proposed to incorporate image metadata and improve 

classification performance, tackling sampling bias [13]. Bayesian deep learning was used to 

quantify uncertainty in plant disease classification, providing more accurate predictions [14]. 

Furthermore, improved crop disease classification was achieved using median filters, FCM 

clustering, and LSTM models [15]. While several models have applied ML and DL for disease 

detection, most fail to capture the spatial relationships between infected areas, leading to 

limited classification performance. Popular segmentation techniques like k-means do not 

preserve structural and perceptual integrity under real-world conditions. Few studies have 

employed advanced metaheuristic algorithms like the Salp Swarm Algorithm (SSA) for feature 

selection [16]. Additionally, most previous research used controlled datasets, whereas real-field 

environments introduce variability and noise that these methods struggle to handle. Therefore, 

an integrated approach combining spatial modeling, perceptual segmentation, feature 

optimization, and real-field data is essential to address these challenges, as explored in this 

paper. 

 Methodology 

In the proposed study, GNN-PDP is created, a GNN-based framework capable of 

detecting and classifying four key diseases of cauliflower using a total of 750 mobile-captured 

images. The methodology also considers RGS as the technique to create regions which are 

considered to be significant visually, GNNs as the tool to describe spatial and relational 

relations, and SSA as an approach to streamline the choice of features. As described in Figure 

1, the whole pipeline stream consists of image reception, preprocessing, segmentation, feature 

extraction, graph-based classification and enhancement, and optimization whose layout takes 

into consideration the issues presented by real-field data. 
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Figure 1. Overview of the Methodology 

3.1   Image Acquisition 

As described in Table 1, the white cauliflower field images (750 images) were captured 

during a period of 10 days by utilizing a smart phone camera in natural light settings in Hosur, 

Krishnagiri District, Tamil Nadu, India. The data of the healthy and diseased plants with the 

four target diseases is represented in the dataset. It includes 750 images of benign and 

pathological or sick living plants of the white cauliflower. 

Table 1. Summary of the Cauliflower Disease Dataset 

Attribute Details 

Vegetable Cauliflower (white variety) 

Location Hosur, Krishnagiri District, Tamil Nadu, India 

Type of the Field Square-shaped flat land 

Size of the Area 5 acres 

Acquisition Duration 10 days 

Collection Method Manual capture via smartphone camera 

Image Resolution 500 × 500 pixels 

Classes Bacterial spot rot, black rot, downy mildew, and healthy. 

Total Images 750 

Training Set 70% (525 images) 

Testing Set 30% (225 images) 

 

In order to enhance the generalization of the images and computational efficiency, the 

whole dataset was split into 70% training (525 images) and 30% testing (225 images). The 750 

images were used to simplify the training and evaluation of the models. Examples of the 

acquired samples are given in Figure 2. 
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Figure 2. Sample Plant Pictures from the Collected Data 

3.2   Pre-processing 

Raw images are subjected to different light, shades and contrasts. A set of preprocessing 

operations was performed to improves the quality of the images and standardize the input for 

successive models. 

3.2.1   Image Resizing 

All the images obtained were rescaled to 300 pixels in height and width to ensure 

uniformity in the input size for the rest of the models and to reduce the computational burden. 

The presented resolution aims to retain the essential disease properties while balancing the 

processing costs. The intensity value of the ((𝑖, 𝑗)pixel is denoted as(𝑖, 𝑗). It makes resizing 

possible using a bi-cubic or a bilinear interpolation-function depends on the intended scale. The 

approximation it shows reveals that the intensity function on a 2D surface can be approximated 

as: 

𝑓(𝑖, 𝑗) = ∑ ∑ 𝑚𝑥𝑦 × 𝑖𝑥 × 𝑗𝑦𝑁
𝑦=0

𝑁
𝑥=0                                              (1) 

Here,𝑚𝑥𝑦 is the scaling factor and 2D pixels are denoted as 𝑖𝑥and𝑗𝑦. This is done to 

preserve the spatial coherence, and it does not remove some vital texture features that are 

involved in downstream classification. 

