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Abstract   

Training the neural network using high-quality labeled data is a major challenge, as 

there are many grey areas in image classification. Hence, experts are available to label the data. 

Proposed in this research paper is a Heterogeneous Multi-Stream Deep Learning Framework. 

Its application of six advanced CNNs will remove such complications using their 

complementary inductive biases. An evaluation of two fusion paradigms was successfully 

achieved: a decision-level weighted average ensemble and a multi-stream CNN-SVM at both 

feature levels. The feature-level fusion method was found to be more discriminative than 

probabilistic averaging in testing across three different datasets: NWPU-RESISC45, UC 

Merced, and AID. This approach achieves the best results on all datasets, with our method 

achieving a highest F1-score of 97.24% on the NWPU-RESISC45 benchmark. The 

performance of the six-stream design, having 8192 features, was slightly affected, dropping to 

97.15% because of the curse of dimensionality. The findings support the five-stream CNN-

SVM as the best architecture since it easily strikes a balance between feature richness and the 

complexity of the classifier. 

Keywords: Aerial Scene Classification, Deep Learning, Feature Fusion, CNN-SVM, 

Ensemble Learning, NWPU-RESISC45, UC Merced, AID. 

 Introduction 

The rapid development of high-resolution remote sensing images has almost 

revolutionized the capability of scanning land surfaces, leading to rapid advancements in 

applications related to land use/cover classification, urban planning, espionage, and disaster 

management. These applications are all grounded in LULC classification. However, it is not 

feasible to semi-automatically distinguish complex aerial images into semantic classes because 

the patterns in high-resolution images are more complex. The available datasets, such as 

NWPU-RESISC45, are more challenging due to higher intra-class variation, such as images of 

different arrangements of airports and aircraft on the ground, including images of different 

aircraft on different runways, as well as higher inter-class similarity between densely populated 

residential areas and commercial areas. 
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Previously, LULC classification utilized feature descriptions as classifiers. These 

descriptions were human-made features like SIFT and HOG, as well as statistical classifiers. 

However, if these technologies were efficient, it would not have been possible to extract the 

deep semantic hierarchies. There has been a revolution in deep learning as a result of 

convolutional neural networks. The VGG and ResNet models leverage this hierarchy of spatial 

data. 

However, the potentials of single stream CNN models are limited. A specific model 

with a specific inductive bias, such as the texture bias of VGG or the shape bias of ResNet, 

tends not to generalize well across different types of scene categories. In the local dialect, 

modeling involves selecting projects and their economic benefits as well as researching and 

evaluating alternative policies from an economic perspective. However, the selection of the 

best approach for integration remains an important research gap. Although decision-level 

ensembles (voting and averaging) are commonly used, these typically assume equal weighting 

on each model and ignore differences in model reliability. Feature-level fusion provides richer 

information about the semantics of the feature, yet it also runs the risk of the curse of 

dimensionality. To address the problems above, this paper proposes a multi-stream deep 

learning framework to evaluate and optimize two different fusion paradigms: weighted average 

ensemble (decision-level) and multi-stream CNN-SVM (feature-level). We employ six unique 

and state-of-the-art backbones ResNet50, VGG16, InceptionV3, MobileNetV2, DenseNet121, 

and EfficientNetB0 to achieve maximum architectural diversity. Following are the main 

contributions of this paper: 

1. Construction of Heterogeneous Multi-Stream Systems: A Highly effective 

integration system that utilizes the complementary strengths of six different CNN 

architectures in addressing ambiguities of very similar classes (for example, Palace 

vs. Church) when handled by individual models. 

2. Fusion Paradigm Comparison: A strict comparison of feature-level fusion using 

CNN-SVM and decision-level fusion using a weighted ensemble of classifiers. In 

contrast with previous works that could not reach a conclusion from an experiment 

of comparable type, here we provide an experimental verification of trade-offs 

between consensus of probabilities and high-dimensional feature fusion. 

3. Dimensionality Scale Detection: We identify the important dimensionality of 

scales in a challenging ablation study. We show that feature level fusion is optimal 

when using a five-stream system (97.24%) and outperforms decision- level fusion 

experiments. Yet, it has been found that the turning point has been reached when 

the loss of detailed information exceeds the gain due to the addition of the sixth 

stream (over 8,000 dimensions). 

4. Modern Outcomes:  The proposed framework has been evaluated using NWPU-

RESISC45, UC Merced, and AID benchmark databases. It outperformed each of 

them as it set a new benchmark in multi-benchmark aerial scene classification. 

 Literature Review 

The academic LULC classification now points towards the development of hybrid 

architectures that will combine the advantages of deep learning methods and classical statistical 

theory. The paper provides a systematic review of the shift to an end-to-end classification 
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approach toward a more decoupled paradigm, which creates the technical groundwork for using 

CNNs as feature extractors in conjunction with support vector machine (SVM) meta-classifiers. 

2.1   Change in LULC Paradigms of Classification 

In the past, LULC was classified using a decoupled, two-stage approach. Traditional 

methods used descriptors significantly based on hand-crafted features, including color 

histograms, textural patterns, and Scale-Invariant Feature Transform (SIFT), which were 

computed with the help of statistical learners like SVMs or random forests [1], [2]. Although 

useful in simple tasks, these manual features were not able to capture the semantic complexity 

of high-resolution remote sensing images. 

The development of deep learning led to a radical change in generalized architectures 

that combine both feature engineering and classification into a single, end-to-end trainable 

pipeline [3]. However, there is another interesting hybrid paradigm that has been gaining 

momentum. When coupled with traditional algorithms like SVM, researchers can use CNNs as 

data-driven, dynamic feature extractors and, at the same time, take advantage of the statistical 

resilience of margin-based classifiers [4]. This interaction is very effective in reducing 

overfitting on limited data sets, combining the enormous representational capabilities of neural 

networks with the structural risk reduction of SVMs. 

