
Journal of Innovative Image Processing (ISSN: 2582-4252)  
www.irojournals.com/iroiip/    

Journal of Innovative Image Processing, March 2026, Volume 8, Issue 1, Pages 88-112 88 
DOI: https://doi.org/10.36548/jiip.2026.1.006 

Received: 02.12.2025, received in revised form: 30.12.2025, accepted: 13.01.2026, published: 24.01.2026 
© 2025 Inventive Research Organization. This is an open access article under the Creative Commons Attribution 4.0 International (CC BY 4.0) License 

DSC-SwinNet: A Dual-Stage Transformer 

Framework for Reliable Brain Tumor 

Segmentation and Classification from 

Multi-Modal MRI 

Tamilselvi M. 

Department of Electronics and Communication Engineering, Saveetha School of Engineering, 

Saveetha Institute of Medical and Technical Sciences, (SIMATS), Chennai, India. 

E-mail: tamilselvivlsi@gmail.com 

Abstract   

The earlier diagnosis of brain tumors is a critical challenge that influences treatment 

and facilitates prompt detection of the disease. Conventional MRI provides a structural and 

functional view of the tumors. On the other hand, recent deep learning-based algorithms, 

particularly single-stage convolutional neural network-based models, face challenges in 

providing the exact location of the tumor as well as in enhancing detection and classification 

accuracy. This is due to a lack of global-local integration of features, lack of spatial consistency, 

and low resistance to intensity variation, which are typical of clinical MRI scans. In order to 

address these gaps, the proposed research uses the DSC-SwinNet algorithm, which consists of 

a dual-stage transformer structure primarily utilized for tumor segmentation and classification. 

The first step employs a Swin Transformer-based encoder-decoder that uses window-based 

multi-head self-attention to simultaneously obtain local lesion features and long-range global 

contextual features of multi-modal MRI volumes. The next stage, known as Dual-stage 

Classification (DSC), is responsible for incorporating the ROI characteristics with conceptual 

representations of the tumor to identify the type of tumor. The proposed DSC-SwinNet has a 

Dice score of 0.934, an IoU of 0.891, an HD95 of 3.70 mm, achieving a classification accuracy 

of 97.8%, an F1-score of 97.9%, and an AUC of 0.99 on the BraTS multi-modal MRI data, 

demonstrating the potential of DSC-SwinNet as a clinically reliable brain tumor analyzer. 

Keywords: DSC-SwinNet, Transformer Framework, Dual-Stage Classification, Brain Tumor, 

Multi Modal MRI, Convolutional Neural Network, Global-Local Feature, Disease 

Classification. 

 Introduction 

Brain tumors are among the most threatening neurological conditions that can cause 

irreversible cognitive loss, disability, and death if not diagnosed at an early stage [1]. Proper 

tumor delineation, classification, and detection are critical in the decision-making process of 

treatment, surgical planning, radiation therapy dose assessment, and monitoring disease 

progression. MRI is the most effective non-invasive technique to evaluate brain tumors because 

it provides the best soft-tissue contrast, radiation-free imaging, and multi-modal sequences like 

T1, T1ce, T2, and FLAIR. Such complementary modalities assist in visualizing various tumor 
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morphology components, such as edema, necrotic and enhancing areas, making MRI essential 

in neuro-oncology [2]. 

Brain tumors are one of the most complicated diseases in the neurological spectrum that 

require prompt treatment after diagnosis. The morphology and structure of brain tumors, their 

heterogeneity, and irregularities are not homogeneous, which makes this task challenging for 

even experienced radiologists to segment tumors based on MRI scans. Additionally, 

inconsistencies in imaging modalities and types of tumors make manual annotations difficult 

to implement, leading to inconsistencies in the output. Since timely diagnosis is essential in 

enhancing survival chances, there is an increasing need for automated, accurate, and efficient 

segmentation tools in the medical sector [3]. 

Magnetic resonance imaging (MRI) is a non-invasive technique for visualizing soft 

tissues in high resolution; it is a critical diagnostic tool for identifying and determining brain 

tumors. Nevertheless, interpreting MRI data is highly skilled and labor-intensive, particularly 

in hospitals with overburdened radiologists. This problem can be alleviated with automated 

image segmentation systems, which reduce human error and expedite diagnosis. Although deep 

learning has played a critical role in the development of segmentation, models using only 

convolutional operations have a limited range of contextual fields of view, making it difficult 

to outline diffuse or overlapping tumors [4]. 

Gliomas are the most prevalent primary brain tumors, often referenced in discussions 

about brain tumors. They originate in the cells that constitute the support tissue of the brain, 

known as glial cells. The interplay between high-risk genetic factors (congenital) and 

environmental carcinogenic factors contributes to the development of gliomas. Clinically, 

gliomas are threatening and fatal tumors of the brain, characterized by high malignancy and 

aggressiveness, leading to various symptoms, including seizures, headaches, visual 

disturbances, and alterations in behavior and speech. Generally, the localization, shape, and 

size of brain tumors have significant implications for the extent and nature of these symptoms, 

as identified by physicians, and influence the development of treatment and surgical strategies 

[5]. 

