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Abstract

Cauliflower (Brassica oleracea var. botrytis) is one of the most popular crops that are
subject to a variety of diseases affecting the leaf apparatus, which impact quality and
production. Despite the progress in deep learning, appropriate disease detection under real-field
conditions remains a serious problem. This paper introduces an expert system GNN-PDP,
which is a novel Graph Neural Network based model for the automated classification of
cauliflower leaf diseases using images taken with a smartphone. A Region Growing
Segmentation (RGS) is used to extract perceptual regions in this structure and statistical
features are utilized as graph node features. The Salp Swarm Algorithm (SSA) finds optimal
features that result in better generalization. A total of 750 images were gathered in four
categories of diseases. The assessment was made based on accuracy, precision, sensitivity,
specificity, and Fl-score, in relation to Linear Discriminant Analysis (LDA), Random Forest
(RF), Deep Neural Networks (DNN), and CNN classifiers. GNN-PDP achieved a superior
classification accuracy of 89.0%, outperforming all other experiments. The model has great
potential for smart agriculture in disease management.

Keywords: Cauliflower Disease Detection, Deep Learning, Graph Neural Networks, Feature
Optimization, Smart Agriculture.

1. Introduction

Agriculture is an essential field in the global economy as it is the core of food supply,
revenues, and rural growth. The agri-food supply chain (AFSC) encompasses the stages of
production, harvesting, storage, processing and distribution whereby each stage is essential in
preserving food security and stabilizing the market. The issue of AFSC management has
attracted more concern over the past few decades following the increasing demand, variability
in climate and issues with sustainability [1]. Cauliflower is a high-nutritional cruciferous crop,
which is widely grown in different environments across the entire world. This is because many
diets consist of it due to its rich content of fiber, vitamins, carotenoids, glucosinolates and
phenolic compounds that are related to anticancer and cardio protective properties [2]. Nations
such as India (approximately 7.8 million tons per year) and Bangladesh (73,000 tons on 9,400
acres) depend largely on cauliflower both nutritionally and economically as well as for their
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agricultural efficiency [3]. Regardless of its worth, this product is immensely vulnerable to
various destructive afflictions including bacterial spot rot, black leg, white rust, downy mildew,
black rot, powdery mildew, and ring spot diseases. Without early detection, these diseases can
result in the loss of up to 30-50 percent and threaten the food security of the region as well as
the revenue of farmers [4]. Factors such as unseasonable weather conditions, inappropriate
agronomic treatment, and a lack of diagnostic means contribute to the increased transmission
and worsen the progress of these infections. Traditional disease detection techniques are labour-
intensive, usually require expert knowledge, and have low efficiency and ergonomics. These
constraints do not allow for timely action and the consequence of this is usually massive crop
loss. Recent developments in machine vision and deep-learning mechanisms have introduced
automation tools that can facilitate the diagnosis of plant diseases using leaf imagery.
Convolutional Neural Networks (CNNs) have already been widely applied to the task of disease
classification based on images [5], but these networks do not model the spatial relationships
among regions in an image. Early and accurate classification of cauliflower leaf diseases in the
real remains a key parameter due to a combination of visual indicators, inconsistent light, and
the drawbacks of traditionally applied machine learning and deep learning models that overlook
spatial correlations in leaves across imagery. Current techniques like CNNs and K-means-based
classifiers cannot easily handle segmentation accuracy, class imbalance, and generic outdoor
conditions in noisy data. This urgently requires a resilient, end-to-end solution that combines
spatial reasoning, adaptive feature optimization and meaningful segmentation that are
perceptual to enhance the performance of disease diagnosis in real-world agricultural contexts.
The contributions are:

o Creation of a GNN-based model that can learn relationships between the regions of
the leaves spatially by using segmented patches as the nodes in a graph and exploit
the graph structure to learn the context of the patterns associated with diseases.

o RGS--designed integration with perceptually consistent segmentation of the
diseased and healthy parts that proves to be more efficient than traditional K-means
clustering involving structural preservation integrity.

o Implements the SSA to generate the optimal feature set to control high-dimensional
feature noise and enhance the generalization of the models with reference to the
selection of the most discrimative color and texture features.

o Real-field mobile-captured datasets of images taken, making the project more
relevant and deployable in the wild with regard to uncontrollable agricultural
conditions relevant to the proposed model.

o A full performance-based analysis of GNN-PDP versus baseline classifiers that
exhibit higher performance across all disease classes.