2.2   Convolutional Architectures used as Feature Descriptors 

An extensive range of CNN models has been strictly tested to be powerful feature 

descriptors in hybrid systems. Instead of using internal softmax layers, scientists obtain deep 

latent representations using such networks as inputs to initialize meta-classifiers.   

• Sequential architectures (VGG and AlexNet): The VGG family can be used as a 

standard since it is designed in the same way. VGG16 has been effectively used to 

generate spatial features of high-resolution data (e.g., UC Merced) and later classify 

them using SVMs to generate highly precise results. Equally, older models, such as 

AlexNet, are still useful; extracting features from fully connected layers (fc6 and 

fc7) results in dense semantic representations, which can effectively classify 

complex scenes [3].  

• Residual and dense networks: As the dimensions of the tasks grow, ResNet 50 has 

become a major option. The feature learning accuracy reached up to 85% with its 

residual learning blocks, delivering stable features of a gradient to learn features 

with the help of SVMs [5]. DenseNet-121, which is, a network that interconnects 

all layers to all the following layers, provides highly compressed and informative 

feature vectors and attains competitive accuracy with a very high level of 

computational efficiency [6]. 

Table 1. Summary of Key Literature on Hybrid LULC Frameworks 

Ref. CNN Architecture 

(Feature Extractor) 

Pre-training Strategy Meta-Classifier Dataset Used 

[7] VGG16 Hybrid Pre-trained SVM UC Merced & 

RSSCN7 

[5] 

 

ResNet-50, DenseNet-121 ImageNet Transfer 

Learning 

SVM, RF, XGBoost, 

KNN 

10k Drone Images 

https://www.zotero.org/google-docs/?FR7grO
https://www.zotero.org/google-docs/?fnwSpA
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[8] ResNet-50 Pre-trained Feature 

Extraction 

SVM, RF, XGBoost UC Merced 

[6] 

 

DenseNet-169, VGG16, 

ResNet-50 

ImageNet Transfer 

Learning 

SVM UC Merced & 

SIRI-WHU 

[3] AlexNet, GoogLeNet, 

VGGNet 

Fine-tuned Transfer 

Learning 

SVM UC Merced 

[9] Pre-trained CNN Multi-source (Sentinel-

1/2) 

L2-SVM Wetland 

Classification 

[10] VGG19, InceptionV3 Recalibrated sSE 

Blocks 

SVM & Twin SVM UC Merced 

[11] 

 

Generic CNN Models Deep Feature 

Extraction 

SVM UC Merced 

2.3   Feature Fusion and Integration Methodologies 

The combination of convolutional neural networks (CNNs) and support vector 

machines (SVMs) is executed in a set of sufficiently developed frameworks. The prevailing 

method consists of using specific layers, including the so-called pool5-drop layer of 

GoogLeNet or the so-called fc7 layer of VGG, as high-dimensional feature descriptors. 

Table 1 summarizes hybrid LULC frameworks by comparing their CNN architectures, 

pre-training strategies, and meta-classifiers across various remote sensing datasets. The current 

developments have moved to feature fusion, where high-level features are obtained using more 

than one CNN and combined to create a single feature, which has better discriminative 

capabilities [12]. For example, the combination of Scale-Invariant Feature Transform (SIFT) 

descriptors with CNN-learned features will allow the framework to use both local textual detail 

and global hierarchical context [2]. In order to process these high-dimensional spaces 

optimally, preprocessing methods like Principal Component Analysis (PCA) are also used 

regularly. The presented method of dimensionality reduction through PCA and feature 

concatenation has been proven to strongly positively impact information density [12]. 

Conversely, the current paper consciously tests raw feature concatenation to empirically 

calculate the dimensions that can be used by linear SVMs. 

2.4   Comparative Advantage and Performance 

The CNN-SVM hybrid will achieve a quantum leap in land-use-land-cover (LULC) 

techniques that account for the limitations of the object-based image analysis (OBIA) 

framework and the data requirements of pure deep-learning methods.   

• Efficiency: It was observed that this method was remarkably fast, with some of the 

frameworks executing 20,000 samples in 2.3 seconds [13]. 

• Specificity: The state-of-the-art implementations using ResNet-50 and PCA have 

a maximum accuracy of a close-to-perfect AUC-ROC of 0.993, greatly exceeding 

those of more advanced boosting algorithms, including XGBoost and AdaBoost, 

that match near 90% [7-8].  

• Generalization: SVMs perform better compared to multilayer perceptron (MLPs), 

which tend to perform poorly in high-dimensional space; SVMs always perform 

well even when the training data are few [14]. As a consequence, the hybrid method 

provides a distinctly balanced paradigm that believes in the representational 

https://www.zotero.org/google-docs/?XgFpAz
https://www.zotero.org/google-docs/?J2SsYH
https://www.zotero.org/google-docs/?4k90kB
https://www.zotero.org/google-docs/?mXajKx
https://www.zotero.org/google-docs/?ZBd9ZH
https://www.zotero.org/google-docs/?sW5aOV
https://www.zotero.org/google-docs/?TnJooT
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strength of deep learning while still maintaining the strong, margin-based 

classification capabilities of classical machine learning [15].  