Thus, brain tumor segmentation can facilitate the precise and efficient localization and 

identification of gliomas, which would, in turn, assist physicians in enhancing the diagnosis 

and prognosis in clinical practice [6]. Over the past decades, scholars have conducted extensive 

basic research on brain tumors. Initial studies aimed to understand the biological characteristics 

of glial cells and how they become malignant. Gradually, scientists have gained insights into 

the genetic and molecular alterations that occur in gliomas. This research has facilitated the 

development of improved diagnosis and treatment for brain tumors, including the identification 

of brain tumor grading, heredity, and targeted therapy using genomic information [7]. 

As MRI technology has advanced, multi-modal MRI images have become increasingly 

popular in the process of brain tumor segmentation, providing a more detailed view of the 

tumors and surrounding brain tissues. Practically, MRI has four modalities—T1, T2, T1ce, and 

FLAIR—that serve as complementary imaging modalities in the diagnosis and monitoring of 

brain tumors. Different MRI modalities can complement each other regarding the appearance 

and characteristics of tumors [8],[9]. 

Medical image segmentation is a task that is significant in the diagnosis of clinical 

imaging. Physicians tend to use alternative treatments, including surgery, radiotherapy, or 

chemotherapy, depending on the type, size, and position of the tumor. It is not a simple task to 
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view different states of brain tumors directly using computer equipment, and it is even more 

challenging when it comes to identifying the type of tumor, its size, and location. Thus, studies 

on brain tumor segmentation algorithms attempt to provide a more objective assessment and 

explanation of the development, pathology, clinical phenotypes, and prognostic factors related 

to brain tumors [10]. 

In the last several years, the rapid advancement of deep learning systems has succeeded 

in enhancing the output of computer-aided diagnosis. Multi-modal brain tumor segmentation 

has seen significant technical progress, resulting in an increasing number of techniques that can 

perform this task with acceptable accuracy and speed. The first and most basic approaches to 

brain tumor segmentation include manual tracing, in which a skilled clinical practitioner 

outlines the tumor in the images. Manual tracing, however, is time-consuming and may be 

prone to inter- and intra-observer variation. Due to the introduction of computer vision and 

machine learning algorithms, numerous automatic approaches have been developed to segment 

brain tumors. These techniques can be broadly divided into two groups: traditional techniques 

and deep learning techniques [11]. 

Convolutional Neural Networks (CNNs) have been widely used in brain tumor 

detection tasks, and the application of deep learning has completely changed the field of 

medical image analysis. Architectures such as VGG19, ResNet152V2, DenseNet201, 

InceptionResNetV2, and EfficientNetV2L have demonstrated significant gains in quality 

pattern recognition, feature extraction, and classification accuracy. However, CNNs are 

formulated based on local receptive fields and thus cannot model long-range spatial 

dependencies, which are needed for irregular tumor structures in 3D MRI volumes. 

Consequently, CNN-based segmentation and classification models usually do not generalize 

well between patients, scanners, and changes in MRI intensity [12]. 

New powerful alternatives have also appeared, such as Vision Transformers (ViT) and 

Swin Transformers, capable of modeling long-range relationships with the help of self-attention 

mechanisms (Tazeen et al., 2024). Hybrid systems like Swin-UNER have already shown 

tremendous improvements in volumetric medical image segmentation as they have shown 

better results on tumor delineation tasks. Regardless of these advances, the current transformer-

based models are mainly segmentation-based or classification-based and have no unified 

pipeline to deliver accurate tumor boundaries and robust diagnostic classification. Furthermore, 

unsupervised classification models that are not explicitly localized on tumors tend to 

inappropriately distinguish irrelevant or high-noise regions of the brain, diminishing trust and 

accuracy of clinical implementation [13]. 

To overcome these constraints, this study suggests the development of DSC-SwinNet; 

a novel Dual-Stage Transformer Framework combining transformer-based multi-modal 3D 

segmentation and a powerful dual-stage classification scheme specific to multi-modal MRI. 

The framework employs a Swin Transformer enhanced encoder-decoder that achieves high 

accuracy in the segmentation of tumor using local ROI features of regions that are segmented 

and global contextual volume features. This will allow classification decisions to be based on 

tumor-centric information as well as holistic brain-scale information (homogenizing the 

weaknesses of single-stage traditional models) [14].  

In this work, a new dual-stage transformer-based framework that closely combines 

high-resolution tumor segmentation with context-aware tumor classification within a single 

pipeline is proposed. Compared to the current methods that either consider segmentation and 

classification as independent or sequential, the presented method applies segmentation-directed 
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ROI extraction coupled with global volumetric contextual embeddings, which allows tumor-

based but global-informed diagnostic inference. This combined design is much more effective 

in segmentation, classification accuracy, and probabilistic calibration to multi-modal MRI 

variability, and its advancement in the state of the art in clinically robust brain tumor analysis. 