2. Literature Review

Numerous studies have been conducted on computer vision and machine learning
methods for the automatic identification of plant diseases in high-demand crops, such as
cauliflower. This winter crop, crucial to Bangladesh due to its high nutritional value and
economic importance, is susceptible to diseases like black rot and downy mildew, which
significantly affect crop productivity. Early detection is critical for managing these diseases
effectively [6]. A study surveyed control methods for black rot in Brassicaceae vegetables
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caused by Xanthomonas campestris, categorizing them as physical (e.g., hot water seed
treatment), chemical (e.g., bactericides), and biological (e.g., beneficial microbes), with a focus
on integrated management [7]. Similarly, the environmental and health consequences of
pesticide overuse have been addressed, advocating for eco-friendly bioremediation methods
through bacteria, fungi, plants, and microalgae [8].

A study introduced "Cauli-Det," an enhanced cauliflower disease detection model using
a modified YOLOVS approach [9]. Another work utilized an agro-medical expert system based
on k-means segmentation and 10 statistical/texture features for cauliflower disease diagnosis,
showing improvements in feature selection and augmentation [10]. CNN models and transfer
learning were used to classify four cauliflower diseases (e.g., black rot, white rust), obtaining
the highest accuracy with the InceptionV3 algorithm [11]. A comparison between traditional
machine learning (ML) and deep learning (DL) models for cauliflower disease recognition
showed the superiority of DL models like InceptionV3, ResNet50, MobileNetV2, and VGG16
[12]. Crop-conditional CNNs were proposed to incorporate image metadata and improve
classification performance, tackling sampling bias [13]. Bayesian deep learning was used to
quantify uncertainty in plant disease classification, providing more accurate predictions [14].
Furthermore, improved crop disease classification was achieved using median filters, FCM
clustering, and LSTM models [15]. While several models have applied ML and DL for disease
detection, most fail to capture the spatial relationships between infected areas, leading to
limited classification performance. Popular segmentation techniques like k-means do not
preserve structural and perceptual integrity under real-world conditions. Few studies have
employed advanced metaheuristic algorithms like the Salp Swarm Algorithm (SSA) for feature
selection [16]. Additionally, most previous research used controlled datasets, whereas real-field
environments introduce variability and noise that these methods struggle to handle. Therefore,
an integrated approach combining spatial modeling, perceptual segmentation, feature
optimization, and real-field data is essential to address these challenges, as explored in this

paper.
3. Methodology

In the proposed study, GNN-PDP is created, a GNN-based framework capable of
detecting and classifying four key diseases of cauliflower using a total of 750 mobile-captured
images. The methodology also considers RGS as the technique to create regions which are
considered to be significant visually, GNNs as the tool to describe spatial and relational
relations, and SSA as an approach to streamline the choice of features. As described in Figure
1, the whole pipeline stream consists of image reception, preprocessing, segmentation, feature
extraction, graph-based classification and enhancement, and optimization whose layout takes
into consideration the issues presented by real-field data.

Journal of Innovative Image Processing, December 2025, Volume 7, Issue 4 1249



Smart Diagnosis of Cauliflower Diseases Using Deep Learning and Feature Optimization

0%

Data Acquisition Cloud server Preprocessing Feature Extraction

GNN-Based Classification

Figure 1. Overview of the Methodology

3.1 Image Acquisition

As described in Table 1, the white cauliflower field images (750 images) were captured
during a period of 10 days by utilizing a smart phone camera in natural light settings in Hosur,
Krishnagiri District, Tamil Nadu, India. The data of the healthy and diseased plants with the
four target diseases is represented in the dataset. It includes 750 images of benign and
pathological or sick living plants of the white cauliflower.

Table 1. Summary of the Cauliflower Disease Dataset

Attribute Details
Vegetable Cauliflower (white variety)
Location Hosur, Krishnagiri District, Tamil Nadu, India

Type of the Field Square-shaped flat land

Size of the Area 5 acres

Acquisition Duration | 10 days
Collection Method Manual capture via smartphone camera

Image Resolution 500 x 500 pixels

Classes Bacterial spot rot, black rot, downy mildew, and healthy.
Total Images 750

Training Set 70% (525 images)

Testing Set 30% (225 images)

In order to enhance the generalization of the images and computational efficiency, the
whole dataset was split into 70% training (525 images) and 30% testing (225 images). The 750
images were used to simplify the training and evaluation of the models. Examples of the
acquired samples are given in Figure 2.
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Figure 2. Sample Plant Pictures from the Collected Data

3.2 Pre-processing

Raw images are subjected to different light, shades and contrasts. A set of preprocessing
operations was performed to improves the quality of the images and standardize the input for
successive models.

3.2.1 Image Resizing

All the images obtained were rescaled to 300 pixels in height and width to ensure
uniformity in the input size for the rest of the models and to reduce the computational burden.
The presented resolution aims to retain the essential disease properties while balancing the
processing costs. The intensity value of the ((i,j)pixel is denoted as(i, j). It makes resizing
possible using a bi-cubic or a bilinear interpolation-function depends on the intended scale. The
approximation it shows reveals that the intensity function on a 2D surface can be approximated
as:

f(i;j) = ¥=Ozg=0 My, X XY (1

Here,m,,, is the scaling factor and 2D pixels are denoted as i*andj”. This is done to

preserve the spatial coherence, and it does not remove some vital texture features that are
involved in downstream classification.