 Research Methodology and Framework 

For addressing challenges present in the NWPU-RESISC45 dataset, in general, and the 

issue of inter-class similarities and diversities, in particular, we design and propose a multi-

stream approach based on deep learning techniques. Our contributions extend to be applied to 

the UC Merced and AID datasets later on. Through our main approach, there is a comparison 

and analysis of two distinct approaches to fusion. These approaches to fusion include decision-

level fusion through a weighted average ensemble and feature-level fusion through an SVM 

meta-classifier. System architecture is divided into three main phases: 

• Data Preparation: Image standardization and data augmentation to obtain 

interoperability of the heterogeneous CNN backbones. 

• Feature Extraction: The use of 6 state-of-the-art convolutional neural networks 

which are fine-tuned to extract hierarchical spatial features. 

• Fusion Strategy: Intelligence aggregated model probabilistic consensus (weighted 

ensemble) and concatenating vectors (high-dimensional) (CNN SVM fusion). 

3.1   Dataset Description and Preparation 

Three benchmark datasets such as NWPU-RESISC45, UC Merced (UCM), and Aerial 

Image Dataset (AID) with different characteristics are used to evaluate the validity and extent 

of generalizability of this proposed framework.  

3.1.1   NWPU-RESISC45 Dataset 

The source of this dataset originates from Northwestern Polytechnical University. The 

dataset comprises 31,500 RGB images with a spatial resolution of 256 x 256 pixels. The image 

data is divided into 45 classes of scenes, from more specific to general, like “Airports,” “Sea 

Ice,” and so on, containing 700 images of each type. 

3.1.2   UC Merced (UCM) Dataset  

The UCM dataset is a 2,100-image by 21 land use classes (100 images per class) dataset. 

It has a high spatial resolution of 0.3 meters per pixel and a size of 256 x 256 pixels. This 

dataset has been widely used to test model performance on high resolution class specific 

textures. 

3.1.3   Aerial Image Dataset (AID)  

AID is a largescale benchmark dataset. It has collected data using Google Earth and 

comprises 10,000 images split into 30 categories. It is tougher than UCM because it is a multi-

source dataset and its resolution varies between 0.5 and 8 meters. 
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3.1.4   Data Partitioning and Preprocessing  

To maintain statistical accuracy, the stratified sampling technique is used. In situations 

where NWPU-RESISC45, UCM, and AID wish to test the proposed system within the data 

constraints, a split of 80:20 for training and testing is used. The split of the benchmarking 

datasets for training and testing is expressed in Table 2 below. 

Table 2. Summary of Benchmark Datasets and Distribution 

Dataset Total Images Classes Resolution Training / Testing Ratio 

NWPU-RESISC45 31,500 45 256 × 256 80% / 20% 

UC Merced 2,100 21 256 × 256 80% / 20% 

AID 10,000 30 600 × 600 80% / 20% 

All the images were resized to 224 x 224 pixels. This is because the CNN architectures 

require this size as their inputs. In addition, Z-score standardization of the extracted features is 

performed to deal with the numerical differences of the varied streams. To overcome the 

problem of overfitting, data augmentation is done during the training process.  

3.2   Deep Transfer Learning Backbones 

One of the techniques of transfer learning, which relies on the representation developed 

based on the initial training on the ImageNet database, has been applied to build a strong feature 

extractor. Various dimensions of deep learning techniques are conveyed based on the selection 

of 6 diverse architectures. The selection of a CNN architecture includes the spectrum of diverse 

generations, ranging from the traditional VGG16 to the most modern EfficientNetB0. 

• Traditional Architectures: The models require significant and uniform usage of 

the 3x3 convolution layers. Despite the models having no efficiency, the ‘texture 

bias' is quite high; hence, the models optimize for the recognition of grainy textures 

such as grass, asphalt, and sand. 

• Residual and Dense Architectures (ResNet50 and DenseNet121): These models 

can be classified under mid-level architectures. They raised awareness of skip 

connections, which plays a significant role for a consistent structure, hence are 

optimal for larger geometric structures like bridges and buildings. 

• Modern Compound Scaling Architectures (EfficientNetB0): These use state-of-

the-art depth, width, and compound scaling methods to identify semantic features 

for different sizes.  

Mixing these generations is a strategic advantage, as modern models might over-

abstract and miss low-level textures, while older architectures preserve them. This architectural 

heterogeneity ensures that the fused feature vector contains both high-level semantic 

intelligence and low-level textural signals, which is critical for resolving the strong inter-class 

similarities found in our dataset. 

3.2.1   CNN Feature Extraction Formalization 

Let,  𝑋 ∈ 𝑅𝐻×𝑊×3 denote the input remote sensing image. For a set of 𝐾 heterogeneous 

CNN backbones {𝐵1, 𝐵2, … , 𝐵𝐾}, the feature extraction process is defined as a non-linear 

mapping 𝛷: 
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𝑣𝑘 = 𝛷𝑘(𝑥; 𝜃𝑘) ∈ 𝑅𝑑𝑘         (1) 

where 𝛷𝑘 represents the k-th architectural transformation up to the Global Average 

Pooling (GAP) layer, 𝜃𝑘 denotes the fine-tuned parameters, and 𝑑𝑘 is the dimensionality of the 

feature vector specific to that architecture. 

Table 3. Structural Characteristics and Feature Dimensions of the Constituent CNN Backbones 

Model Architecture Parameters  Depth (Layers) Feature Vector Size (GAP) 

VGG16 ~138.4 M 16 512 

ResNet50 ~25.6 M 50 2048 

InceptionV3 ~23.9 M 48 2048 

DenseNet121 ~8.0 M 121 1024 

EfficientNetB0 ~5.3 M 237 1280 

MobileNetV2 ~3.5 M 88 1280 

Structurally, all backbones were altered by removing their original classification head 

and replacing it with a global average pooling (GAP) layer and the subsequent dense softmax 

layer as befits the target classes for various datasets. Table 3 provides a comparative analysis 

of CNN backbone architectures, detailing their parameter counts, layer depth, and the resulting 

Global Average Pooling (GAP) feature vector sizes. 

