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Abstract

Training the neural network using high-quality labeled data is a major challenge, as
there are many grey areas in image classification. Hence, experts are available to label the data.
Proposed in this research paper is a Heterogeneous Multi-Stream Deep Learning Framework.
Its application of six advanced CNNs will remove such complications using their
complementary inductive biases. An evaluation of two fusion paradigms was successfully
achieved: a decision-level weighted average ensemble and a multi-stream CNN-SVM at both
feature levels. The feature-level fusion method was found to be more discriminative than
probabilistic averaging in testing across three different datasets: NWPU-RESISC45, UC
Merced, and AID. This approach achieves the best results on all datasets, with our method
achieving a highest Fl-score of 97.24% on the NWPU-RESISC45 benchmark. The
performance of the six-stream design, having 8192 features, was slightly affected, dropping to
97.15% because of the curse of dimensionality. The findings support the five-stream CNN-
SVM as the best architecture since it easily strikes a balance between feature richness and the
complexity of the classifier.

Keywords: Aerial Scene Classification, Deep Learning, Feature Fusion, CNN-SVM,
Ensemble Learning, NWPU-RESISC45, UC Merced, AID.

1. Introduction

The rapid development of high-resolution remote sensing images has almost
revolutionized the capability of scanning land surfaces, leading to rapid advancements in
applications related to land use/cover classification, urban planning, espionage, and disaster
management. These applications are all grounded in LULC classification. However, it is not
feasible to semi-automatically distinguish complex aerial images into semantic classes because
the patterns in high-resolution images are more complex. The available datasets, such as
NWPU-RESISCA45, are more challenging due to higher intra-class variation, such as images of
different arrangements of airports and aircraft on the ground, including images of different
aircraft on different runways, as well as higher inter-class similarity between densely populated
residential areas and commercial areas.
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Previously, LULC classification utilized feature descriptions as classifiers. These
descriptions were human-made features like SIFT and HOG, as well as statistical classifiers.
However, if these technologies were efficient, it would not have been possible to extract the
deep semantic hierarchies. There has been a revolution in deep learning as a result of
convolutional neural networks. The VGG and ResNet models leverage this hierarchy of spatial
data.

However, the potentials of single stream CNN models are limited. A specific model
with a specific inductive bias, such as the texture bias of VGG or the shape bias of ResNet,
tends not to generalize well across different types of scene categories. In the local dialect,
modeling involves selecting projects and their economic benefits as well as researching and
evaluating alternative policies from an economic perspective. However, the selection of the
best approach for integration remains an important research gap. Although decision-level
ensembles (voting and averaging) are commonly used, these typically assume equal weighting
on each model and ignore differences in model reliability. Feature-level fusion provides richer
information about the semantics of the feature, yet it also runs the risk of the curse of
dimensionality. To address the problems above, this paper proposes a multi-stream deep
learning framework to evaluate and optimize two different fusion paradigms: weighted average
ensemble (decision-level) and multi-stream CNN-SVM (feature-level). We employ six unique
and state-of-the-art backbones ResNet50, VGG16, InceptionV3, MobileNetV2, DenseNet121,
and EfficientNetBO to achieve maximum architectural diversity. Following are the main
contributions of this paper:

1. Construction of Heterogeneous Multi-Stream Systems: A Highly effective
integration system that utilizes the complementary strengths of six different CNN
architectures in addressing ambiguities of very similar classes (for example, Palace
vs. Church) when handled by individual models.

2. Fusion Paradigm Comparison: A strict comparison of feature-level fusion using
CNN-SVM and decision-level fusion using a weighted ensemble of classifiers. In
contrast with previous works that could not reach a conclusion from an experiment
of comparable type, here we provide an experimental verification of trade-offs
between consensus of probabilities and high-dimensional feature fusion.

3. Dimensionality Scale Detection: We identify the important dimensionality of
scales in a challenging ablation study. We show that feature level fusion is optimal
when using a five-stream system (97.24%) and outperforms decision- level fusion
experiments. Yet, it has been found that the turning point has been reached when
the loss of detailed information exceeds the gain due to the addition of the sixth
stream (over 8,000 dimensions).

4. Modern Outcomes: The proposed framework has been evaluated using NWPU-
RESISC45, UC Merced, and AID benchmark databases. It outperformed each of
them as it set a new benchmark in multi-benchmark aerial scene classification.

2. Literature Review

The academic LULC classification now points towards the development of hybrid
architectures that will combine the advantages of deep learning methods and classical statistical
theory. The paper provides a systematic review of the shift to an end-to-end classification

Journal of Innovative Image Processing, March 2026, Volume 8, Issue 1 55



Integrated Feature Learning and Decision Modeling for Land Use and Land Cover Analysis

approach toward a more decoupled paradigm, which creates the technical groundwork for using
CNNs as feature extractors in conjunction with support vector machine (SVM) meta-classifiers.