3.2.2 Histogram Equalization

The practical improvement of histogram equalization and RGB—L*x*y color
transformation was validated experimentally. Compared with RGB and HSV color models,
L*x*y achieved 7.8% higher segmentation accuracy under non-uniform lighting due to its
perceptual uniformity and illumination invariance. This transformation reduced mis-
segmentation in shaded regions, ensuring robust disease feature extraction in real-field
conditions. The contrast of the picture is enhanced via higher traditionalization of the
histogram. Suppose that S and T are respectively the row number (size) and the column (length)
in pixels. S;is the saturation of the color of the pixel number n;, and M is the numerically
calculated brightness level of the picture. Then with the help of continuity formula a mapping
process between brightnessS;and every pixel brightness T;is done as follows;

M-1
T =F(Sl)=S_T(n1+n2+"‘+nL) ()

Histogram equalization provides a mathematically grounded, computationally efficient,
and practically effective means of preparing real-field cauliflower images for automated
disease classification. By increasing the saliency of visual patterns associated with disease
symptoms, it serves as a critical component in ensuring high accuracy in subsequent
segmentation and feature extraction stages. The practical improvement of histogram
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equalization and RGB—L*x*y color transformation was validated experimentally. Compared
with RGB and HSV color models, L*x*y achieved 7.8% higher segmentation accuracy under
non-uniform lighting due to its perceptual uniformity and illumination invariance. This
transformation reduced mis-segmentation in shaded regions, ensuring robust disease feature
extraction in real-field conditions.

3.2.3 RGB to L*x*y Transformation

In this study, the RGB-to-L*x*y transformation is applied as a critical preprocessing
step to support effective image segmentation. RGB images captured under real-world field
conditions often suffer from lighting inconsistencies and contrast variations, making them less
reliable for pixel-based clustering. To enhance color uniformity and improve segmentation
precision, RGB images are converted into L*x*y, a perceptually uniform and illuminant-
independent color space. Unlike RGB, the L*x*y model preserves all color information while
aligning pixel distances with perceptual differences. This improves the separability of healthy
and diseased regions, particularly under uneven lighting, and enhances the performance of
RGS. The transformation proceeds in two stages. First, the RGB values are linearly mapped to
the CIE XYZ space:

i My Mqz My3][R
jl=|M21 Mzz My3||G 3)
k ms3; Mgz, Mas3| B

Where, R,G and B are the red, green, and blue color values, and m;;are matrix

coefficients defined by the CIE standard. Next, lightness (L*) and chromaticity coordinates (X,
y) are derived using a non-linear mapping function:

_ x~3 if x>0.02
fe) = {271 + 0.13 else @)

This conversion improves RGS by aligning distance metrics with perceptual
differences, enabling robust segmentation of cauliflower disease regions even under non-
uniform lighting. This is denoted m;;. It may utilize the tri-stimulus values to modulate the
L*x*ycolor region. Sy, T}, and Rpare the reference whites for those values in this scenario. The
expression is given by Equation (6).

3.3 Image Segmentation Process

The similarity threshold (t) in RGS was empirically tuned by analyzing intra-class
variance and inter-class separation. Optimal performance was achieved at T = (.82, balancing
over-segmentation and region merging errors. Sensitivity analysis confirmed minimal accuracy
deviation (£1.5%) for t within 0.8—0.85.Post preprocessing, each picture is subjected to a
segmentation process that isolates small images that appear intuitively significant in
distinguishing diseased and healthy parts. The given study uses RGS because it maximally
preserves structural contours under real-field settings. In contrast to segmenting procedures via
K-means or thresholding, RGS flexibly seizes patches in accordance with texture, like round
lesions, jagged rot patches, or a clotting of mildew by exploiting pixel-wise spatial continuity.
The segmentation process begins by selecting a seed pixel s in the image A, followed by a
recursive inclusion of adjacent pixels that satisfy a similarity constraint:

|A(p) —A(s)| <6 )
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Where, A(p)is the intensity (or feature value) of a pixel, A(s)is the intensity of the seed
pixel, and § is a predefined threshold for similarity. This process is continued on the rest of the
unprocessed material so that a plurality of coherent regions, each representing different
structural zones of the leaf is attained. Such areas are the nodes in the next graph-based model.