3.3   Decision-Level Fusion (Weighted Average) 

The first fusion-level strategy that we adopt is at the decision level, presented in Figure 

1, which involves the probabilistic agreement of the independent networks. Simple averaging 

is a common practice in general ensemble methodology, but this modeling technique assumes 

that all models are equally valid. To address this bias, we have used a weighted average 

ensemble that places more weight on models that performed better when used as the basis of 

validation.  

For decision-level integration, each backbone 𝐵𝑘 generates a class probability vector 

𝑃𝑘(𝑥) via a softmax layer: 

𝑃𝑘(𝑥) = [𝑝𝑘,1, 𝑝𝑘,2, … , 𝑝𝑘,𝐶]𝑇 , 𝑤ℎ𝑒𝑟𝑒 𝐶 = 𝑁𝑜. 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠𝑒𝑠               (2) 

The weighted ensemble probability 𝑃𝑒𝑛𝑠(𝑥) is formulated as 

𝑃𝑒𝑛𝑠(𝑥) = ∑ .𝐾
𝑘=1 𝑊𝑘 ⋅ 𝑃𝑘(𝑥), 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ .𝐾

𝑘=1 𝑊𝑘 = 1               (3) 

The weights 𝑊𝑘 are dynamically optimized based on the validation accuracy 𝐴𝑘 of each 

backbone: 

𝑊𝑘 =
𝐴𝑘

∑ .𝐾
𝑗=1 𝐴𝑗

     (4) 
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Figure 1. Decision-Level Fusion (Weighted Average) 

The complete procedural implementation of this weighted fusion strategy is detailed in 

Algorithm 1. 

Algorithm 1: Weighted Decision-Level Fusion 

Input: Test image 𝑥; set of 𝐾fine-tuned CNN backbones {𝐵1, … , 𝐵𝐾}; validation accuracies 

{𝐴1, … , 𝐴𝐾};No. of classes c 

Output: Final predicted class label 𝑦^ 

1. Initialize ensemble vector 𝑃𝑒𝑛𝑠 = [0]1×𝐶. 

2. Calculate normalized weights 𝑊𝑘 = 𝐴𝑘/∑𝐴𝑗. 

3. For each backbone 𝐵𝑘 do: 

a. Extract probability vector 𝑃𝑘(𝑥) from the Softmax layer. 

b. Compute 𝑃𝑒𝑛𝑠 = 𝑃𝑒𝑛𝑠 + (𝑊𝑘 × 𝑃𝑘(𝑥)). 

4. Compute final label 𝑦^ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃𝑒𝑛𝑠). 

5. Return 𝑦^ 

By using this approach, the framework reduces the impact of weak predictors (such as 

EfficientNetB0 in standalone mode) while prioritizing the high-confidence predictions of more 

robust backbones like ResNet50 and DenseNet121. This prevents lower-performing models 

from inducing noise into the final probabilistic consensus. 

3.4   Multi-Stream Feature Fusion (CNN- SVM) Method 

We propose the most significant input in the form of a multi-stream feature fusion 

framework. As presented in Figure 2, instead of extracting the final-probability outputs of the 

ensemble into rich high-dimensional semantic vectors, we directly extract the penultimate GAP 

layers to provide rich high-dimensional semantic vectors. The multi-stream feature-level 

pipeline, encompassing extraction, standardization, and meta-classification, is formalized in 

the following subsections and structured in Algorithms 2 and 3. 
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3.4.1   Feature Concatenation and Standardization 

The framework constructs a high-dimensional joint latent space through vector 

concatenation: 

𝑉𝑐𝑜𝑛𝑐𝑎𝑡 = [𝑣1 ⊕ 𝑣2 ⊕ ⋯ ⊕ 𝑣𝐾] ∈ 𝑅𝐷     (5) 

Where 𝐷 = ∑ .𝐾
𝑘=1 𝑑𝑘 is the total fused dimensionality (e.g., D=6,144 for 5 streams). To 

ensure inter-architectural scale interoperability, the vector is standardized via Z-score 

transformation: 

𝑉^
𝑓𝑢𝑠𝑒𝑑 =

𝑉𝑐𝑜𝑛𝑐𝑎𝑡−𝜇

𝜎
       (6) 

The systematic procedure for transforming raw image input into this standardized joint 

latent space is detailed in Algorithm 2. 

 
Figure 2. The Multi-Stream Feature Fusion Architecture 

Algorithm 2: Multi-Stream Feature-Level Fusion 

Input: Image 𝑥; set of 𝐾 CNN backbones {𝐵1, … , 𝐵𝐾}. 

Output: Standardized fused feature vector 𝑉^
𝑓𝑢𝑠𝑒𝑑. 

1. Parallel Feature Extraction: For each 𝐵𝑘, extract 𝑣𝑘 from the GAP layer. 

2. Concatenation: Combine into 𝑉𝑐𝑜𝑛𝑐𝑎𝑡 = [𝑣1 ⊕ ⋯ ⊕ 𝑣𝐾]. 
3. Standardization: Apply 𝑉^

𝑓𝑢𝑠𝑒𝑑 = (𝑉𝑐𝑜𝑛𝑐𝑎𝑡 − 𝜇)/𝜎. 