The contributions of this research are of a great importance and they include: 

• Creation of an innovative architecture, which incorporates Swin Transformer-based 

3D segmentation, and a two-stage 2D Classification mechanism to run end-to-end 

tumor analysis. 

• Developing a DSC module that combines tumor-centered ROI characteristics with 

global MRI volume characteristics to obtain excellent discrimination. 

• Developing the Swin Transformer encoder has hierarchical self-attention to achieve 

better localization of tumors and accurate classification. 

• Introducing the T1, T1ce, T2 and FLAIR capabilities to deal with tumor 

heterogeneity and enhance generalization across different clinical conditions. 

• To show performance improvement, comparative analysis to VGG19, 

ResNet152V2, DenseNet201, InceptionResNetV2, EfficientNetV2L, and 

ConvNeXt was done. 

• Integrating the uncertainty modeling, scores on calibration and noise-based 

robustness testing to demonstrate clinical preparedness. 

• Evaluation of standardized multi-modes MRI data to perform both segmentation 

and classification. 

The rest of this paper is structured in the following way. In Section II, a thorough 

overview of the already available literature on the topic of brain tumor segmentation, 

classification schemes, transformer-based medical imaging models, and performance 

evaluation on the BraTS database is provided. Section III is a report on the proposed DSC-

SwinNet architecture, its Swin Transformer segmentation backbone, the dual-stage 

classification pipeline, the strategy of local-global feature fusion and the overall training setup 

of volumetric multi-modal MRI analysis. Section IV presents the experimental results and 

performance comparison of the quantitative metrics of segmentation, diagnostic classification, 

and ablation experiments, the calibration reliability, the estimation of uncertainty, the 

robustness, and the statistical testing against the state-of-the-art models. Lastly, Section V is 

the conclusion of the work that summarizes important contributions, thinks over the 

implications of clinical considerations, and indicates possible extensions of the future research 

on the use of transformers to analyze medical images and apply them in actual neuro-oncology 

setting 

 Related Work 

Computer-aided medical diagnostic systems have made medical image segmentation, 

especially that involving MRI analysis of brain tumors, a critical component, as developments 

in computational intelligence and deep neural architecture have rapidly advanced. The 

conventional methods of segmentation, which were intensity similarity, atlas guidance, level-
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set models, and region-growing methods, did not prove very robust against the heterogeneous 

structure, size, and texture of tumors. CNNs, FCNs, and U-Net are among the architectures that 

transformed the quality of segmentation with the advancement of deep learning, as these 

methods learn both discriminative and hierarchical feature representations directly on multi-

modal MRI data [15]. 

This development has also been further pushed by the BraTS challenges, which 

established a standardized benchmark and spurred widespread architectural developments such 

as skip-based residual networks, dense connectivity, nested U-Net variants, attention, and 

hybrid schemes combining convolutional modules with transformer-based global dependency 

modeling. The current trends in research also extend to diffusion-based segmentation models, 

modality-fusion transformers, and ensemble learning frameworks, which represent an ongoing 

quest to achieve greater accuracy, improved generalization, and clinically robust demarcation 

of brain tumor sub-regions [16]. This has led to the field of research on medical image 

segmentation becoming a growing area with the fast advancement of computer technology and 

computer-aided diagnostic systems. Medical image segmentation has been made possible by 

progress in the area of machine learning and deep learning [17]. 

Transformer-based networks were, in turn, proposed as an alternative with great 

potential, as they were effective in natural language processing. Vision Transformers (ViT) and 

various variants of ViT use self-attention to learn global relationships in images [18]. 

Transformer capabilities in learning long-range dependencies in medical segmentation 

activities are emphasized. It introduces DenseTrans, a hybrid model that incorporates Swin 

Transformer and UNet++, which is currently scoring high in Dice on BraTS2021 [19]. 

Tumor classification has been done using convolutional neural network (CNN) models, 

including DeepMedic and U-Net. U-Net was popularly applied in the segmentation of brain 

tumors. An improved network topology known as U-Net was introduced; it consists of several 

encoders and decoders, which produce more feature points to enable accurate segmentation. 

One of the recent topics in research on computer vision is the diffusion probability model 

(DPM) [20]. 

Based on the success of Transformers in several NLP tasks, an increasing number of 

Transformer-based approaches are being introduced in CV tasks. ViT is the first pure 

Transformer-based architecture that has demonstrated SOTA performance in image recognition 

when pre-trained on large datasets like ImageNet-22K, using data-efficient training methods 

and knowledge distillation that enable ViT to be effective on the smaller ImageNet-1K dataset. 