3.2.2   Histogram Equalization 

The practical improvement of histogram equalization and RGB→L*x*y color 

transformation was validated experimentally. Compared with RGB and HSV color models, 

L*x*y achieved 7.8% higher segmentation accuracy under non-uniform lighting due to its 

perceptual uniformity and illumination invariance. This transformation reduced mis-

segmentation in shaded regions, ensuring robust disease feature extraction in real-field 

conditions. The contrast of the picture is enhanced via higher traditionalization of the 

histogram. Suppose that S and T are respectively the row number (size) and the column (length) 

in pixels. 𝑆𝑙is the saturation of the color of the pixel number 𝑛𝑙, and M is the numerically 

calculated brightness level of the picture. Then with the help of continuity formula a mapping 

process between brightness𝑆𝑙and every pixel brightness 𝑇𝑙is done as follows; 

𝑇𝑙 = 𝐹(𝑆𝑙) =
𝑀−1

𝑆𝑇
(𝑛1 + 𝑛2 + ⋯ + 𝑛𝐿)                (2) 

Histogram equalization provides a mathematically grounded, computationally efficient, 

and practically effective means of preparing real-field cauliflower images for automated 

disease classification. By increasing the saliency of visual patterns associated with disease 

symptoms, it serves as a critical component in ensuring high accuracy in subsequent 

segmentation and feature extraction stages. The practical improvement of histogram 
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equalization and RGB→L*x*y color transformation was validated experimentally. Compared 

with RGB and HSV color models, L*x*y achieved 7.8% higher segmentation accuracy under 

non-uniform lighting due to its perceptual uniformity and illumination invariance. This 

transformation reduced mis-segmentation in shaded regions, ensuring robust disease feature 

extraction in real-field conditions. 

3.2.3   RGB to L*x*y Transformation 

In this study, the RGB-to-L*x*y transformation is applied as a critical preprocessing 

step to support effective image segmentation. RGB images captured under real-world field 

conditions often suffer from lighting inconsistencies and contrast variations, making them less 

reliable for pixel-based clustering. To enhance color uniformity and improve segmentation 

precision, RGB images are converted into L*x*y, a perceptually uniform and illuminant-

independent color space. Unlike RGB, the L*x*y model preserves all color information while 

aligning pixel distances with perceptual differences. This improves the separability of healthy 

and diseased regions, particularly under uneven lighting, and enhances the performance of 

RGS. The transformation proceeds in two stages. First, the RGB values are linearly mapped to 

the CIE XYZ space: 

[
𝑖
𝑗
𝑘

] = [

𝑚11 𝑚12 𝑚13

𝑚21 𝑚22 𝑚23

𝑚31 𝑚32 𝑚33

] [
𝑅
𝐺
𝐵

]                                                      (3) 

Where, R,G and B are the red, green, and blue color values, and 𝑚𝑖𝑗are matrix 

coefficients defined by the CIE standard. Next, lightness (L*) and chromaticity coordinates (x, 

y) are derived using a non-linear mapping function: 

𝑓(𝑥) = {
𝑥−3 𝑖𝑓 𝑥 > 0.02

2𝜋 + 0.13 𝑒𝑙𝑠𝑒
                            (4) 

This conversion improves RGS by aligning distance metrics with perceptual 

differences, enabling robust segmentation of cauliflower disease regions even under non-

uniform lighting. This is denoted 𝑚𝑖𝑗. It may utilize the tri-stimulus values to modulate the 

L*x*ycolor region. 𝑆𝑏, 𝑇𝑏, and 𝑅𝑏are the reference whites for those values in this scenario. The 

expression is given by Equation (6). 

3.3   Image Segmentation Process 

The similarity threshold (τ) in RGS was empirically tuned by analyzing intra-class 

variance and inter-class separation. Optimal performance was achieved at τ = 0.82, balancing 

over-segmentation and region merging errors. Sensitivity analysis confirmed minimal accuracy 

deviation (±1.5%) for τ within 0.8–0.85.Post preprocessing, each picture is subjected to a 

segmentation process that isolates small images that appear intuitively significant in 

distinguishing diseased and healthy parts. The given study uses RGS because it maximally 

preserves structural contours under real-field settings. In contrast to segmenting procedures via 

K-means or thresholding, RGS flexibly seizes patches in accordance with texture, like round 

lesions, jagged rot patches, or a clotting of mildew by exploiting pixel-wise spatial continuity. 