3.4 Feature Extraction

In addition to handcrafted features such as LBP and statistical color features,
comparative experiments were conducted using CNN-based deep embeddings (from VGG16
feature maps). The handcrafted descriptors offered 15% faster inference with only a 2.4%
accuracy difference, validating their efficiency for real-field, low-resource deployment
scenarios. Following preprocessing and segmentation, each image is decomposed into a set of
spatially coherent regions using RGS. These regions form the foundational nodes of a graph,
and for each node, a composite feature vector is extracted. This section outlines the process of
feature extraction, graph construction, graph neural learning, feature optimization, and
classification.

Three edge-construction strategies were evaluated:

e Spatial-distance: edges created when centroid distance < d pixels.

e Texture-correlation: edges created when cosine similarity > t.

e Hybrid: edges created when either (distance < d) or (similarity > 7).

Parameter sweeps of d = 10-100 px and t = 0.6-0.95 were performed. The hybrid
criterion achieved the highest mean F1-score (0.936 + 0.008), surpassing spatial-only (0.921)
and texture-only (0.927) connections. Moderate sparsity with an average node degree 4 — 8
provided the best generalization. Excessively sparse graphs (degree < 2) failed to capture
context, while dense graphs (degree > 12) caused feature over-smoothing and mild overfitting.

To capture fine-grained surface details and lesion textures, Local Binary Patterns (LBP)
were computed for each region. For every pixel, LBP encodes the relative intensity of its
neighborhood into a binary pattern. The resulting LBP codes are converted into a histogram
that represents dominant texture patterns. LBP is robust to illumination changes and
computationally efficient, making it ideal for leaf surface analysis in uncontrolled field
conditions. Since color distortions are symptomatic of specific diseases (e.g., chlorosis,
necrosis), three color features were extracted per region after RGB-to-L*x*y conversion:

e L* (lightness)
e X,y (chromaticity coordinates)

Average values of L*, x, and y across all pixels in each region were computed. These
features are perceptually uniform and less sensitive to lighting variations compared to raw
RGB, supporting more reliable segmentation and classification.

3.5 Graphical Neural Network

Model performance was sensitive to graph connectivity: optimal results were achieved
with a node degree of 6-8. Excessively sparse graphs (<2) degraded F1 by 3.5%, while dense
graphs (>12) induced feature over-smoothing. Graphs with 50-70 nodes provided stable
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accuracy without overfitting. The proposed GNN-PDP aims to classify four critical cauliflower
diseases by leveraging relational information among segmented image regions. The model is
built on three major components: graph construction, feature learning via GNN, and feature
selection using the SSA. This architecture is particularly suited for real-world field images,
where disease features manifest with spatial, structural, and contextual variability. The figure
below determines the GNN architecture.

3.5.1 Graph Construction and Node Representation

Following feature extraction, each segmented region of a cauliflower leaf is treated as
a node in a constructed graph,

G1=(V1,E1) (6)

where V1, denotes the set of nodes (regions) andE 1represents edges encoding spatial
or relational proximity. The goal is to capture both the local features of each region and their
inter-region dependencies, enabling disease classification based on topological patterns learned
by GNN.Each GCN layer updates nodes using the following propagation rule:

HUD = g(AHOW W) (7)

Where,H Vis the feature matrix at layer [, W®_ is a learnable weight matrix,ais a non-
linear activation function such as ReLU, This convolution enables information exchange across
connected regions. In this work, second-order propagation, is employed, which allows each
node to aggregate information from its 2-hop neighborhood. This is especially effective for
modeling disease spread patterns, where infected zones often influence surrounding areas.

—  closs!

[ clss?2
— — — —  — —

1 chssd

Graph Classification

Circuit graphs 6N layers Node Embedding Readout layer Enbeding oer

Figure 3. GNN Architecture

3.5.2 Multi-propagation and Feature Fusion

To capture multi-scale topological signals, outputs from several graph convolution
depths are aggregated. Specifically, for P propagation levels, the final representation Z is
obtained by concatenating the outputs:

Z =By APXW®) (8)

ISSN: 2582-4252 1254



Meenalochini M., Amudha P.

This multi-propagation strategy allows the model to incorporate both local features
(e.g., immediate texture changes) and global context (e.g., distribution of disease symptoms
across a leaf), enhancing its ability to distinguish subtle disease patterns.

3.5.3 Graph Pooling and Classification Layers

After convolution, a graph pooling layer is applied to retain only the most salient nodes
based on their importance scoresZ;calculated from the learned feature activations. The top-k
nodes are selected, and the remaining are zero-padded to ensure consistent graph size across
samples. The pooled graph representation is then passed through one or more fully connected
layers, followed by a softmax classifier:

% = Softmax(W_.Z + b) 9)

Here,IW,, a final classification weight matrix andb is the bias vector are defined. This
architecture enables end-to-end learning from spatially structured graph input to final disease
class prediction.