Swin Transformer is a linear model with a proposed shifted window-based self-attention 

mechanism and has SOTA performance in image recognition and dense prediction tasks, 

including object detection and semantic segmentation [21]. 

The vanilla Transformer treats every position of the image equally, but to minimize 

computational costs and pay attention to specific parts of the image, a different attention 

mechanism is presented whereby only portions of the key around a reference point are taken 

into consideration by the self-attention mechanism. In order to segment 3D images, an 

algorithm that learns representations of the input through the assistance of a Transformer as the 

encoder is suggested [22]. 

Ensembles of U-Net-shaped architectures have yielded encouraging results in multi-

modal brain tumor segmentation in the past BraTS challenges. They suggest a strong 

segmentation model by combining the results of multiple CNN-based models, including 3D U-
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Net, 3D FCN, and Deep Medic. Then, SegResNet is presented, which is a residual encoder-

decoder model with an auxiliary branch supported by a variational auto-encoder to reconstruct 

the input data as a surrogate task [23]. 

Various factors, such as the capability to acquire long spatial dependencies, resistance 

to changes in intensity between the MRI modalities, the ability to delineate irregular tumor 

edges precisely, and the capacity to discriminate tumor types, are critical in determining the 

choice of the proposed technique. Traditional CNN-based designs have local receptive fields, 

and single-stage transformer designs typically do not have spatial resolution. Thus, a dual-

stage, segmentation-directed, hybrid transformer architecture is implemented to balance global 

reasoning of the context and feature selection from a more accurate tumor-localized 

perspective, ensuring robust and clinically valid performance. 

The challenges of BraTS (Brain Tumor Segmentation) have been a landmark in 

assessing AI-based segmentation techniques, inspiring innovation in the domain. Conventional 

machine learning methods, though initially effective, struggled to keep up with the 

heterogeneous appearance of tumors in multi-modal MRI datasets of BraTS, resulting in poor 

Dice scores. The advent of deep learning, especially variants of U-Net, significantly enhanced 

performance, as it automatically learned features that were discriminative between T1, T2, 

FLAIR, and T1ce sequences. Later versions of BraTS saw transformer-based models, such as 

Swin UNETR, go even further with global context modeling, while diffusion models were 

employed to detect edges in tumor sub-regions even more effectively [24]. 

Over the last several years, there has been an increase in the use of deep learning 

algorithms, especially Convolutional Neural Networks (CNNs), in brain tumor segmentation. 

Large volumes of annotated data can be used to train CNNs to learn complex image features, 

thus enabling them to perform better than traditional methods. Indicatively, the U-Net 

architecture is one widely used deep learning architecture for segmenting brain tumors and is 

based on the encoder-decoder architecture, where high-level and low-level image 

characteristics are learned. Most recently, vision transformers have seen remarkable 

advancements and deliver better results in the segmentation of brain tumors [25][26]. 

 The CNN-based variants of UNet are still predominant due to their effective encoder-

decoder representation, dense skip connections, and superior spatial preservation, whereas 

transformer-based variants and hybrid CNN-ViT architectures have developed as influential 

alternatives in order to surpass CNN in its limited receptive field through global self-attention. 

Diffusion models, attention fusion schemes, cascaded architectures, ensemble learning, and 

nnU-Net-style auto-configurations are additional examples of the type of progress provoked by 

BraTS benchmarking. Although these advancements have been achieved, the key open 

challenges include the improvement of boundary segmentation fidelity, enhanced data 

imbalance robustness, lightweight privacy-preserving model design, and clinically 

interpretable predictions. All of these research findings will encourage the development of 

more robust, generalizable, and computationally efficient solutions to brain tumor segmentation 

in a real-world healthcare setting. 

 Proposed Work 

The proposed framework of the DSC-SwinNet model is a dual stage pipeline that not 

only providing the accurate segmentation of tumor but also ensures consistency in tumor 

prediction based on the MRI input images. Initially, four classifications of MRI images are 
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considered as shown in Figure 1. The Segmentation Network processes this multi-modal input, 

and a Swin Transformer-based encoder-decoder system extracts hierarchical 3D characteristics. 

 
Figure 1. Block Diagram of the Proposed Framework 

The MRI modalities are all considered for the normalization process to obtain the Z-

score. The standard deviation and the mean of each mode are computed using non-background 

voxels only and the intensity values are brought to the normal level. This modality-wise 

normalization preserves the contrast properties of any given sequence, but removes scanner 

induced changes in intensities and inter-subject variations, therefore, it is much stronger in 

acquiring multi-modal features.  

The input multi modal volumes of MRI are denoted as 𝑋 =

 {𝑋(𝑇1), 𝑋(𝑇1𝑐𝑒), 𝑋(𝑇2), 𝑋(𝐹𝐿𝐴𝐼𝑅)} for every patient in a 3D array of size H x W x D.  The input 

images are cropped to the size of 128 x 128 x 128 and few augmentation changes are made on 

the input images before sending them for the next stage. The equation 1shown below gives the 

expression of the preprocessing pipeline, which is the intensity normalization of the z-score per 

volume. 