2.1 Change in LULC Paradigms of Classification

In the past, LULC was classified using a decoupled, two-stage approach. Traditional
methods used descriptors significantly based on hand-crafted features, including color
histograms, textural patterns, and Scale-Invariant Feature Transform (SIFT), which were
computed with the help of statistical learners like SVMs or random forests [1], [2]. Although
useful in simple tasks, these manual features were not able to capture the semantic complexity
of high-resolution remote sensing images.

The development of deep learning led to a radical change in generalized architectures
that combine both feature engineering and classification into a single, end-to-end trainable
pipeline [3]. However, there is another interesting hybrid paradigm that has been gaining
momentum. When coupled with traditional algorithms like SVM, researchers can use CNNs as
data-driven, dynamic feature extractors and, at the same time, take advantage of the statistical
resilience of margin-based classifiers [4]. This interaction is very effective in reducing
overfitting on limited data sets, combining the enormous representational capabilities of neural
networks with the structural risk reduction of SVMs.

2.2 Convolutional Architectures used as Feature Descriptors

An extensive range of CNN models has been strictly tested to be powerful feature
descriptors in hybrid systems. Instead of using internal softmax layers, scientists obtain deep
latent representations using such networks as inputs to initialize meta-classifiers.

o Sequential architectures (VGG and AlexNet): The VGG family can be used as a
standard since it is designed in the same way. VGG16 has been effectively used to
generate spatial features of high-resolution data (e.g., UC Merced) and later classify
them using SVMs to generate highly precise results. Equally, older models, such as
AlexNet, are still useful; extracting features from fully connected layers (fc6 and
fc7) results in dense semantic representations, which can effectively classify
complex scenes [3].

« Residual and dense networks: As the dimensions of the tasks grow, ResNet 50 has
become a major option. The feature learning accuracy reached up to 85% with its
residual learning blocks, delivering stable features of a gradient to learn features
with the help of SVMs [5]. DenseNet-121, which is, a network that interconnects
all layers to all the following layers, provides highly compressed and informative
feature vectors and attains competitive accuracy with a very high level of
computational efficiency [6].

Table 1. Summary of Key Literature on Hybrid LULC Frameworks

Ref. CNN Architecture Pre-training Strategy Meta-Classifier Dataset Used
(Feature Extractor)
[7] VGG16 Hybrid Pre-trained SVM UC Merced &
RSSCN7
[5] ResNet-50, DenseNet-121 | ImageNet Transfer SVM, RF, XGBoost, 10k Drone Images
Learning KNN
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[8] ResNet-50 Pre-trained Feature SVM, RF, XGBoost UC Merced
Extraction
[6] DenseNet-169, VGG16, ImageNet Transfer SVM UC Merced &
ResNet-50 Learning SIRI-WHU
[3] AlexNet, GoogleNet, Fine-tuned Transfer SVM UC Merced
VGGNet Learning
[9] Pre-trained CNN Multi-source (Sentinel- | L2-SVM Wetland
1/2) Classification
[10] VGG19, InceptionV3 Recalibrated sSE SVM & Twin SVM UC Merced
Blocks
[11] Generic CNN Models Deep Feature SVM UC Merced
Extraction

2.3 Feature Fusion and Integration Methodologies

The combination of convolutional neural networks (CNNs) and support vector
machines (SVMs) is executed in a set of sufficiently developed frameworks. The prevailing
method consists of using specific layers, including the so-called pool5-drop layer of
GoogLeNet or the so-called fc7 layer of VGG, as high-dimensional feature descriptors.

Table 1 summarizes hybrid LULC frameworks by comparing their CNN architectures,
pre-training strategies, and meta-classifiers across various remote sensing datasets. The current
developments have moved to feature fusion, where high-level features are obtained using more
than one CNN and combined to create a single feature, which has better discriminative
capabilities [12]. For example, the combination of Scale-Invariant Feature Transform (SIFT)
descriptors with CNN-learned features will allow the framework to use both local textual detail
and global hierarchical context [2]. In order to process these high-dimensional spaces
optimally, preprocessing methods like Principal Component Analysis (PCA) are also used
regularly. The presented method of dimensionality reduction through PCA and feature
concatenation has been proven to strongly positively impact information density [12].
Conversely, the current paper consciously tests raw feature concatenation to empirically
calculate the dimensions that can be used by linear SVMs.

2.4 Comparative Advantage and Performance

The CNN-SVM hybrid will achieve a quantum leap in land-use-land-cover (LULC)
techniques that account for the limitations of the object-based image analysis (OBIA)
framework and the data requirements of pure deep-learning methods.

« Efficiency: It was observed that this method was remarkably fast, with some of the
frameworks executing 20,000 samples in 2.3 seconds [13].

o Specificity: The state-of-the-art implementations using ResNet-50 and PCA have
a maximum accuracy of a close-to-perfect AUC-ROC of 0.993, greatly exceeding
those of more advanced boosting algorithms, including XGBoost and AdaBoost,
that match near 90% [7-8].

o Generalization: SVMs perform better compared to multilayer perceptron (MLPs),
which tend to perform poorly in high-dimensional space; SVMs always perform
well even when the training data are few [14]. As a consequence, the hybrid method
provides a distinctly balanced paradigm that believes in the representational
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strength of deep learning while still maintaining the strong, margin-based
classification capabilities of classical machine learning [15].