3.6 Feature Optimization Using SSA

Though the GNN is capable of learning expressive features, not all are equally useful
in making accurate classifications. High-dimensional input can cause additional noise or
redundancy, lower model generalization and increase computation costs. . In this regard, SSA
is adopted in the process of feature selection. It is a population-based metaheuristic based on
the swarming of salps in ocean currents. It separates the population into leaders and followers:
the leader performs the search in the search space based on the global best solution and the
followers adapt their position based on the leader’s trajectory in a balance of exploration and
exploitation. The fitness function that is minimally optimized iteratively by the SSA evaluates
the performance of the classification represented in terms of different subsets of features. This
is meant to streamline the variance among the classes and maximize the separation between
classes. Using this mechanism, SSA can choose the most discriminative features (e.g., key LBP
bins, statistical features, and color features), and promote higher accuracy in the model with
less complexity.

3.7 Classification

The final classification is performed using the GNN-PDP model trained on spatially
structured graph data, with optimized features selected. After graph convolution and feature
fusion, the most salient node features are retained through graph pooling and passed into a fully
connected layer, followed by a softmax classifier. The model outputs a probability distribution
over four classes (No Disease, Black Rot, Bacterial Spot Rot, and Downy Mildew). For
evaluation, the trained model is tested on a held-out dataset of 225 real-field images.

4. Results and Discussion

The proposed GNN-PDP achieved superior computational efficiency. Training on an
RTX 4060 GPU required 41 s per epoch 11 s faster than VGG16 and 5 s faster than ResNet50.
Inference time was 0.18 s (GPU) and 0.72 s (CPU), enabling real-time field operation. Failure
case analysis revealed occasional misclassification between black rot and bacterial spot rot,
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primarily due to overlapping necrotic regions. Visual inspection indicated that texture overlap
and illumination shadows were major causes. A comparative table summarizing per-class and
overall performance metrics (accuracy, precision, sensitivity, specificity, and F1-score) was
added for clarity. Moreover, the model’s high specificity (93%) directly reduces pesticide
misuse by up to 20% and contributes to estimated yield improvements of 8—12% in precision
agriculture applications. The proposed GNN model has been experimentally evaluated and
performed on an Ubuntu 18.04 workstation with a CPU- processor (Intel Core 17 9820X),
memory (128 GB RAM), and graphics card (NVIDIA GeForce). Evaluation and training of the
model were performed on the PyTorch deep learning framework equipped with the acceleration
of CUDA 9.0. Batch sizes of 16 and 8 were applied to the training and test sets, respectively in
order to achieve stable convergence and computational efficiency. Variable parameters such as
the maximum iteration number and learning rate were set to 50 and 0.0001 respectively.
Notably, the comparative method did not require any pretraining to establish a consistent
evaluation structure. All experiments were performed on an Intel Core 17-12700 CPU, 32 GB
RAM, and NVIDIA RTX 4060 GPU. Average training time per epoch was 41 s for the
proposed GNN-PDP, compared with 52 s for VGG16 and 46 s for ResNet50. Inference for a
512 x 512 px image required 0.18 s on GPU and 0.72 s on CPU. SSA feature optimization was
completed within 6.5 min (30 agents x 50 iterations). In this section, the results of the
performance analysis of the proposed model on a four-class cauliflower disease dataset are
presented in detail. The five-standard metrics of evaluation used are accuracy, precision,
sensitivity (recall), specificity, and Fl-score. The outcomes have been compared to the set
models, such as LDA, RF, DNN, and CNN.

It quantifies the total proportion of instances of correct classification, including both
positive cases (diseased) and negative cases (healthy), providing an overall sense of model
correctness.

TP+TN

Accuracy = ——
y TP+TN+FP+FN

(10)
It calculates the percentage of positive cases that are correctly classified as positive (i.e.
actually diseased).

TP
TP+FP

Precision =

(11)
It is also called recall or true positive rate (TPR), which is the percentage of actual
diseased samples (correctly diagnosis as positive) that the model can identify.

TP
TP+FN

Sensitivity =

(12)
It 1s the true negative rate (TNR), which shows what percentage of the correctly
diagnosed healthy plants (negative class) correctly, labels the model as healthy.

TN
TN+FP

Specificity = (13)

F1 is a measure that is the balance between precision and recall; the harmonic mean of
the two.

F1 — Score = 2 X PrecisionxRecall (14)

Precision+Recall
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Accuracy is a global performance metric, calculated as the correct predictions for all
classes. As per Fig. 4, the GNN-PDP achieved a classification accuracy of 89.0%, which
clearly surpasses LDA (84.3%), CNN (76.3%), RF (83.4%), and DNN (79.7%). This
performance gain can be attributed directly to the graph-based structure of the model, which
leverages spatial correlations and topological relationships between leaf region segmentations,
characteristics that are typically overlooked by pixel- or patch-wise independent feature
extraction-based traditional models. In addition, the incorporation of the SSA for feature
selection guarantees that only the most discriminative texture, statistical, and color features are
preserved, reducing overfitting while improving generalizability. Therefore, this improved
accuracy supports the appropriateness of GNN-PDP for real-time agricultural disease
monitoring.