                                    𝑋̃ =  
𝑋− 𝜇𝑋

𝜎𝑋
                                                              (1) 

In the equation 1, non background voxels are denoted as 𝜇𝑋 and 𝜎𝑋 respectively.  

During preprocessing, the data is subjected to Z-score normalization that performed on 

a volume basis to normalize the distributions of the intensity and reduce inter-subject 

variability, voxel intensities are normalized by subtracting the mean and dividing by the 

standard deviation of non-background voxels in each volume of MRI. This normalization 

increases the numerical stability of the training as well as the consistency of the magnitude of 

the scaling of the samples without destroying the inherent structural information of the brain 

tissues. 

The segmentation module uses a four-stage Swin Transformer encoder where stage 1-

4 study contextual information on a multi-scale basis with window self-attention and shifted 

window self-attention respectively. Features are extracted at a broader receptive field at each 

stage, accommodating long-range spatial dependencies, which can be regarded as one of the 

significant benefits of transformer architectures over conventional CNNs. The decoder 
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recreates the tumor masks at the voxel level using upsampling and skip connections in each 

encoder stage, ensuring that   spatial lines are not dropped. This module provides the position 

of the tumor in the brain, resulting in a volume tumor segmentation mask. 

To cope with inter-patient variation in the size and shape of the tumor, the segmented 

tumor area is cropped with a tight bounding box and resized to a constant ROI size. Owing to 

this normalization, feature learning is scale-invariant, the training is stable across batches, and 

classification is performed with consistent tensor dimensions, while important tumor 

morphology is maintained. The method prevents size bias and allows only tumor-centric 

features to be compared between subjects, resizing them only after proper segmentation. 

Let us assume that the multi modal patch input is  𝑋0 𝜖 ℝ𝑁𝑥𝐶 which is implemented 

after the embedding of patches. The proposed Swin Transformer blocks the operation of 3D 

windowed multi head self attention with the integration of shifted windows. Equation 2 gives 

the formula of attention for the set of tokens that are represented by the 𝑋0 𝜖 ℝ𝑛𝑥𝑑 inner side 

of the window. In order to effectively represent both fine-grained local tumor features and long-

range spatial features in multi-modal MRI volumes, the Swin Transformer encoder uses a 

window-based multi-head self-attention mechanism with shifted windows, and has the 

following mathematical formulation: 

             Attention (Q, K, V) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ( 
𝑄𝐾𝑇

√𝑑𝑘
+ 𝑀 ) 𝑉                                       (2) 

In the above equation, parameter Q can be calculated as X𝑊𝑄 , K can be calculated as 

X𝑊𝐾  and the V can be calculated as X𝑊𝑉 . The head dimension is represented in equation 2 as 

𝑑𝑘 and the metric M is used to denote the shifted window mask. The multiple stages in the 

encoder are merged with the patches among the stages so that the corresponding feature maps 

are generated and they are denoted as E1, E2, E3 and E4 respectively.  

 
Figure 2. The Architectural Diagram of the Proposed Swin UNETR Model 

In this research, the Swin-UNETR architecture was employed, combining a hierarchical 

Swin Transformer encoder and a U-Net type decoder to provide precise volumetric 

segmentation of brain tumors using multi-modal MRI. Figure 2 illustrates, the encoder is 

initially starts with a series of Swin Transformer stages each generating   successively higher 
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order feature representations based on window-based multi-head self-attention and shifted-

window mechanisms.  

The Swin Transformer attention window size has moderate sensitivity to the 

performance of the proposed model. Smaller window sizes limit global contextual modeling, 

resulting in a lack of boundary consistency and decreased segmentation precision, while larger 

windows are not associated with commensurate improvements in computational complexity. 

The choice of window size offers the best compromise between long-range dependency 

modeling and computational efficiency, yielding stable and consistent results in both 

segmentation and classification challenges. 

These attention processes allow the network to learn fine-grained local and long range 

spatial dependencies in the 3D MRI volume - a required property for discovering heterogeneous 

tumor regions. Multi-scale semantic information is stored in feature maps obtained at various 

levels of the encoder and is exploited by the decoder through skip connections. Following Stage 

3, the encoded features are patch merged, i.e. reduced spatial resolution and increased depth 

per channel, allowing the network to effectively encode high-level tumor morphology and 

global context. 

The suggested model will be able to generalize to other scanner manufacturers and 

acquisition procedures by utilizing modality-wise intensity normalization, widespread data 

augmentation, and transformer-based global contextual modeling. Independent normalization 

of Z scores eliminates intensity variation based on the scanner and simulates protocol based 

distortions like noise and contrast changes. Moreover, hierarchical self-attention in the Swin 

Transformer provides the global anatomical context, which also allows the model to be resistant 

to changes in resolution and contrast, along with acquisition conditions that are often present 

in multi-center clinical MRI data. 