4. Return 𝑉^
𝑓𝑢𝑠𝑒𝑑   

3.4.2   SVM Meta-Classifier Objective 

The SVM identifies the maximum-margin hyperplane in the high-dimensional space by 

solving the primal optimization problem: 

𝑚𝑖𝑛
𝑤,𝑏,𝜉

 
1

2
‖𝑤‖2 + 𝐶 ∑ .𝑚

𝑖=1 𝜉𝑖      (7) 

subject to 𝑦𝑖(𝑤𝑇𝑉^
𝑖 + 𝑏) ≥ 1 − 𝜉𝑖𝑎𝑛𝑑 𝜉𝑖 ≥ 0. The final decision function is: 
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𝑓(𝑉^
𝑓𝑢𝑠𝑒𝑑) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑉^

𝑓𝑢𝑠𝑒𝑑 + 𝑏)     (8) 

Algorithm 3, outlines the subsequent workflow for utilizing these fused vectors to train 

the meta-classifier and generate final class predictions 

Algorithm 3: SVM-Based Meta-Classifier Workflow 

Input: Standardized training vectors 𝑉^
𝑡𝑟𝑎𝑖𝑛; training labels 𝑌𝑡𝑟𝑎𝑖𝑛; standardized test vector 

𝑉^
𝑡𝑒𝑠𝑡Output: Predicted class label 𝐿𝑝𝑟𝑒𝑑 

1. Training: Fit Linear SVM to (𝑉^
𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛) to find optimal 𝑤 𝑎𝑛𝑑 𝑏. 

2. Classification: For test vector 𝑉^
𝑡: 

a. Apply decision function: 𝐿𝑝𝑟𝑒𝑑 = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑉^
𝑡 + 𝑏). 

3. Return 𝐿𝑝𝑟𝑒𝑑 

Although end-to-end CNN-based classifiers are highly efficient at feature extraction, 

their final 'Softmax' layer is optimized for minimizing cross-entropy loss for a single set of 

features. There are three significant benefits to using a Support Vector Machine (SVM) meta-

classifier on concatenated features over end-to-end CNN-based classifiers or Softmax-based 

classifiers specifically. First, SVMs follow a principle of structural risk minimization, which is 

optimized for identifying the maximum margin hyperplane specifically in high-dimensional 

space, thereby being more robust to overfitting than a Softmax classifier, which relies solely 

on a density-based principle for optimizing Softmax values. Second, by concatenating a set of 

multiple CNN backbones such as VGG, ResNet, and so on, we are essentially providing our 

SVM with a 'joint latent space' spanning multi-generational inductive or intuitive notions of 

texture, shape, and scale. Finally, since an end-to-end classifier is optimized specifically for its 

own unique gradient flow, an SVM classifier is capable of detecting non-linear patterns 

between its architectural outputs and thereby essentially playing a high-dimensional 'referee' 

role between multiple CNN classifiers that are unsure of an image's identity or class. 

The linear SVM meta-classifier was then utilized to deal with the high-dimensional 

space, given the mathematical robustness of the linear margin-maximization principle against 

the sparsity that is generally observed in these high-dimensional feature spaces. Even though 

non-linear SVM methods such as the RBF and polynomial kernel SVM are generally preferable 

for low-dimensional spaces, the application of the linear SVM was preferred over the former 

given the highly dimensional space of the combined feature vectors, which could be as high as 

8,192 dimensions. In these highly dimensional spaces, the points are generally separable; 

hence, the need for non-linear transformation becomes irrelevant. Linear SVMs are less 

susceptible to the risk of overfitting and more efficient than the RBF SVM kernel due to the 

curse of dimensionality associated with the hyperparameter gamma. 

3.5   Experimental Setup   

All of the experiments were performed on a workstation with an NVIDIA Tesla P100 

GPU (16GB VRAM). It was an environment based on TensorFlow, Keras, and Scikit-learn. 

The models were optimized with the Adam optimizer (initial learning rate of 1 x 10⁻⁴) and a 

batch size of 32. Reduce learning rate and model checkpoint callbacks were used to achieve 

healthy convergence. 
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For a fair comparison among the existing literature and to take into consideration the 

different protocols of the evaluations, the splits used for the datasets NWPU-RESISC45, UC 

Merced, and the AID dataset were all 80/20. Additionally, to account for the stochastic process 

of deep learning training, all the results presented here are calculated with standard deviation 

as error bars for the five different runs performed on a random stratified split. 

The classification error measures the rate of misclassifications over the total number of 

samples tested. It can also be defined as the complement of the Overall Accuracy (OA). 

Equation of the classification error in this research is given by the following formula: 

𝐸 = 1 −
∑ 𝑇𝐶

𝑖=1 𝑃𝑖

𝑁
        (9) 

Where C is the number of classes (45 for NWPU-RESISC45, 21 for UCM, and 30 for 

the AID dataset), TPi represents the True Positives for class i, and N is the total number of test 

samples per dataset. This metric provides a direct measure of the framework's failure rate across 

different dataset complexities. 

 Results and Discussion  

In order to provide a strict quantitative evaluation, we used Overall Accuracy (OA), 

Weighted Precision, Weighted Recall, and F1-score. Since all the datasets are balanced the 

overall accuracy will be used as the main measure of global performance. 

4.1   CNN Backbones Detection Accuracies 

We determined an initial point of comparison through one-on-one evaluation of each 

fine-tuned CNN. In Table 4, the findings indicate particular differences in the feature extraction 

abilities. ResNet50 was the strongest single extractor (accuracy: 95.31%), which can be 

credited to its residual learning structure. VGG16 followed closely (94.82%). On the other 

hand, EfficientNetB0 failed to work alone (79.96%), meaning that, when applied to fine-tuning 

data, varying models may need to be hyperparameter-tuned to achieve this specific result. 