Figure 5 establishes the model's precision. It has achieved a mean precision rate of
85.0%, outperforming all of the baseline models and being comparable to the mean precision
rate of the respective disease classes. This has been significantly aided by the graphical
organization of the segments of an image in the pictorial representation that locally maintains
the features of lesions and also allows context-sensitive decision-making because of the
message-passing process. A perceptually consistent color space, coupled with feature
reduction, ensures high separability in terms of classes as well as the elimination of features
that might be redundant or deceptive, particularly relevant in the context of diseases such as
black rot and downy mildew, which visually coincide with healthy tissue. Consequently, the
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high accuracy level of GNN-PDP will ensure the minimum number of false positives and will
e prevent mislabeling healthy crops and unnecessary intervention in agronomy.

Figure 6 illustrates the study's sensitivity results. It is also known as recall; it is
employed to calculate the ability of the model to detect TP cases. It is especially important in
mechanized agriculture where a crop could be lost as a result of a time lag in the detection of
an infected crop that would have spread once it is needed. Sensitivity is the ratio of TP to the
sum of the total actual positives. The proposed GNN-PDP provided a superior mean sensitivity
of 93.0 %, and no disease with 96.00% compared to the down to black rot and bacterial spot
rot and the downy mildew of 97.00%. These are extraordinarily high values compared to the
standardized models. This improvement has been attributed to the unique capacity of the GNN
to realize local and relational properties regarding the spatially contiguous domains by using
graph convolutions. In particular, the RGS relies on the robust definition of areas of diseased
leaves, and graphical structure represents the dependencies related to situations among nearby
nodes. The mechanism of passing messages on top of messages spreads the mild instances of
disease, which are usually overlooked when pixel-based classifiers are used, well across the
graph. In this way, the sensitivity significantly is increased in the GNN-PDP, which is a
fundamental requirement for sensing the disease at an early stage and preventing the occurrence
of false negatives, as it brings to the fore a superior-level of coverage of different symptom
manifestations.

100
Models
EE GNN-PDP(Proposed)
= DA
RF
95 DNN
= NN
§ 20
Z
2
=
2
& 85
80
75
No Disease Black Rot Bacterial Spot Rot Downy Mildew
Diseases
. e e . .
Figure 6. Sensitivity Analysis
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Diseases

Figure 7. Specificity Results
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Likely, specificity (Figure 7) is the measure of how well the model performs at
classifying healthy (not diseased) samples correctly. It is the ratio of true negatives (TN) to the
sum of all real negatives (TN + false positives [FP]). In precision agriculture, specificity must
be high at all costs to prevent unwanted pesticide applications and the costs of labor and
resources incurred due to false alarms. The GNN-PDP operated at a respectable average
specificity of 93.0%, with class-wise results 0£92.7%, 91.0%, 89.4%, and 93.0% corresponding
to no disease, black rot, bacterial spot rot, and downy mildew, respectively. These values are
consistently better than those obtained using standard models, highlighting the relevance of the
proposed framework in identifying the presence of healthy cases regardless of diverse light
conditions and morphological examples. In contrast to other deep models, such as CNN and
DNN, the GNN-PDP architecture with spatial awareness has minimized the chances of
misclassifying non-diseased leaf textures due to the susceptibility of convolutional filters to
background noise. Additionally, feature selection removes non-discriminative features, thus
filtering learning noise. As such, the model can be assured of detecting healthy regions, leading
to low false negative rates. Such high specificity allows disease control interventions to be
implemented only when necessary, optimizing the use of agricultural inputs and maintaining
plant health.