At the receiver end, the architecture uses a series of upsampling steps (Up1 to Up4) and 

each upsampling step restores the spatial resolution while the features of the encoder are 

merged through skip connectivity. Such a combination of rich semantic content and previous 

high resolution representations assists the network in maintaining anatomical boundaries, and 

reinstating fine structural details that are lost due to downsampling. The last decoder layer 

generates a 3D segmentation map that indicates tumor sub-regions at the voxel-scale. Swin-

UNETR offers a robust segmentation backbone as it integrates the global reasoning capabilities 

of transformers with the spatial restoration ability of U-Net. 

Equation 3 explains the decoding, sampling, and fusing with the respective encoder 

through the skip connections. After hierarchical feature extraction by the Swin Transformer 

encoder, the decoder gradually restores the spatial resolution by combining high-level semantic 

features with the corresponding encoder representations via skip connections, allowing for the 

precise reconstruction of tumor edges, as stated: 

                 𝐷𝑗 = 𝑈𝑝𝐶𝑜𝑛𝑣(𝐷𝑗−1)  ⊕  𝐸𝐿−𝑗                                                 (3) 

Where the operator ⊕ denotes the concatenation operation and the number of stages 

are denoted with the parameter L.  

The last segmentation logit is denoted by S that uses a 1 x 1 x 1 convolution as 

mentioned in equation 4.  
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                          𝑆(𝑥) =  𝜎𝑠𝑒𝑔 (𝑐𝑜𝑛𝑣1×1×1 (𝐷𝑓𝑖𝑛𝑎𝑙))                                        (4) 

Equation 4, 𝜎𝑠𝑒𝑔  is representing the softmax classes over multiclass segmentation. To 

calculate the segment loss, the integration of Dice and cross entropy is used and the formula to 

calculate the Dice loss per class c is given by  equation 5. To achieve all of the above benefits, 

a hybrid loss combining Dice loss and cross-entropy loss will be used, where the Dice score of 

each class can be computed as: 

                𝐷𝑖𝑐𝑒𝑐 =
2 ∑ 𝑝𝑖,𝑐 𝑔𝑖,𝑐+ 𝜖𝑖

∑ 𝑝𝑖,𝑐+∑  𝑔𝑖,𝑐+ 𝜖𝑖𝑖
                                                         (5) 

And the dice loss at class l is calculated using the equation 6. 

               𝐿𝐷𝑖𝑐𝑒 = 1 −  
1

𝐶
 ∑ 𝐷𝑖𝑐𝑒𝑐

𝐶
𝑐=1                                                     (6) 

In the equation 5 and 6, the probability that is predicted at ith voxel for c class is denoted 

as 𝑝𝑖,𝑐 whereas the ground truth indicator is represented as 𝑔𝑖,𝑐.  

The Cross Entropy (CE) loss is calculated using the formula given in equation 7 as 

mentioned below. 

               𝐿𝐶𝐸 =  − 
1

𝑁
  ∑ ∑ 𝑔𝑖,𝑐

𝐶
𝑐=1 log 𝑝𝑖,𝑐

𝑁
𝑖=1                                       (7) 

And the total segmentation loss is given by the equation 8 as mentioned below. 

                 𝐿𝑠𝑒𝑔 =  𝛼𝐿𝐷𝑖𝑐𝑒 + 𝛽 𝐿𝐶𝐸                                                  (8) 

Where the constants 𝛼   and 𝛽 vales are equal to 1 which shows that they have been 

tuned through validation.  

After the creation of the tumor mask, the bounded area of the tumor is automatically cut 

out to create the Region of Interest (ROI). It is a tumor-focused sub-volume that describes the 

most informative spatial region for classifying this tumor. The extracted ROI is 3D feature 

flattened in which high level features of segmentation are reduced to a small representation. 

Simultaneously, the most profound encoder stage provides the global feature representations 

that capture the structural and contextual information in the whole brain. The dual-path feature 

preparation is a feature that ensures both local tumor morphology and global brain context are 

taken into consideration by the model, which is essential for accurate classification.  

The tight bounding box is computed from the segmentation mask which is denoted by 

M(x) and they are cropped and resized to meet the ROI of fixed size h x w x d. In order to 

define the prescribed Region of Interest (ROI) the following equation 9 is used. After receiving 

the volumetric tumor segmentation mask a tumor-centric Region of Interest (ROI) is obtained 

by tightly cropping the segmented region and resizing it to a fixed spatial dimension to ensure 

consistent and scale-invariant features are represented at the next level of classification as 

represented by: 

                            𝑋𝑅𝑂𝐼 =  𝐶𝑟𝑜𝑝𝑅𝑒𝑠𝑖𝑧𝑒 (𝑋̃, 𝐵)                                                         (9) 

The features are extracted either by reusing the encoder features or by passing the ROI 

via a specific ROI encoder in order to produce the vector which is represented as 𝑓𝑅𝑂𝐼  ∈  ℝ𝑑𝑟. 