Figure 3, compares the training and testing performance across six deep learning 

architectures. Sub-figures (a) through (f) display the accuracy and loss curves for (a) ResNet50, 

(b) VGG16, (c) MobileNetV2, (d) DenseNet121, (e) InceptionV3, and (f) EfficientNetB0. In 

each plot, the x-axis represents the number of epochs, while the y-axis indicates the percentage 

of accuracy and the magnitude of cross-entropy loss.  

The effect of sensitivity to hyperparameters in fine-tuning EfficientNetB0 on remote 

sensing data to achieve relatively low standalone accuracy of 79.96% can be explained by the 

fact that the ImageNet domain on which EfficientNetB0 was optimized is quite different from 

the remote sensing domain. However, global accuracy does not capture the utility of a model 

in a multi-stream framework. Even for a lower result in the total performance, EfficientNetB0 

succeeds in capturing unique features that are structural and scale invariant but not as important 

for deeper architectures such as ResNet50 or DenseNet121. 
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Figure 3. Training and Validation Performance (Accuracy and Loss) of the Six Constituent CNN 

Backbones on the Primary NWPU-RESISC45 Benchmark 

Table 4. Comparative Performance of Individual CNN Models on the Primary NWPU-RESISC45 

Benchmark 

Model Architecture Accuracy (%) Precision (%) Recall (%) F1-Score 

ResNet50 95.31 95.39 95.31 0.9532 

VGG16 94.82 94.87 94.82 0.9482 

MobileNetV2 92.93 93.13 92.93 0.9298 

DenseNet121 92.51 92.64 92.51 0.9251 

InceptionV3 92.36 92.43 92.36 0.9235 

EfficientNetB0 79.96 84.05 79.96 0.7994 

4.2   Class-wise Performance and Difficulty Analysis of NWPU-RESISC45 Benchmark 

Dataset 

A granular examination of the F1 scores in all 45 classes indicated the obvious 

difference in the difficulty of the data sets. Photographically discrete types such as Chaparral, 

Harbor and Forest were almost perfectly scored (F1 scores of 1.00). Most semantically 

complicated classes, such as Palace (0.84), Church (0.86), and Railway Station (0.89) were 

tough throughout, as there was a high degree of inter-class similarity.   
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Figure 4. Performance of all 6 CNN Models for Hardest Classes 

Most importantly, we have seen high levels of model complementarity. Figure 4 

presents the hardest class performances for all the 6 CNN models. Whereas ResNet50 excelled 

in structural classes, such as Church, VGG16 performed better in Railway Station and Medium 

Residential scenes. The architectural variance confirms our hypothesis that the combination of 

different streams of features can eliminate the ambiguities that cannot be managed by single 

models.  

A qualitative error analysis reveals three predominat failure patterns in these high-

similarity categories. First, structural overlap is the primary cause of confusion between the 

'Palace' and 'Church' classes; both frequently feature large, symmetrical stone buildings with 

intricate rooftops, leading models to misclassify them based on shared architectural geometry. 

Second, functional ambiguity affects 'Railway Stations' and 'Commercial Areas,' which are 

often confused due to the presence of large asphalt parking lots and elongated industrial roofing 

structures. Third, contextual noise leads to misclassifications in 'Medium Residential' areas, 

where the density of vegetation can cause the model to shift its prediction toward 'Forest' or 

'Meadow.' Interestingly, the 5-stream fusion framework mitigated these patterns by combining 

the texture-bias of VGG16 with the structural bias of ResNet50, allowing the SVM to identify 

subtle discriminative features—such as railway tracks or specific religious iconography—that 

individual streams overlooked. 

4.3   Decision-Level Fusion (Ablation Study) Results 

In order to uncritically test the merits of ensemble learning, we performed an extensive 

ablation analysis of the two decision-making fusion methods: simple averaging and weighted 

averaging. In the case of ensemble size, we incrementally iterated over more models by 

systematically trying out all combinations to find the best model combination. The obtained 

outcome of the ablation proved that the weighted average strategy conditionally dominated the 

simple average approach across all sizes of the ensembles. Although the highest accuracy of 

96.42% was achieved with a combination of four models, the accumulation leveled off and 

even declined with the addition of more models. This means that when classifiers are not treated 

differently, weak predictors eventually induce noise in the ensemble, constraining its potential. 

The weighted average approach, on the other hand, showed continuous improvement in 

performance with the addition of more models. The system effectively reduced the curse of 

dimensionality that was pronounced in the rank of fixed ensembles by dynamically assigning 

lower weights to weaker models and higher weights to well-founded feature extractors. 
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The complete six-model weighted ensemble performed better, achieving a maximum 

accuracy of 96.60%. This represents a radical innovation over the maximum individual model 

(95.31 ± 0.05 for ResNet50). The weight distribution for the optimum combination was found 

to be as follows: VGG16 = 0.30 (maximum contribution), ResNet50 = 0.20, EfficientNetB0 = 

0.20, while for the remaining three models—DenseNet121, MobileNetV2, and InceptionV3—

the weight distribution is 0.10 each. This weight distribution strengthens the hypothesis that 

although the major contributions are made by the decision-makers VGG16 and ResNet50, the 

"minority vote" from architecturally different networks such as EfficientNetB0 and 

MobileNetV2 provides crucial corrective inputs regarding the testing boundary conditions, 

highlighting the necessity of including all six models in the ultimate network. 

To assess the stability of the weighted average ensemble, a weight perturbation test was 

performed. Random Gaussian noise with values ranging from [-0.05, +0.05] was added to the 

optimal weight values, maintaining the constraint that the sum of Wi = 1. The benefits of our 

ensemble method were found to be robust, as the F1-score varied by less than 0.12% during 

the 20 trials of weight perturbation tests. This indicates that the robustness of our ensemble 

method stems from the true complementary characteristics of the architectural biases, making 

our framework reliable for various remote-sensing satellites. 