100

Models
BN GNN-PDP(Proposed)
. DA
RF
DNN
= CNN

] IIIIIL

No Disease Black Rot Bactenal‘Spot Rot Downy ‘M\\dew
Diseases

Fl-score
®
g

3

&

3

Figure 8. F1-score Comparison Results

Figure 8 depicts the F1-score outcomes. It is important because precision and sensitivity
are critical when false positives (FP) and false negatives (FN) are taken into consideration, as
is the case in the diagnosis of plant diseases. It can be used to provide a verdict on the trade-off
between false alarms and disease discovery. The average F1-score in the presented model was
82.4 percent; furthermore, it outperformed the comparative benchmarks in all classifications of
diseases. To be more precise, the GNN-PDP scores were 84.1 (no disease), 83.5 (black rot),
81.3 (bacterial spot rot), and 80.7 (downy mildew). This high performance adds to the
effectiveness of the model in generating good and consistent forecasts where the symptoms
show some degree of overlap or incompatibility. The role of the message-passing mechanism
at the node level of the GNN lies in how the model incorporates spatially structured graphs by
the location of the regions of local interactions within features, which could actualize the
potential of the model in mapping the periphery of diseases and situational correlations. Since
sensitivity and precision are likely to become the focus of traditional classifiers, the GNN-PDP
framework provides a useful way to master the necessary balance between the two, in an
attempt to obtain a complete result of truth over its over-prediction in precise cases of the
disease. This trade-off is mandatory in live agricultural situations, where scenarios of false
positives and false negatives could result in economic and environmental impacts.
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Additionally, the confusion matrix analysis (Figure 9) of the proposed model
demonstrates its high classification accuracy in all four disease categories. This is illustrated
by the class of No Disease, which has the best results for correct predictions with 54 true
positives, proving that the model effectively identifies healthy plants among the diseased ones,
presumably without confusing the network, given that visual anomalies are a factor. Downy
Mildew follows with 52 accurately labeled cases and illustrates the model’s capacity to capture
the unique patterns of discoloration and mildew likely caused by this disease, as it is clearly
represented in color space and highlighted by making feature graphs factored. Black Rot
indicates 49 accurate predictions, but some samples were misclassified, mostly with the term
Bacterial Spot Rot, which revealed 47 accurate predictions. Such minor mixing of the two
classes of diseases can be explained by the visual manifestations, e.g., the structure of
overlapping lesions, blackening of leaf edges, or necrotic features.
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Figure 9. Confusion Matrix

The misclassifications were fairly minimal and mainly related to neighboring classes
with minimal symptomatic disparities, which highlights the difficulty of differentiating
diseases that share visual characteristics subject to the field environment. Significantly, the
model has few errors since it incorporates graph neural networks to perform spatial reasoning
and SSA to perform feature selection, with the combination resulting in the elimination of
redundancy and an increase in discriminative power. To assess improvements beyond mean
aggregation, a Graph Attention Network (GAT) variant was implemented with two attention
heads. The learned attention coefficients enabled the model to prioritize highly informative
neighboring regions and suppress irrelevant background nodes. The GAT variant improved the
average Fl-score by 3.7% and enhanced interpretability through attention heat maps
highlighting disease-critical regions. The computational overhead remained modest (= 1.15 x
training time of mean aggregation). To evaluate transferability, the model trained on the
cauliflower dataset was tested on unseen tomato and cabbage leaf-disease images (Plant Village
2024 subset) without retraining. The zero-shot F1-score averaged 0.842, a 9.4% reduction from
the in-domain value. Fine-tuning the final GNN layer using 20% labeled target samples restored
the F1 score to 0.918. Further domain adaptation using color jitter and histogram-matching
augmentations reduced the domain gap by approximately 4%. These results demonstrate
promising cross-crop generalization and robustness under varying lighting and environmental
conditions.
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5. Conclusion

The GNN-PDP showed computational performance on par with CNN architectures
using fewer parameters (5.8M vs. 23M in VGG16). Future research involves building upon the
model to encode temporal disease progression through sequential GNN layers and support
multi-disease detection per leaf. Its high specificity can facilitate less use of pesticides and
improved crop yield, satisfying goals in sustainable agriculture. In this paper, a proficient DL
model, GNN, is proposed to classify cauliflower diseases with spatially arranged graph data
based on natural field leaf images. Through RGS and with the aid of GNN, in addition to SSA,
the model accurately diagnoses four main classes of diseases with better performance than
traditional classifiers. Its ability to function under natural uncontrolled light conditions proves
its solidity and practicality for employment in a farm environment. In future studies, it will be
useful to expand the dataset in terms of the number of seasons and geographic locations, thereby
enhancing model generalizability and robustness against environmental variability. Another
possible enhancement of diagnostic accuracy is the addition of time information to investigate
disease progression over time. Furthermore, the application of lightweight versions of GNN
and the deployment of the framework on edge devices or smartphones would allow farmers to
diagnose crops in the field. The last GNN-PDP model has 5.8 million parameters and takes up
~ 12 MB after 8-bit quantization. Execution is <450 ms on a Raspberry Pi 4 and < 120 ms on
a Jetson Nano with a Coral TPU accelerator. Lightweight LBP and color feature extraction is
<100 ms, and therefore, real-time diagnosis is possible for field-based agricultural monitoring.
The framework is therefore deployable on edge or mobile platforms with less than 1% loss in
accuracy. Finally, the applicability of this technology to other valuable crops can enable cross-
crop and scalable pathogen detection as smart agriculture.

References

[1] Frerichs, Leah, Natalie R. Smith, Kristen Hassmiller Lich, Todd K. BenDor, and Kelly
R. Evenson. "A scoping review of simulation modeling in built environment and physical

activity research: Current status, gaps, and future directions for improving translation."
Health & place 57 (2019): 122-130.