To extract the global features on a whole volume the vector 𝑓𝑔𝑙𝑜𝑏  ∈  ℝ𝑑𝑔 is used.  
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The Global Average Pooling (GAP) is applied over the spatial dimensions to obtain the 

3D feature flattening as mentioned in equation 10.  

          𝑓𝑅𝑂𝐼 = 𝐺𝐴𝑃(𝐸𝑟𝑜𝑖),          𝑓𝑔𝑙𝑜𝑏 = 𝐺𝐴𝑃(𝐸𝑔𝑙𝑜𝑏)                         (10) 

The fusion of local ROI vector and global vector is carried out by either concatenating 

or by computing the cross attention which requires the queries of the global key values as 

mentioned in the following equations.  

          𝑓𝑓𝑢𝑠 = 𝑅𝑒𝐿𝑈(𝑊𝑓 [𝑓𝑅𝑂𝐼; 𝑓𝑔𝑙𝑜𝑏] +  𝑏𝑓                                    (11) 

The global key values are given by Q = 𝑊𝑄𝑓𝑅𝑂𝐼, K = 𝑊𝑘𝑓𝑔𝑙𝑜𝑏   and V = 𝑊𝑉𝑓𝑔𝑙𝑜𝑏 

The ready ROI and international characteristics are then transferred into the Dual-Stage 

Classification (DSC) Module.  

Stage-1(ROI Feature Encoder): The stage-1 (ROI Feature Encoder) entails the tumor-

oriented ROI feature to isolate discriminatory local features depending on tumor texture, 

intensity variation, shape abnormalities, and border patterns.  

Stage-2 (Global Feature Encoder): It processes the global features to capture contextual 

patterns which are broader, including, anatomical distortion, edema spread and structural 

asymmetry. 

The two encoded streams of features are integrated in the classification head.  Prediction 

of uncertainty adds value to measuring the reliability of the model, which is vital in the clinical 

setting.  

 
Figure 3. Architectural Diagram of the Dual Stage Transformer Model 

 Global Average Pooling (GAP) is employed in global feature aggregation 

because of its efficiency in parameters, stability, and minimal chances of overfitting. Although 

attention-based pooling was also experimentally tested, it provided only a small performance 

improvement and added extra parameters and sensitivity to noise in heterogeneous MRI data. 

GAP guarantees the existence of uniform features globally and stable training, which is more 

appropriate for ensuring consistency in classification in the analysis of multi-modes of brain 

tumors. The dual stage classification module shown in Figure 3, consists of two sub encoders 

and the final classifier, referred to as the ROI feature encoder and the global feature encoder as 

given by equations 12 and 13 respectively.  
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A smaller convolution backbone transforms the fROI into the encoding vector ℎ𝑅𝑂𝐼  ∈
 ℝ𝑑ℎ  which is given in equation 14. 

                                          ℎ𝑟𝑜𝑖 =  𝑀𝐿𝑃𝑅𝑂𝐼(𝑓𝑅𝑂𝐼)                                 (14) 

Whereas the encoded global features are represented by the equation 15 as given below. 

                         ℎ𝑔𝑙𝑜𝑏 =  𝑀𝐿𝑃𝐺𝑙𝑜𝑏(𝑓𝑔𝑙𝑜𝑏)                                                             (15) 

The classification is calculated by using the formula given in equation 16.  

                          𝐿𝑐𝑙𝑠 =  − ∑ 𝑦𝑘 𝑙𝑜𝑔𝑦𝑘

𝐾
𝑘=1                                   (16) 

The calibration metrics are calculated using the formula given in the equations below 

in which the bin b is assumed to have nb samples with accuracy and confidence levels denoted 

by acc(b) and conf(b) respectively.  

The Expected Calibration Error (ECE) is computed by the following equation 17 

𝐸𝐶𝐸 =  ∑
𝑛𝑏

𝑁

𝐵
𝑏=1  |𝑎𝑐𝑐(𝑏) − 𝑐𝑜𝑛𝑓(𝑏)|                                      (17) 

3.1   Vision Transformer  

The transformer is a common attention-based deep learning model. It was initially 

proposed in natural language processing (NLP) for machine translation tasks. Unlike CNNs 

and RNNs, which are locally connected, the transformer is able to represent and capture the 

long-range dependencies between tokens, leading to a more effective modeling of global 

feature relations.  