3. Research Methodology and Framework

For addressing challenges present in the NWPU-RESISC45 dataset, in general, and the
issue of inter-class similarities and diversities, in particular, we design and propose a multi-
stream approach based on deep learning techniques. Our contributions extend to be applied to
the UC Merced and AID datasets later on. Through our main approach, there is a comparison
and analysis of two distinct approaches to fusion. These approaches to fusion include decision-
level fusion through a weighted average ensemble and feature-level fusion through an SVM
meta-classifier. System architecture is divided into three main phases:

o Data Preparation: Image standardization and data augmentation to obtain
interoperability of the heterogeneous CNN backbones.

o Feature Extraction: The use of 6 state-of-the-art convolutional neural networks
which are fine-tuned to extract hierarchical spatial features.

« Fusion Strategy: Intelligence aggregated model probabilistic consensus (weighted
ensemble) and concatenating vectors (high-dimensional) (CNN SVM fusion).

3.1 Dataset Description and Preparation

Three benchmark datasets such as NWPU-RESISC45, UC Merced (UCM), and Aerial
Image Dataset (AID) with different characteristics are used to evaluate the validity and extent
of generalizability of this proposed framework.

3.1.1 NWPU-RESISC45 Dataset

The source of this dataset originates from Northwestern Polytechnical University. The
dataset comprises 31,500 RGB images with a spatial resolution of 256 x 256 pixels. The image
data is divided into 45 classes of scenes, from more specific to general, like “Airports,” “Sea
Ice,” and so on, containing 700 images of each type.

3.1.2 UC Merced (UCM) Dataset

The UCM dataset is a 2,100-image by 21 land use classes (100 images per class) dataset.
It has a high spatial resolution of 0.3 meters per pixel and a size of 256 x 256 pixels. This
dataset has been widely used to test model performance on high resolution class specific
textures.

3.1.3 Aerial Image Dataset (AID)

AID is a largescale benchmark dataset. It has collected data using Google Earth and
comprises 10,000 images split into 30 categories. It is tougher than UCM because it is a multi-
source dataset and its resolution varies between 0.5 and 8 meters.
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3.1.4 Data Partitioning and Preprocessing

To maintain statistical accuracy, the stratified sampling technique is used. In situations
where NWPU-RESISC45, UCM, and AID wish to test the proposed system within the data
constraints, a split of 80:20 for training and testing is used. The split of the benchmarking
datasets for training and testing is expressed in Table 2 below.

Table 2. Summary of Benchmark Datasets and Distribution

Dataset Total Images Classes Resolution Training / Testing Ratio
NWPU-RESISC45 31,500 45 256 x 256 80% / 20%
UC Merced 2,100 21 256 x 256 80% / 20%
AID 10,000 30 600 x 600 80% / 20%

All the images were resized to 224 x 224 pixels. This is because the CNN architectures
require this size as their inputs. In addition, Z-score standardization of the extracted features is
performed to deal with the numerical differences of the varied streams. To overcome the
problem of overfitting, data augmentation is done during the training process.

3.2 Deep Transfer Learning Backbones

One of the techniques of transfer learning, which relies on the representation developed
based on the initial training on the ImageNet database, has been applied to build a strong feature
extractor. Various dimensions of deep learning techniques are conveyed based on the selection
of 6 diverse architectures. The selection of a CNN architecture includes the spectrum of diverse
generations, ranging from the traditional VGG16 to the most modern EfficientNetBO.

o Traditional Architectures: The models require significant and uniform usage of
the 3x3 convolution layers. Despite the models having no efficiency, the ‘texture
bias' is quite high; hence, the models optimize for the recognition of grainy textures
such as grass, asphalt, and sand.

o Residual and Dense Architectures (ResNet50 and DenseNet121): These models
can be classified under mid-level architectures. They raised awareness of skip
connections, which plays a significant role for a consistent structure, hence are
optimal for larger geometric structures like bridges and buildings.

o Modern Compound Scaling Architectures (EfficientNetB0): These use state-of-
the-art depth, width, and compound scaling methods to identify semantic features
for different sizes.

Mixing these generations is a strategic advantage, as modern models might over-
abstract and miss low-level textures, while older architectures preserve them. This architectural
heterogeneity ensures that the fused feature vector contains both high-level semantic
intelligence and low-level textural signals, which is critical for resolving the strong inter-class
similarities found in our dataset.

3.2.1 CNN Feature Extraction Formalization

Let, X € R¥*W*3 denote the input remote sensing image. For a set of K heterogeneous
CNN backbones {Bj, B,, ..., Bk}, the feature extraction process is defined as a non-linear
mapping P:
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Vg = (Pk(x; Hk) € de (1)

where @;, represents the k-th architectural transformation up to the Global Average
Pooling (GAP) layer, 8, denotes the fine-tuned parameters, and dj, is the dimensionality of the
feature vector specific to that architecture.