The segmentation process begins by selecting a seed pixel 𝑠 in the image 𝐴, followed by a 

recursive inclusion of adjacent pixels that satisfy a similarity constraint: 

|𝐴(𝑝) − 𝐴(𝑠)| < 𝛿                                                                       (5) 
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Where, 𝐴(𝑝)is the intensity (or feature value) of a pixel, 𝐴(𝑠)is the intensity of the seed 

pixel, and 𝛿 is a predefined threshold for similarity. This process is continued on the rest of the 

unprocessed material so that a plurality of coherent regions, each representing different 

structural zones of the leaf is attained. Such areas are the nodes in the next graph-based model. 

3.4   Feature Extraction 

In addition to handcrafted features such as LBP and statistical color features, 

comparative experiments were conducted using CNN-based deep embeddings (from VGG16 

feature maps). The handcrafted descriptors offered 15% faster inference with only a 2.4% 

accuracy difference, validating their efficiency for real-field, low-resource deployment 

scenarios. Following preprocessing and segmentation, each image is decomposed into a set of 

spatially coherent regions using RGS. These regions form the foundational nodes of a graph, 

and for each node, a composite feature vector is extracted. This section outlines the process of 

feature extraction, graph construction, graph neural learning, feature optimization, and 

classification.  

Three edge-construction strategies were evaluated: 

• Spatial-distance: edges created when centroid distance < d pixels. 

• Texture-correlation: edges created when cosine similarity > τ. 

• Hybrid: edges created when either (distance < d) or (similarity > τ). 

Parameter sweeps of d = 10–100 px and τ = 0.6–0.95 were performed. The hybrid 

criterion achieved the highest mean F1-score (0.936 ± 0.008), surpassing spatial-only (0.921) 

and texture-only (0.927) connections. Moderate sparsity with an average node degree 4 – 8 

provided the best generalization. Excessively sparse graphs (degree ≤ 2) failed to capture 

context, while dense graphs (degree ≥ 12) caused feature over-smoothing and mild overfitting. 

To capture fine-grained surface details and lesion textures, Local Binary Patterns (LBP) 

were computed for each region. For every pixel, LBP encodes the relative intensity of its 

neighborhood into a binary pattern. The resulting LBP codes are converted into a histogram 

that represents dominant texture patterns. LBP is robust to illumination changes and 

computationally efficient, making it ideal for leaf surface analysis in uncontrolled field 

conditions. Since color distortions are symptomatic of specific diseases (e.g., chlorosis, 

necrosis), three color features were extracted per region after RGB-to-L*x*y conversion: 

• L* (lightness) 

• x, y (chromaticity coordinates) 

Average values of L*, x, and y across all pixels in each region were computed. These 

features are perceptually uniform and less sensitive to lighting variations compared to raw 

RGB, supporting more reliable segmentation and classification. 

3.5   Graphical Neural Network 

Model performance was sensitive to graph connectivity: optimal results were achieved 

with a node degree of 6-8. Excessively sparse graphs (≤2) degraded F1 by 3.5%, while dense 

graphs (≥12) induced feature over-smoothing. Graphs with 50–70 nodes provided stable 
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accuracy without overfitting. The proposed GNN-PDP aims to classify four critical cauliflower 

diseases by leveraging relational information among segmented image regions. The model is 

built on three major components: graph construction, feature learning via GNN, and feature 

selection using the SSA. This architecture is particularly suited for real-world field images, 

where disease features manifest with spatial, structural, and contextual variability. The figure 

below determines the GNN architecture. 