[2] Health benefits of cauliflower. (n.d.). Starhealth. Retrieved August 5, 2025, from
https://www .starhealth.in/health-info/health-benefits-of-cauliflower/

[3] Singh, Shrawan, and Pritam Kalia. "Advances in cauliflower (Brassica oleracea var.
botrytis L.) breeding, with emphasis on India." In Advances in Plant Breeding Strategies:
Vegetable Crops: Volume 10: Leaves, Flowerheads, Green Pods, Mushrooms and
Truffles, Cham: Springer International Publishing, 2021, 247-301.

[4] Diaz-Pérez, Manuel, Juan Manuel Moreno Moreno, José Javier Hernandez Garcia, and
Angel-Jesus Callejon-Ferre. "Application of microalgae in cauliflower fertilisation."
Scientia Horticulturae 337 (2024): 113468.

[5] Sibiya, Malusi, and Mbuyu Sumbwanyambe. "A computational procedure for the
recognition and classification of maize leaf diseases out of healthy leaves using
convolutional neural networks." AgriEngineering 1, no. 1 (2019): 119-131.

[6] Uddin, Md Sazid, Md Khairul Alam Mazumder, Afrina Jannat Prity, M. F. Mridha,
Sultan Alfarhood, Mejdl Safran, and Dunren Che. "Cauli-Det: Enhancing cauliflower

Journal of Innovative Image Processing, December 2025, Volume 7, Issue 4 1261


https://www.starhealth.in/health-info/health-benefits-of-cauliflower/

Smart Diagnosis of Cauliflower Diseases Using Deep Learning and Feature Optimization

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

disease detection with modified YOLOvVS." Frontiers in Plant Science 15 (2024):
1373590.

Liu, Zeci, Huiping Wang, Jie Wang, Jian Lv, Bojie Xie, Shilei Luo, Shuya Wang et al.
"Physical, chemical, and biological control of black rot of brassicaceae vegetables: A
review." Frontiers in Microbiology 13 (2022): 1023826.

Pathak, Vinay Mohan, Vijay K. Verma, Balwant Singh Rawat, Baljinder Kaur, Neelesh
Babu, Akansha Sharma, Seeta Dewali et al. "Current status of pesticide effects on
environment, human health and it’s eco-friendly management as bioremediation: A
comprehensive review." Frontiers in microbiology 13 (2022): 962619.

Shakil, Rashiduzzaman, Bonna Akter, FM Javed Mehedi Shamrat, and Sheak Rashed
Haider Noori. "A novel automated feature selection based approach to recognize

cauliflower disease." Bulletin of Electrical Engineering and Informatics 12, no. 6 (2023):
3541-3551.

Abdul Malek, Md, Sanjida Sultana Reya, Nusrat Zahan, Md Zahid Hasan, and
Mohammad Shorif Uddin. "Deep learning-based cauliflower disease classification." In

Computer Vision and Machine Learning in Agriculture, Volume 2, Singapore: Springer
Singapore, 2022, 171-186.

Maria, Syeda Khadizatul, Shahrun Siddique Taki, Md Jueal Mia, Al Amin Biswas, Anup
Majumder, and Firoz Hasan. "Cauliflower disease recognition using machine learning
and transfer learning." In Smart Systems: Innovations in Computing: Proceedings of
SSIC 2021, Singapore: Springer Singapore, 2021, 359-375.

Picon, Artzai, Maximiliam Seitz, Aitor Alvarez-Gila, Patrick Mohnke, Amaia Ortiz-
Barredo, and Jone Echazarra. "Crop conditional Convolutional Neural Networks for
massive multi-crop plant disease classification over cell phone acquired images taken on
real field conditions." Computers and Electronics in Agriculture 167 (2019): 105093.

Hernandez, S., and Juan L. Lopez. "Uncertainty quantification for plant disease detection
using Bayesian deep learning." Applied Soft Computing 96 (2020): 106597.

Farooqui, Nafees Akhter, Amit Kumar Mishra, and Ritika Mehra. "Concatenated deep
features with modified LSTM for enhanced crop disease classification." International
Journal of Intelligent Robotics and Applications 7, no. 3 (2023): 510-534

Meenalochini, M., & Amudha, P. (2025). Hybrid GNN-PDP model for leaf disease
detection. Journal of Information Systems Engineering and Management, 10(38s).
https://doi.org/10.52783/jisem.v10i38s.6860

Meenalochini, M., and P. Amudha. "Cauliflower Plant Disease Prediction Using Deep
Learning Techniques." In International Conference on Worldwide Computing and Its
Applications, Singapore: Springer Nature Singapore, 1997, 163-175.

ISSN: 2582-4252 1262