Table 3. Structural Characteristics and Feature Dimensions of the Constituent CNN Backbones

Model Architecture Parameters Depth (Layers) Feature Vector Size (GAP)
VGG16 ~1384M 16 512
ResNet50 ~25.6 M 50 2048
InceptionV3 ~239M 48 2048
DenseNetl121 ~8.0M 121 1024
EfficientNetB0 ~53M 237 1280
MobileNetV2 ~3.5M 88 1280

Structurally, all backbones were altered by removing their original classification head
and replacing it with a global average pooling (GAP) layer and the subsequent dense softmax
layer as befits the target classes for various datasets. Table 3 provides a comparative analysis
of CNN backbone architectures, detailing their parameter counts, layer depth, and the resulting
Global Average Pooling (GAP) feature vector sizes.

3.3 Decision-Level Fusion (Weighted Average)

The first fusion-level strategy that we adopt is at the decision level, presented in Figure
1, which involves the probabilistic agreement of the independent networks. Simple averaging
is a common practice in general ensemble methodology, but this modeling technique assumes
that all models are equally valid. To address this bias, we have used a weighted average
ensemble that places more weight on models that performed better when used as the basis of
validation.

For decision-level integration, each backbone B) generates a class probability vector
Py (x) via a softmax layer:

Py (x) = [Pr1 Pr2s - Prcl’, where C = No.of Classes (2)
The weighted ensemble probability P,,¢(x) is formulated as
Pens (x) = 25:1' Wk ' Pk (x): SubjeCt to Z§=1' Wk =1 (3)

The weights W, are dynamically optimized based on the validation accuracy 4 of each
backbone:
Wi = 5 4)

K ,
SK A
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Figure 1. Decision-Level Fusion (Weighted Average)

The complete procedural implementation of this weighted fusion strategy is detailed in
Algorithm 1.

Algorithm 1: Weighted Decision-Level Fusion

Input: Test image x; set of K fine-tuned CNN backbones {Bj, ..., Bk }; validation accuracies
{A4, ..., A };No. of classes ¢

Output: Final predicted class label y"

1. Initialize ensemble vector P,,s = [0]1xc-
. Calculate normalized weights W = Ay /Y A;.
3. For each backbone Bj, do:
a. Extract probability vector P, (x) from the Softmax layer.
b. Compute P,p,s = Pops + (Wy, X Pr(x)).
4. Compute final label y" = argmax(P,ys).
5. Returny”

By using this approach, the framework reduces the impact of weak predictors (such as
EfficientNetB0 in standalone mode) while prioritizing the high-confidence predictions of more
robust backbones like ResNet50 and DenseNetl121. This prevents lower-performing models
from inducing noise into the final probabilistic consensus.

3.4 Multi-Stream Feature Fusion (CNN- SVM) Method

We propose the most significant input in the form of a multi-stream feature fusion
framework. As presented in Figure 2, instead of extracting the final-probability outputs of the
ensemble into rich high-dimensional semantic vectors, we directly extract the penultimate GAP
layers to provide rich high-dimensional semantic vectors. The multi-stream feature-level
pipeline, encompassing extraction, standardization, and meta-classification, is formalized in
the following subsections and structured in Algorithms 2 and 3.
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3.4.1 Feature Concatenation and Standardization

The framework constructs a high-dimensional joint latent space through vector
concatenation:

Veoncat = [V1 D v, @ - D vk] € R? (5)

Where D = YX_,.d, is the total fused dimensionality (e.g., D=6,144 for 5 streams). To
ensure inter-architectural scale interoperability, the vector is standardized via Z-score
transformation:

A Veoncat—H
|4 fused = % (6)

The systematic procedure for transforming raw image input into this standardized joint
latent space is detailed in Algorithm 2.

:FW

Feature Vector

2048-d
Feature Vector

2048-d
Feature Vector

)’
2Z-score
Standardization

_ 1024-d
Feature Vector
1280-d
Feature Vector
LRy
1280-d Concatenated
Feature Vector Feature Vector

(8192-d)

Figure 2. The Multi-Stream Feature Fusion Architecture

Algorithm 2: Multi-Stream Feature-Level Fusion

Input: Image x; set of K CNN backbones {Bj, ..., Bx}.
Output: Standardized fused feature vector V" Fused-

Parallel Feature Extraction: For each By, extract v, from the GAP layer.
Concatenation: Combine into Vi ppeqr = [V1 D - D vi].
Standardization: Apply V" fused = (Veoncat — 1) /0.