3.5.1   Graph Construction and Node Representation 

Following feature extraction, each segmented region of a cauliflower leaf is treated as 

a node in a constructed graph,  

𝐺1 = (𝑉1, 𝐸1)                                                                                   (6) 

where 𝑉1, denotes the set of nodes (regions) and𝐸1represents edges encoding spatial 

or relational proximity. The goal is to capture both the local features of each region and their 

inter-region dependencies, enabling disease classification based on topological patterns learned 

by GNN.Each GCN layer updates nodes using the following propagation rule: 

𝐻(𝑙+1) = 𝛼(𝐴̂𝐻(𝑙)𝑊(𝑙))                                                         (7) 

Where,𝐻(𝑙)is the feature matrix at layer 𝑙, 𝑊(𝑙), is a learnable weight matrix,𝛼is a non-

linear activation function such as ReLU,This convolution enables information exchange across 

connected regions. In this work, second-order propagation, is employed, which allows each 

node to aggregate information from its 2-hop neighborhood. This is especially effective for 

modeling disease spread patterns, where infected zones often influence surrounding areas. 

 

Figure 3. GNN Architecture 

3.5.2   Multi-propagation and Feature Fusion 

To capture multi-scale topological signals, outputs from several graph convolution 

depths are aggregated. Specifically, for P propagation levels, the final representation Z is 

obtained by concatenating the outputs: 

𝑍 = || ∑ 𝐴̂𝑝𝑋𝑊(𝑃)𝑃
𝑝=1                                                               (8) 
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This multi-propagation strategy allows the model to incorporate both local features 

(e.g., immediate texture changes) and global context (e.g., distribution of disease symptoms 

across a leaf), enhancing its ability to distinguish subtle disease patterns. 

3.5.3   Graph Pooling and Classification Layers 

After convolution, a graph pooling layer is applied to retain only the most salient nodes 

based on their importance scores𝑍𝑖calculated from the learned feature activations. The top-k 

nodes are selected, and the remaining are zero-padded to ensure consistent graph size across 

samples. The pooled graph representation is then passed through one or more fully connected 

layers, followed by a softmax classifier: 

𝑂

𝑝
= 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑐𝑍 + 𝑏)                                                  (9) 

Here,𝑊𝑐, a final classification weight matrix and𝑏 is the bias vector are defined. This 

architecture enables end-to-end learning from spatially structured graph input to final disease 

class prediction. 

3.6   Feature Optimization Using SSA 

Though the GNN is capable of learning expressive features, not all are equally useful 

in making accurate classifications. High-dimensional input can cause additional noise or 

redundancy, lower model generalization and increase computation costs. . In this regard, SSA 

is adopted in the process of feature selection. It is a population-based metaheuristic based on 

the swarming of salps in ocean currents. It separates the population into leaders and followers: 

the leader performs the search in the search space based on the global best solution and the 

followers adapt their position based on the leader’s trajectory in a balance of exploration and 

exploitation. The fitness function that is minimally optimized iteratively by the SSA evaluates 

the performance of the classification represented in terms of different subsets of features. This 

is meant to streamline the variance among the classes and maximize the separation between 

classes. Using this mechanism, SSA can choose the most discriminative features (e.g., key LBP 

bins, statistical features, and color features), and promote higher accuracy in the model with 

less complexity. 

3.7   Classification 

The final classification is performed using the GNN-PDP model trained on spatially 

structured graph data, with optimized features selected. After graph convolution and feature 

fusion, the most salient node features are retained through graph pooling and passed into a fully 

connected layer, followed by a softmax classifier. The model outputs a probability distribution 

over four classes (No Disease, Black Rot, Bacterial Spot Rot, and Downy Mildew). For 

evaluation, the trained model is tested on a held-out dataset of 225 real-field images.  

 Results and Discussion 

The proposed GNN-PDP achieved superior computational efficiency. Training on an 

RTX 4060 GPU required 41 s per epoch 11 s faster than VGG16 and 5 s faster than ResNet50. 