4.4   Feature Level Fusion with SVM (Meta-classifier)   

In order to more precisely calculate the most appropriate combination of fusion features, 

a systematic classification was conducted using a step-by-step construction method for the 

ensemble architecture, considering the complexity of the feature expression and that of the 

classifier. To serve as a comparative basis, ResNet50 was adopted simultaneously with VGG16 

and MobileNetV2, to which DenseNet121, EfficientNetB0, and InceptionV3 were added 

successively, one by one. 

Table 5. Feature-Level Fusion Evolution 

Configuration Feature Vector Size (D) Backbones CNNs F1-Score 

3 - CNN feature 

extraction 

3,840-d ResNet50, VGG16, MobileNetV2 97.02% ± 

0.02% 

4 - CNN feature 

extraction 

4,864-d ResNet50, VGG16, MobileNetV2, 

DenseNet121 

97.06% ± 

0.04% 

5 - CNN feature 

extraction 

6,144-d ResNet50, VGG16, MobileNetV2, 

DenseNet121, EfficientNetB0 

97.24% ± 

0.06% 

6 - CNN feature 

extraction 

8,192-d ResNet50, VGG16, MobileNetV2, 

DenseNet121, InceptionV3 

97.15% ± 

0.03% 

Table 5 depicts the evolution of the performances based on the feature-level fusion 

process. The process in consideration involves the fusion of heterogeneous feature streams; 

hence, the process followed a positive trend that was destined for the final configuration of the 

5-stream system, which attained the maximum F1-score of 97.24%. This is much higher than 

the maximum achieved by high-dimensional feature concatenation of 96.60%, thus proving 

that this high-dimensional feature concatenation is efficient in capturing near fine-grained 

texture and structural characteristics not identified by the probabilistic voting assistant. In this 

regard, it is observed that there exists a plateau, which evidences the fact that, as powerful as 

the DenseNet objective is regarding the feature reuse mechanism, in the remote sensing field, 

the feature maps considerably overlap with those of ResNet50, which provides little extra 

discriminative data that the SVM can utilize. 
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The achievement design peaked with the 5-stream architecture, whereby the integration 

of EfficientNetB0 took accuracy to a maximum range of 97.24%. An important finding was 

made when an expansion to the complete 6-stream architecture was implemented. InceptionV3 

added amendments to the tree to raise the dimensions to 8,192, which led to a minor decrease 

in F1-score to 97.15%. The 5-stream CNN-SVM is therefore determined to be the best 

architecture for this dataset. 

The observed performance degradation when moving from a 5-stream to a 6-stream 

architecture (8,192 dimensions) is a classic manifestation of the Curse of Dimensionality. As 

the feature space expands, the available training data becomes increasingly sparse, meaning the 

fixed number of samples (NWPU-RESISC45) no longer adequately populates the high-

dimensional space. This sparsity makes it difficult for the Linear SVM to identify a robust and 

generalized decision boundary. Furthermore, the inclusion of a sixth stream potentially 

introduced redundant or noisy features that overlapped with existing representations, leading 

to feature interference. This confirms that 6,144 dimensions represent the optimal capacity for 

the current dataset, where the gain from additional architectural diversity is offset by the 

mathematical instability of the expanded feature vector. The superiority of the linear kernel in 

this context is further evidenced by the ablation study. The linear kernel effectively maximizes 

the margin between categories without adding unnecessary mathematical complexity to the 

already rich semantic features extracted by the CNN backbones. 

The significant performance jump observed when adding EfficientNetB0 to the fusion 

(from 97.06% to 97.24%) highlights the principle of architectural diversity. While models like 

ResNet50 and VGG16 focus on deep semantic hierarchies and low-level textures, respectively, 

EfficientNetB0's compound scaling method (balancing depth, width, and resolution) captures 

intricate textural subtleties. In the high-dimensional SVM space, these unique features act as 

corrective information for challenging edge cases and texture-heavy classes like Chaparral and 

Meadow, where other models typically struggle with class ambiguity. 

On the basis of the best CNN-SVM architecture using the concept of the 5-stream CNN 

model, the value of the global classification error decreased to 2.76% (equation 9). This is a 

small value because it means that a mere 124 of the total 4,500 test images were misclassified. 

It is even more notable when compared with the best model because the value of the global 

error in the case of the best model (ResNet50) is 4.69%. 

To make the obtained results reliable, all experiments have been conducted using five 

stratified random splits. The architecture with 5 streams has proven stable, with a fluctuation 

of no more than 0.1% for all splits to ensure the generality of the feature space. 

Table 6. Comparative Performance Analysis of Decision-Level vs. Feature-Level Fusion across Three 

Benchmarks 

Dataset Weighted Average Ensemble 

(Decision-Level) 

Proposed CNN-SVM 

(Feature-Level) 

Improvement 

NWPU-RESISC45 96.60% 97.24% +0.64% 

UC Merced (UCM) 98.42% 99.15% +0.73% 

AID 95.10% 96.45% +1.35% 

These experiments were further extended to the UCM and AID datasets to support 

further validation of the framework. It can be seen from Table 6 that the proposed feature-level 

CNN-SVM consistently outperforms the decision-level ensemble on all benchmarks. Figure 3 

shows experimental results on the UC Merced data; here, with high intra-class variation 
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existing in the urban land use classes, the proposed framework is capable of providing an 

extraordinary accuracy of 99.15% with UC Merced data. For the AID dataset, which has large-

scale variations, the proposed framework achieved an accuracy of 96.45%. The higher 

improvement margin on the AID dataset (+1.35%) indicates that multi-stream feature fusion 

can mine the complex multi-resolution semantic features required in large-scale aerial scene 

classification more effectively. 