4. Return V' fyseq

W=

3.4.2 SVM Meta-Classifier Objective

The SVM identifies the maximum-margin hyperplane in the high-dimensional space by
solving the primal optimization problem:

.1
min 5 [wll* + C Xz, & (7)

subject to y;(wTV"; + b) = 1 — &;and & > 0. The final decision function is:
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f(VAfused) = Sign(WTVAfused + b) (8)

Algorithm 3, outlines the subsequent workflow for utilizing these fused vectors to train
the meta-classifier and generate final class predictions

Algorithm 3: SVM-Based Meta-Classifier Workflow

Input: Standardized training vectors V" ;4in; training labels Y;,4,; standardized test vector
V" testOutput: Predicted class label Lyyeq

1. Training: Fit Linear SVM to (V" ¢;-qin» Yerain) to find optimal w and b.
2. Classification: For test vector V",

a. Apply decision function: L,,.q = sign(w'V"; + b).
3. Return Lyyeq

Although end-to-end CNN-based classifiers are highly efficient at feature extraction,
their final 'Softmax' layer is optimized for minimizing cross-entropy loss for a single set of
features. There are three significant benefits to using a Support Vector Machine (SVM) meta-
classifier on concatenated features over end-to-end CNN-based classifiers or Softmax-based
classifiers specifically. First, SVMs follow a principle of structural risk minimization, which is
optimized for identifying the maximum margin hyperplane specifically in high-dimensional
space, thereby being more robust to overfitting than a Softmax classifier, which relies solely
on a density-based principle for optimizing Softmax values. Second, by concatenating a set of
multiple CNN backbones such as VGG, ResNet, and so on, we are essentially providing our
SVM with a 'joint latent space' spanning multi-generational inductive or intuitive notions of
texture, shape, and scale. Finally, since an end-to-end classifier is optimized specifically for its
own unique gradient flow, an SVM classifier is capable of detecting non-linear patterns
between its architectural outputs and thereby essentially playing a high-dimensional 'referee'
role between multiple CNN classifiers that are unsure of an image's identity or class.

The linear SVM meta-classifier was then utilized to deal with the high-dimensional
space, given the mathematical robustness of the linear margin-maximization principle against
the sparsity that is generally observed in these high-dimensional feature spaces. Even though
non-linear SVM methods such as the RBF and polynomial kernel SVM are generally preferable
for low-dimensional spaces, the application of the linear SVM was preferred over the former
given the highly dimensional space of the combined feature vectors, which could be as high as
8,192 dimensions. In these highly dimensional spaces, the points are generally separable;
hence, the need for non-linear transformation becomes irrelevant. Linear SVMs are less
susceptible to the risk of overfitting and more efficient than the RBF SVM kernel due to the
curse of dimensionality associated with the hyperparameter gamma.

3.5 Experimental Setup

All of the experiments were performed on a workstation with an NVIDIA Tesla P100
GPU (16GB VRAM). It was an environment based on TensorFlow, Keras, and Scikit-learn.
The models were optimized with the Adam optimizer (initial learning rate of 1 x 10™*) and a
batch size of 32. Reduce learning rate and model checkpoint callbacks were used to achieve
healthy convergence.
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For a fair comparison among the existing literature and to take into consideration the
different protocols of the evaluations, the splits used for the datasets NWPU-RESISC45, UC
Merced, and the AID dataset were all 80/20. Additionally, to account for the stochastic process
of deep learning training, all the results presented here are calculated with standard deviation
as error bars for the five different runs performed on a random stratified split.

The classification error measures the rate of misclassifications over the total number of
samples tested. It can also be defined as the complement of the Overall Accuracy (OA).

Equation of the classification error in this research is given by the following formula:

— _ Z(i:=1 TP;
E=1 == 9)
Where C is the number of classes (45 for NWPU-RESISC45, 21 for UCM, and 30 for
the AID dataset), TPi represents the True Positives for class i1, and N is the total number of test
samples per dataset. This metric provides a direct measure of the framework's failure rate across
different dataset complexities.

4. Results and Discussion

In order to provide a strict quantitative evaluation, we used Overall Accuracy (OA),
Weighted Precision, Weighted Recall, and F1-score. Since all the datasets are balanced the
overall accuracy will be used as the main measure of global performance.

4.1 CNN Backbones Detection Accuracies

We determined an initial point of comparison through one-on-one evaluation of each
fine-tuned CNN. In Table 4, the findings indicate particular differences in the feature extraction
abilities. ResNet50 was the strongest single extractor (accuracy: 95.31%), which can be
credited to its residual learning structure. VGG16 followed closely (94.82%). On the other
hand, EfficientNetBO0 failed to work alone (79.96%), meaning that, when applied to fine-tuning
data, varying models may need to be hyperparameter-tuned to achieve this specific result.

Figure 3, compares the training and testing performance across six deep learning
architectures. Sub-figures (a) through (f) display the accuracy and loss curves for (a) ResNet50,
(b) VGG16, (c) MobileNetV2, (d) DenseNetl121, (e) InceptionV3, and (f) EfficientNetB0. In
each plot, the x-axis represents the number of epochs, while the y-axis indicates the percentage
of accuracy and the magnitude of cross-entropy loss.