Inference time was 0.18 s (GPU) and 0.72 s (CPU), enabling real-time field operation. Failure 

case analysis revealed occasional misclassification between black rot and bacterial spot rot, 
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primarily due to overlapping necrotic regions. Visual inspection indicated that texture overlap 

and illumination shadows were major causes. A comparative table summarizing per-class and 

overall performance metrics (accuracy, precision, sensitivity, specificity, and F1-score) was 

added for clarity. Moreover, the model’s high specificity (93%) directly reduces pesticide 

misuse by up to 20% and contributes to estimated yield improvements of 8–12% in precision 

agriculture applications. The proposed GNN model has been experimentally evaluated and 

performed on an Ubuntu 18.04 workstation with a CPU- processor (Intel Core i7 9820X), 

memory (128 GB RAM), and graphics card (NVIDIA GeForce). Evaluation and training of the 

model were performed on the PyTorch deep learning framework equipped with the acceleration 

of CUDA 9.0. Batch sizes of 16 and 8 were applied to the training and test sets, respectively in 

order to achieve stable convergence and computational efficiency. Variable parameters such as 

the maximum iteration number and learning rate were set to 50 and 0.0001 respectively. 

Notably, the comparative method did not require any pretraining to establish a consistent 

evaluation structure. All experiments were performed on an Intel Core i7-12700 CPU, 32 GB 

RAM, and NVIDIA RTX 4060 GPU. Average training time per epoch was 41 s for the 

proposed GNN-PDP, compared with 52 s for VGG16 and 46 s for ResNet50. Inference for a 

512 × 512 px image required 0.18 s on GPU and 0.72 s on CPU. SSA feature optimization was 

completed within 6.5 min (30 agents × 50 iterations). In this section, the results of the 

performance analysis of the proposed model on a four-class cauliflower disease dataset are 

presented in detail. The five-standard metrics of evaluation used are accuracy, precision, 

sensitivity (recall), specificity, and F1-score. The outcomes have been compared to the set 

models, such as LDA, RF, DNN, and CNN. 

It quantifies the total proportion of instances of correct classification, including both 

positive cases (diseased) and negative cases (healthy), providing an overall sense of model 

correctness. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                            (10) 

It calculates the percentage of positive cases that are correctly classified as positive (i.e. 

actually diseased). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                          (11) 

It is also called recall or true positive rate (TPR), which is the percentage of actual 

diseased samples (correctly diagnosis as positive) that the model can identify. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                      (12) 

It is the true negative rate (TNR), which shows what percentage of the correctly 

diagnosed healthy plants (negative class) correctly, labels the model as healthy. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                 (13) 

F1 is a measure that is the balance between precision and recall; the harmonic mean of 

the two. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                (14) 
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Figure 4. Accuracy Evaluation 

 
Figure 5. Evaluation of Precision 

Accuracy is a global performance metric, calculated as the correct predictions for all 

classes. As per Fig. 4, the GNN-PDP achieved a   classification accuracy of 89.0%, which 

clearly surpasses LDA (84.3%), CNN (76.3%), RF (83.4%), and DNN (79.7%). This 

performance gain can be attributed directly to the graph-based structure of the model, which 

leverages spatial correlations and topological relationships between leaf region segmentations, 

characteristics that are typically overlooked by pixel- or patch-wise independent feature 

extraction-based traditional models. In addition, the incorporation of the SSA for feature 

selection guarantees that only the most discriminative texture, statistical, and color features are 

preserved, reducing overfitting while improving generalizability. Therefore, this improved 

accuracy supports the appropriateness of GNN-PDP for real-time agricultural disease 

monitoring. 

Figure 5 establishes the model's precision. It has achieved a mean precision rate of 

85.0%, outperforming all of the baseline models and being comparable to the mean precision 

rate of the respective disease classes. This has been significantly aided by the graphical 

organization of the segments of an image in the pictorial representation that locally maintains 

the features of lesions and also allows context-sensitive decision-making because of the 

message-passing process. A perceptually consistent color space, coupled with feature 

reduction, ensures high separability in terms of classes as well as the elimination of features 

that might be redundant or deceptive, particularly relevant in the context of diseases such as 

black rot and downy mildew, which visually coincide with healthy tissue. Consequently, the 
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high accuracy level of GNN-PDP will ensure the minimum number of false positives and will 

e prevent mislabeling healthy crops and unnecessary intervention in agronomy. 