Table 7. Comparison of Results with Other Approaches 

Ref. Dataset Preprocessing Method / 

Architecture 

Fusion 

Strategy 

Performa

nce 

[7] UC 

Merced, 

RSSCN7 

Bicubic Resizing (224x224), Mean 

Subtraction (ImageNet constants), 

and Global Contrast Normalization. 

VGG16 + 

SVM 

Feature-level 

(single 

CNN) 

95% 

Accuracy 

[3] UC 

Merced 

Simple Linear Resizing and Center 

Cropping to 224x224; no advanced 

augmentation reported. 

AlexNet / 

GoogLeNet / 

VGG + SVM 

Feature 

extraction 

94% 

Accuracy 

[6] UC 

Merced, 

SIRI-

WHU 

Multi-scale Resizing, Min-Max 

Scaling [0, 1], and per-channel 

standard deviation normalization. 

DenseNet, 

VGG, ResNet 

+ SVM 

Feature-level 96% 

Accuracy 

[10] UC 

Merced 

Histogram Equalization (to handle 

sensor lighting variations) and 

standard RGB Mean Centering. 

VGG19, 

InceptionV3 + 

SVM 

Feature 

recalibration 

95.5% 

Accuracy 

[12] NWPU-

RESISC4

5 

Spatial Whitening Transformation 

and Local Binary Pattern (LBP) 

extraction prior to CNN input. 

CNN + 

Covariance 

Pooling 

Ensemble 

learning 

96.1% 

Accuracy 

Proposed 

Method 

NWPU-

RESISC4

5 

Resize (224x224), Z-score 

Standardization, Random Stratified 

Splits 

6 CNNs 

(VGG16, 

ResNet50, 

InceptionV3, 

DenseNet121, 

MobileNetV2, 

EfficientNetB

0) 

Decision-

level 

weighted 

ensemble & 

Feature-level 

CNN–SVM 

98% 

Accuracy,

97.24% 

F1 score 

Proposed 

Method 

UC 

Merced 

99.15% 

Accuracy 

Proposed 

Method 

AID 96.45% 

Accuracy 

The comparison in Table 7 illustrates the differences between the proposed approach 

and other state-of-the-art techniques for LULC classification. The proposed approach differs 

from other cited works [3, 7], which focus on mere resizing and/or mean subtraction. Instead, 

the proposed approach utilizes Z-score standardization. This highlights the fact that even for 

high-dimensional features from diverse backbones, it can perform well with Linear SVM. This 

is yet another reason why better accuracies have been achieved: 97.80% on NWPU-RESISC45, 

99.15% on UC Merced, and 96.45% on AID. The consistency of these accuracies across varied 

levels of spectral and textural complexities validates that this approach has not been overfit on 

training from a single dataset but is highly generalizable. 

One of the challenges in research on LULC classification is the lack of standardized 

protocols for evaluation across different works. As can be observed from Table 7, there is 

variation in the preprocessing levels of cited works, such as Bicubic Resizing versus Spatial 

Whitening, as well as differences in the datasets used. To avoid being affected by such critical 

issues that may hinder proper and sound comparisons, our proposed system is applied based on 

a robust protocol. Our system's performance has been measured with an average and a low 

standard deviation of ± 0.06% over five separate measurements, indicating a significant 

performance advantage over random data allocation. 

https://www.zotero.org/google-docs/?SLfr5m
https://www.zotero.org/google-docs/?Tjg5oo
https://www.zotero.org/google-docs/?OsOtFC
https://www.zotero.org/google-docs/?iI1PGp
https://www.zotero.org/google-docs/?tmkZpt
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The operational intelligence achievable through the new system is made possible by an 

inference speed of 12.4 ms per image for the Nvidia Tesla P100 GPU card. The operation of 

the new system, regarding the decision-level average operation, is feasible within the 

boundaries of the AID set with a ± 1.35% visibility range (Table 6). Although in decision-level 

fusion (probabilistic averaging) we combine only the final decision scores of the models, in our 

proposed method, we fuse the underlying evidence at the feature level in the form of a semantic 

space of dimensionality 6,144. This enables the SVM to capture high-level similarities among 

classes. For example, it can differentiate between classes such as 'Palace' and 'Church,' which 

are known to be vulnerable to single-stream approaches. 

The performance improvements on the NWPU-RESISC45, UCM, and AID datasets 

demonstrate that the model has not been overfitted to a particular dataset. Rather, it is the 

diversity of the backbone networks used (VGG16 for texture images and EfficientNet for scaled 

images) that provides a universally compatible feature space, independent of the imaging 

sensors or the resolution of the images. 

 Conclusion and Future Scope 

In this paper, a heterogeneous multi-stream CNN framework is proposed and tested on 

Land Use and Land Cover (LULC) classification tasks. The multi-stream CNN classification 

framework, with six different CNN architectures integrated using feature fusion and decision 

fusion methods, has been able to address the difficulties associated with remote sensing image 

classification. The proposed framework has been experimented on the NWPU-RESISC45, UC 

Merced, and AID datasets, and it has been observed to perform comparatively well with regard 

to accuracy and generalizability, with values of 97.80%, 99.15%, and 96.45%, respectively. 

The proposed paper confirms the effectiveness of incorporating different inductive biases and 

normalizing the features to generate a discriminative feature space for the multi-source aerial 

images. Future research will focus on exploring different techniques for dimensionality 

reduction, investigating various non-linear meta-classification models, and finally, introducing 

the concept of model compression to achieve real-time processing. 
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