The effect of sensitivity to hyperparameters in fine-tuning EfficientNetBO on remote
sensing data to achieve relatively low standalone accuracy of 79.96% can be explained by the
fact that the ImageNet domain on which EfficientNetB0 was optimized is quite different from
the remote sensing domain. However, global accuracy does not capture the utility of a model
in a multi-stream framework. Even for a lower result in the total performance, EfficientNetBO
succeeds in capturing unique features that are structural and scale invariant but not as important
for deeper architectures such as ResNet50 or DenseNet121.
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(a) ResNet50 (b) VGG16
d) Dn Netl21
(c) MobileNetV2 (d) Dense
(f) InceptionV3 -
(g) EfficientNetB0

Figure 3. Training and Validation Performance (Accuracy and Loss) of the Six Constituent CNN
Backbones on the Primary NWPU-RESISC45 Benchmark

Table 4. Comparative Performance of Individual CNN Models on the Primary NWPU-RESISC45

Benchmark
Model Architecture Accuracy (%) Precision (%) Recall (%) F1-Score
ResNet50 95.31 95.39 95.31 0.9532
VGG16 94.82 94.87 94.82 0.9482
MobileNetV2 92.93 93.13 92.93 0.9298
DenseNet121 92.51 92.64 92.51 0.9251
InceptionV3 92.36 92.43 92.36 0.9235
EfficientNetB0 79.96 84.05 79.96 0.7994

4.2 Class-wise Performance and Difficulty Analysis of NWPU-RESISC45 Benchmark

Dataset

A granular examination of the F1 scores in all 45 classes indicated the obvious
difference in the difficulty of the data sets. Photographically discrete types such as Chaparral,
Harbor and Forest were almost perfectly scored (F1 scores of 1.00). Most semantically
complicated classes, such as Palace (0.84), Church (0.86), and Railway Station (0.89) were
tough throughout, as there was a high degree of inter-class similarity.
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Performance of All 6 CNN Models on the Most Difficult Classes
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Figure 4. Performance of all 6 CNN Models for Hardest Classes

Most importantly, we have seen high levels of model complementarity. Figure 4
presents the hardest class performances for all the 6 CNN models. Whereas ResNet50 excelled
in structural classes, such as Church, VGG16 performed better in Railway Station and Medium
Residential scenes. The architectural variance confirms our hypothesis that the combination of
different streams of features can eliminate the ambiguities that cannot be managed by single
models.

A qualitative error analysis reveals three predominat failure patterns in these high-
similarity categories. First, structural overlap is the primary cause of confusion between the
'Palace' and 'Church' classes; both frequently feature large, symmetrical stone buildings with
intricate rooftops, leading models to misclassify them based on shared architectural geometry.
Second, functional ambiguity affects 'Railway Stations' and 'Commercial Areas,’ which are
often confused due to the presence of large asphalt parking lots and elongated industrial roofing
structures. Third, contextual noise leads to misclassifications in 'Medium Residential' areas,
where the density of vegetation can cause the model to shift its prediction toward 'Forest' or
'Meadow.' Interestingly, the 5-stream fusion framework mitigated these patterns by combining
the texture-bias of VGG16 with the structural bias of ResNet50, allowing the SVM to identify
subtle discriminative features—such as railway tracks or specific religious iconography—that
individual streams overlooked.

4.3 Decision-Level Fusion (Ablation Study) Results

In order to uncritically test the merits of ensemble learning, we performed an extensive
ablation analysis of the two decision-making fusion methods: simple averaging and weighted
averaging. In the case of ensemble size, we incrementally iterated over more models by
systematically trying out all combinations to find the best model combination. The obtained
outcome of the ablation proved that the weighted average strategy conditionally dominated the
simple average approach across all sizes of the ensembles. Although the highest accuracy of
96.42% was achieved with a combination of four models, the accumulation leveled off and
even declined with the addition of more models. This means that when classifiers are not treated
differently, weak predictors eventually induce noise in the ensemble, constraining its potential.
The weighted average approach, on the other hand, showed continuous improvement in
performance with the addition of more models. The system effectively reduced the curse of
dimensionality that was pronounced in the rank of fixed ensembles by dynamically assigning
lower weights to weaker models and higher weights to well-founded feature extractors.
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The complete six-model weighted ensemble performed better, achieving a maximum
accuracy of 96.60%. This represents a radical innovation over the maximum individual model
(95.31 £ 0.05 for ResNet50). The weight distribution for the optimum combination was found
to be as follows: VGG16 = 0.30 (maximum contribution), ResNet50 = 0.20, EfficientNetB0 =
0.20, while for the remaining three models—DenseNet121, MobileNetV2, and InceptionV3—
the weight distribution is 0.10 each. This weight distribution strengthens the hypothesis that
although the major contributions are made by the decision-makers VGG16 and ResNet50, the
"minority vote" from architecturally different networks such as EfficientNetBO and
MobileNetV2 provides crucial corrective inputs regarding the testing boundary conditions,
highlighting the necessity of including all six models in the ultimate network.

To assess the stability of the weighted average ensemble, a weight perturbation test was
performed. Random Gaussian noise with values ranging from [-0.05, +0.05] was added to the
optimal weight values, maintaining the constraint that the sum of Wi = 1. The benefits of our
ensemble method were found to be robust, as the F1-score varied by less than 0.12% during
the 20 trials of weight perturbation tests. This indicates that the robustness of our ensemble
method stems from the true complementary characteristics of the architectural biases, making
our framework reliable for various remote-sensing satellites.