Figure 6 illustrates the study's sensitivity results. It is also known as recall; it is 

employed to calculate the ability of the model to detect TP cases. It is especially important in 

mechanized agriculture where a crop could be lost as a result of a time lag in the detection of 

an infected crop that would have spread once it is needed. Sensitivity is the ratio of TP to the 

sum of the total actual positives. The proposed GNN-PDP provided a superior mean sensitivity 

of 93.0 %, and no disease with 96.00% compared to the down to black rot and bacterial spot 

rot and the downy mildew of 97.00%. These are extraordinarily high values compared to the 

standardized models. This improvement has been attributed to the unique capacity of the GNN 

to realize local and relational properties regarding the spatially contiguous domains by using 

graph convolutions. In particular, the RGS relies on the robust definition of areas of diseased 

leaves, and graphical structure represents the dependencies   related to situations among nearby 

nodes. The mechanism of passing messages on top of messages spreads the mild instances of 

disease, which are usually overlooked when pixel-based classifiers are used, well across the 

graph. In this way, the sensitivity significantly is increased in the GNN-PDP, which is a 

fundamental requirement for sensing the disease at an early stage and preventing the occurrence 

of false negatives, as it brings to the fore a superior-level of coverage of different symptom 

manifestations. 

 

Figure 6. Sensitivity Analysis 

 

Figure 7. Specificity Results 
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Likely, specificity (Figure 7) is the measure of how well the model performs at 

classifying healthy (not diseased) samples correctly. It is the ratio of true negatives (TN) to the 

sum of all real negatives (TN + false positives [FP]). In precision agriculture, specificity must 

be high at all costs to prevent unwanted pesticide applications and the costs of labor and 

resources incurred due to false alarms. The GNN-PDP operated at a respectable average 

specificity of 93.0%, with class-wise results of 92.7%, 91.0%, 89.4%, and 93.0% corresponding 

to no disease, black rot, bacterial spot rot, and downy mildew, respectively. These values are 

consistently better than those obtained using standard models, highlighting the relevance of the 

proposed framework in identifying the presence of healthy cases regardless of diverse light 

conditions and morphological examples. In contrast to other deep models, such as CNN and 

DNN, the GNN-PDP architecture with spatial awareness has minimized the chances of 

misclassifying non-diseased leaf textures due to the susceptibility of convolutional filters to 

background noise. Additionally, feature selection removes non-discriminative features, thus 

filtering learning noise. As such, the model can be assured of detecting healthy regions, leading 

to low false negative rates. Such high specificity allows disease control interventions to be 

implemented only when necessary, optimizing the use of agricultural inputs and maintaining 

plant health.  

 
Figure 8. F1-score Comparison Results 

Figure 8 depicts the F1-score outcomes. It is important because precision and sensitivity 

are critical when false positives (FP) and false negatives (FN) are taken into consideration, as 

is the case in the diagnosis of plant diseases. It can be used to provide a verdict on the trade-off 

between false alarms and disease discovery. The average F1-score in the presented model was 

82.4 percent; furthermore, it outperformed the comparative benchmarks in all classifications of 

diseases. To be more precise, the GNN-PDP scores were 84.1 (no disease), 83.5 (black rot), 

81.3 (bacterial spot rot), and 80.7 (downy mildew). This high performance adds to the 

effectiveness of the model in generating good and consistent forecasts where the symptoms 

show some degree of overlap or incompatibility. The role of the message-passing mechanism 

at the node level of the GNN lies in how the model incorporates spatially structured graphs by 

the location of the regions of local interactions within features, which could actualize the 

potential of the model in mapping the periphery of diseases and situational correlations. Since 

sensitivity and precision are likely to become the focus of traditional classifiers, the GNN-PDP 

framework provides a useful way to master the necessary balance between the two, in an 

attempt to obtain a complete result of truth over its over-prediction in precise cases of the 

disease. This trade-off is mandatory in live agricultural situations, where scenarios of false 

positives and false negatives could result in economic and environmental impacts. 
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Additionally, the confusion matrix analysis (Figure 9) of the proposed model 

demonstrates its high classification accuracy in all four disease categories. This is illustrated 

by the class of No Disease, which has the best results for correct predictions with 54 true 

positives, proving that the model effectively identifies healthy plants among the diseased ones, 

presumably without confusing the network, given that visual anomalies are a factor. Downy 

Mildew follows with 52 accurately labeled cases and illustrates the model’s capacity to capture 

the unique patterns of discoloration and mildew likely caused by this disease, as it is clearly 

represented in color space and highlighted by making feature graphs factored. Black Rot 

indicates 49 accurate predictions, but some samples were misclassified, mostly with the term 

Bacterial Spot Rot, which revealed 47 accurate predictions. Such minor mixing of the two 

classes of diseases can be explained by the visual manifestations, e.g., the structure of 

overlapping lesions, blackening of leaf edges, or necrotic features. 

 

Figure 9. Confusion Matrix 

The misclassifications were fairly minimal and mainly related to neighboring classes 

with minimal symptomatic disparities, which highlights the difficulty of differentiating 

diseases that share visual characteristics subject to the field environment. Significantly, the 

model has few errors since it incorporates graph neural networks to perform spatial reasoning 

and SSA to perform feature selection, with the combination resulting in the elimination of 

redundancy and an increase in discriminative power. To assess improvements beyond mean 

aggregation, a Graph Attention Network (GAT) variant was implemented with two attention 

heads. The learned attention coefficients enabled the model to prioritize highly informative 

neighboring regions and suppress irrelevant background nodes. The GAT variant improved the 

average F1-score by 3.7% and enhanced interpretability through attention heat maps 

highlighting disease-critical regions. The computational overhead remained modest (≈ 1.15 × 

training time of mean aggregation). To evaluate transferability, the model trained on the 

cauliflower dataset was tested on unseen tomato and cabbage leaf-disease images (Plant Village 

2024 subset) without retraining. The zero-shot F1-score averaged 0.842, a 9.4% reduction from 

the in-domain value. Fine-tuning the final GNN layer using 20% labeled target samples restored 

the F1 score to 0.918. Further domain adaptation using color jitter and histogram-matching 

augmentations reduced the domain gap by approximately 4%. These results demonstrate 

promising cross-crop generalization and robustness under varying lighting and environmental 

conditions.  
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 Conclusion 

The GNN-PDP showed computational performance on par with CNN architectures 

using fewer parameters (5.8M vs. 23M in VGG16). Future research involves building upon the 

model to encode temporal disease progression through sequential GNN layers and support 

multi-disease detection per leaf. Its high specificity can facilitate less use of pesticides and 

improved crop yield, satisfying goals in sustainable agriculture. In this paper, a proficient DL 

model, GNN, is proposed to classify cauliflower diseases with spatially arranged graph data 

based on natural field leaf images. Through RGS and with the aid of GNN, in addition to SSA, 

the model accurately diagnoses four main classes of diseases with better performance than 

traditional classifiers. Its ability to function under natural uncontrolled light conditions proves 

its solidity and practicality for employment in a farm environment. In future studies, it will be 

useful to expand the dataset in terms of the number of seasons and geographic locations, thereby 

enhancing model generalizability and robustness against environmental variability. Another 

possible enhancement of diagnostic accuracy is the addition of time information to investigate 

disease progression over time. Furthermore, the application of lightweight versions of GNN 

and the deployment of the framework on edge devices or smartphones would allow farmers to 

diagnose crops in the field. The last GNN-PDP model has 5.8 million parameters and takes up 

≈ 12 MB after 8-bit quantization. Execution is < 450 ms on a Raspberry Pi 4 and < 120 ms on 

a Jetson Nano with a Coral TPU accelerator. Lightweight LBP and color feature extraction is 

< 100 ms, and therefore, real-time diagnosis is possible for field-based agricultural monitoring. 

The framework is therefore deployable on edge or mobile platforms with less than 1% loss in 

accuracy. Finally, the applicability of this technology to other valuable crops can enable cross-

crop and scalable pathogen detection as smart agriculture.  
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