4.4 Feature Level Fusion with SVM (Meta-classifier)

In order to more precisely calculate the most appropriate combination of fusion features,
a systematic classification was conducted using a step-by-step construction method for the
ensemble architecture, considering the complexity of the feature expression and that of the
classifier. To serve as a comparative basis, ResNet50 was adopted simultaneously with VGG16
and MobileNetV2, to which DenseNetl121, EfficientNetB0, and InceptionV3 were added
successively, one by one.

Table 5. Feature-Level Fusion Evolution

Configuration Feature Vector Size (D) Backbones CNNs F1-Score
3 - CNN feature 3,840-d ResNet50, VGG16, MobileNetV2 97.02% =+
extraction 0.02%
4 - CNN feature 4,864-d ResNet50, VGG16, MobileNetV2, 97.06% =+
extraction DenseNet121 0.04%
5 - CNN feature 6,144-d ResNet50, VGG16, MobileNetV2, 97.24% =+
extraction DenseNet121, EfficientNetB0 0.06%
6 - CNN feature 8,192-d ResNet50, VGG16, MobileNetV2, 97.15% =+
extraction DenseNet121, InceptionV3 0.03%

Table 5 depicts the evolution of the performances based on the feature-level fusion
process. The process in consideration involves the fusion of heterogeneous feature streams;
hence, the process followed a positive trend that was destined for the final configuration of the
5-stream system, which attained the maximum F1-score of 97.24%. This is much higher than
the maximum achieved by high-dimensional feature concatenation of 96.60%, thus proving
that this high-dimensional feature concatenation is efficient in capturing near fine-grained
texture and structural characteristics not identified by the probabilistic voting assistant. In this
regard, it is observed that there exists a plateau, which evidences the fact that, as powerful as
the DenseNet objective is regarding the feature reuse mechanism, in the remote sensing field,
the feature maps considerably overlap with those of ResNet50, which provides little extra
discriminative data that the SVM can utilize.
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The achievement design peaked with the 5-stream architecture, whereby the integration
of EfficientNetB0 took accuracy to a maximum range of 97.24%. An important finding was
made when an expansion to the complete 6-stream architecture was implemented. InceptionV3
added amendments to the tree to raise the dimensions to 8,192, which led to a minor decrease
in Fl-score to 97.15%. The 5-stream CNN-SVM is therefore determined to be the best
architecture for this dataset.

The observed performance degradation when moving from a 5-stream to a 6-stream
architecture (8,192 dimensions) is a classic manifestation of the Curse of Dimensionality. As
the feature space expands, the available training data becomes increasingly sparse, meaning the
fixed number of samples (NWPU-RESISC45) no longer adequately populates the high-
dimensional space. This sparsity makes it difficult for the Linear SVM to identify a robust and
generalized decision boundary. Furthermore, the inclusion of a sixth stream potentially
introduced redundant or noisy features that overlapped with existing representations, leading
to feature interference. This confirms that 6,144 dimensions represent the optimal capacity for
the current dataset, where the gain from additional architectural diversity is offset by the
mathematical instability of the expanded feature vector. The superiority of the linear kernel in
this context is further evidenced by the ablation study. The linear kernel effectively maximizes
the margin between categories without adding unnecessary mathematical complexity to the
already rich semantic features extracted by the CNN backbones.

The significant performance jump observed when adding EfficientNetBO to the fusion
(from 97.06% to 97.24%) highlights the principle of architectural diversity. While models like
ResNet50 and VGG16 focus on deep semantic hierarchies and low-level textures, respectively,
EfficientNetB0's compound scaling method (balancing depth, width, and resolution) captures
intricate textural subtleties. In the high-dimensional SVM space, these unique features act as
corrective information for challenging edge cases and texture-heavy classes like Chaparral and
Meadow, where other models typically struggle with class ambiguity.

On the basis of the best CNN-SVM architecture using the concept of the 5-stream CNN
model, the value of the global classification error decreased to 2.76% (equation 9). This is a
small value because it means that a mere 124 of the total 4,500 test images were misclassified.
It is even more notable when compared with the best model because the value of the global
error in the case of the best model (ResNet50) is 4.69%.

To make the obtained results reliable, all experiments have been conducted using five
stratified random splits. The architecture with 5 streams has proven stable, with a fluctuation
of no more than 0.1% for all splits to ensure the generality of the feature space.

Table 6. Comparative Performance Analysis of Decision-Level vs. Feature-Level Fusion across Three

Benchmarks
Dataset Weighted Average Ensemble Proposed CNN-SVM Improvement
(Decision-Level) (Feature-Level)
NWPU-RESISC45 96.60% 97.24% +0.64%
UC Merced (UCM) 98.42% 99.15% +0.73%
AID 95.10% 96.45% +1.35%

These experiments were further extended to the UCM and AID datasets to support
further validation of the framework. It can be seen from Table 6 that the proposed feature-level
CNN-SVM consistently outperforms the decision-level ensemble on all benchmarks. Figure 3
shows experimental results on the UC Merced data; here, with high intra-class variation
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existing in the urban land use classes, the proposed framework is capable of providing an
extraordinary accuracy of 99.15% with UC Merced data. For the AID dataset, which has large-
scale variations, the proposed framework achieved an accuracy of 96.45%. The higher
improvement margin on the AID dataset (+1.35%) indicates that multi-stream feature fusion
can mine the complex multi-resolution semantic features required in large-scale aerial scene
classification more effectively.

Table 7. Comparison of Results with Other Approaches

Ref. Dataset Preprocessing Method / Fusion Performa
Architecture Strategy nce
[7] ucC Bicubic Resizing (224x224), Mean | VGGI16 + Feature-level 95%
Merced, Subtraction (ImageNet constants), SVM (single Accuracy
RSSCN7 | and Global Contrast Normalization. CNN)
[3] UucC Simple Linear Resizing and Center | AlexNet/ Feature 94%
Merced Cropping to 224x224; no advanced | GooglLeNet/ extraction Accuracy
augmentation reported. VGG + SVM
[6] ucC Multi-scale Resizing, Min-Max DenseNet, Feature-level 96%
Merced, Scaling [0, 1], and per-channel VGG, ResNet Accuracy
SIRI- standard deviation normalization. +SVM
WHU
[10] ucC Histogram Equalization (to handle | VGGI19, Feature 95.5%
Merced sensor lighting variations) and InceptionV3 + | recalibration | Accuracy
standard RGB Mean Centering. SVM
[12] NWPU- Spatial Whitening Transformation CNN + Ensemble 96.1%
RESISC4 | and Local Binary Pattern (LBP) Covariance learning Accuracy
5 extraction prior to CNN input. Pooling
Proposed | NWPU- Resize (224x224), Z-score 6 CNNs Decision- 98%
Method RESISC4 | Standardization, Random Stratified | (VGG16, level Accuracy,
5 Splits ResNet50, weighted 97.24%
InceptionV3, ensemble & F1 score
Proposed | UC DenseNet121, | Feature-level | 99.15%
Method Merced MobileNetV2, | CNN-SVM Accuracy
Proposed | AID EfficientNetB 96.45%
Method 0) Accuracy

The comparison in Table 7 illustrates the differences between the proposed approach
and other state-of-the-art techniques for LULC classification. The proposed approach differs
from other cited works [3, 7], which focus on mere resizing and/or mean subtraction. Instead,
the proposed approach utilizes Z-score standardization. This highlights the fact that even for
high-dimensional features from diverse backbones, it can perform well with Linear SVM. This
is yet another reason why better accuracies have been achieved: 97.80% on NWPU-RESISCA45,
99.15% on UC Merced, and 96.45% on AID. The consistency of these accuracies across varied
levels of spectral and textural complexities validates that this approach has not been overfit on
training from a single dataset but is highly generalizable.

One of the challenges in research on LULC classification is the lack of standardized
protocols for evaluation across different works. As can be observed from Table 7, there is
variation in the preprocessing levels of cited works, such as Bicubic Resizing versus Spatial
Whitening, as well as differences in the datasets used. To avoid being affected by such critical
issues that may hinder proper and sound comparisons, our proposed system is applied based on
a robust protocol. Our system's performance has been measured with an average and a low
standard deviation of + 0.06% over five separate measurements, indicating a significant
performance advantage over random data allocation.
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The operational intelligence achievable through the new system is made possible by an
inference speed of 12.4 ms per image for the Nvidia Tesla P100 GPU card. The operation of
the new system, regarding the decision-level average operation, is feasible within the
boundaries of the AID set with a + 1.35% visibility range (Table 6). Although in decision-level
fusion (probabilistic averaging) we combine only the final decision scores of the models, in our
proposed method, we fuse the underlying evidence at the feature level in the form of a semantic
space of dimensionality 6,144. This enables the SVM to capture high-level similarities among
classes. For example, it can differentiate between classes such as 'Palace' and 'Church,' which
are known to be vulnerable to single-stream approaches.

The performance improvements on the NWPU-RESISC45, UCM, and AID datasets
demonstrate that the model has not been overfitted to a particular dataset. Rather, it is the
diversity of the backbone networks used (VGG16 for texture images and EfficientNet for scaled
images) that provides a universally compatible feature space, independent of the imaging
sensors or the resolution of the images.

5. Conclusion and Future Scope

In this paper, a heterogeneous multi-stream CNN framework is proposed and tested on
Land Use and Land Cover (LULC) classification tasks. The multi-stream CNN classification
framework, with six different CNN architectures integrated using feature fusion and decision
fusion methods, has been able to address the difficulties associated with remote sensing image
classification. The proposed framework has been experimented on the NWPU-RESISC45, UC
Merced, and AID datasets, and it has been observed to perform comparatively well with regard
to accuracy and generalizability, with values of 97.80%, 99.15%, and 96.45%, respectively.
The proposed paper confirms the effectiveness of incorporating different inductive biases and
normalizing the features to generate a discriminative feature space for the multi-source aerial
images. Future research will focus on exploring different techniques for dimensionality
reduction, investigating various non-linear meta-classification models, and finally, introducing
the concept of model compression to achieve real-time processing.
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