 
Figure 4. Block Diagram of the Vision Transformer Framework 

To stabilize the convergence of the model, the Adam optimizer is used with a cosine-

decay schedule for the learning rate, as shown in Figure 4. It employs a hybrid loss comprising 

Dice loss and cross-entropy loss with equal weights to balance the accuracy of region overlap 

and the stability of voxel-wise classification. Stratified mini-batch sampling is utilized to 



DSC-SwinNet: A Dual-Stage Transformer Framework for Reliable Brain Tumor Segmentation and Classification from Multi-Modal MRI 

 

 

ISSN: 2582-4252  100 

 

address the class imbalance, and premature termination of the process is implemented with the 

help of validation loss to overcome overfitting. To augment the data, data augmentation 

methods such as rotation, flipping, and intensity perturbation are applied to boost generalization 

across different MRI acquisitions. 

More recently, transformer-based techniques have demonstrated state-of-the-art 

performance in several NLP tasks and can successfully substitute RNNs as the most popular 

architectures. Based on this, the classical transformer is implemented into computer vision, 

termed Vision Transformer (ViT). In particular, the input images are initially partitioned by 

ViT into non-overlapping patches, and the model of the entire relationship between patches is 

subsequently developed using multi-layered standard transformers to classify images. 

Transformer-based networks tend to be more computationally expensive than CNNs and 

RNNs, and the non-local receptive fields of transformer-based methods overcome the 

bottleneck in their performance. In medical image processing, transformer applications are 

numerous and are designed to perform classification, segmentation, and detection, with 

promising results and generalization. 

  Results and Discussion 

The performance of the proposed DSC-SwinNet architecture was rigorously assessed 

using the publicly available BraTS benchmark data, which is characterized by multimodal MRI 

volumes consisting of T1, T2, FLAIR, and T1ce images. The dataset comprises images of 

tumors, which can be categorized into four classes, namely glioma, meningioma, pituitary 

tumor, and no tumor. The images of the diseases that do not have any tumor images next to 

them will be better analyzed in another category. Figures 5(a) to 5(d) show samples of images. 

All of them were pre-processed with N4 bias field correction, skull stripping, intensity 

normalization, and volumetric resizing to the same resolution. To this end, the tumor sample 

was partitioned into three subsets: 70% training data, 15% validation data, and 15% 

independent testing data. Furthermore, the tumor sample consisted of ... Random rotation and 

flipping as data augmentation used in this work improved generalization under various 

acquisition conditions [27]. 

The tumor classification dataset has four datasets that consist of glioma, meningioma, 

pituitary tumor, and no tumor. The number of classes has a slight imbalance, whereby the cases 

of glioma have the highest numbers, followed closely by meningioma, pituitary tumor, and the 

least counted, no-tumor cases. The utilization of stratified statistical division of data and equal 

mini-batch sampling will ensure that various kinds of tumors are learned equally by a variety 

of algorithms. Concisely, this will improve the deep learning algorithms. 
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(a)              (b) 

 
     (c)       (d) 

Figure 5. (a) – (d) – Sample Images of Various Types of Brain Tumors from the Dataset [ (a) – 

Meningioma, (b) – Pituitary, (c) – No Tumor and (d) – Glioma] 

Figure 6 compares the Dice Score of the offered DSC-SwinNet with various popular 

models of segmentation architecture: VGG19, DenseNet 201, InceptionResNetV2, 

EfficientNet V2L, and ConvNeXt. The VGG19 (0.842), a classical CNN-based architecture, 

shows lesser segmentation faithfulness due to its limited penetration of features and its capacity 

to clarify long-range framework connections between scans in MRI. 

The datasets from four categories, which include glioma, meningioma, pituitary tumor, 

and no tumor, will be used to categorize the types of tumors. This could not be completely 

counterbalanced by the data split in stratified sampling and balancing the mini-batches during 

training, but the slight unevenness of these groups relative to their classes (glioma: N1, 

meningioma: N2, pituitary: N3, no tumor: N4) is compensated for. Similar evaluative metrics 

at the class level, such as precision, recall, F1-score, and AUC, are provided to ensure that the 

measurement of performance for any tumor type is equal.  

Table 1. Segmentation Performance Comparison on BraTS Dataset 

Model Dice score IoU HD95 (mm) 

VGG19 0.842 0.781 7.10 

DenseNet201 0.883 0.815 5.40 

InceptionResNetV2 0.901 0.841 4.90 
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EfficientNetV2L 0.914 0.853 4.30 

ConvNeXt 0.921 0.867 4.00 

DSC-SwinNet (Proposed) 0.934 0.891 3.70 

The results of the DenseNet201 and InceptionResNetV2 models showed moderate 

improvements of 0.883 and 0.901, respectively, with the advantage of more effective skip 

connections and residual learning. In addition, the EfficientNetV2L and ConvNeXt models 

achieved even better gains of 0.914 and 0.921, respectively, with the help of effective scaling 

and the most recent attention normalization models. The above values, in terms of relative 

measures, are displayed in Table 1. 

 
Figure 6. Comparative Analysis of Dice Score Analysis of the Proposed Framework for the Tumor 

Segmentation 

The proposed DSC-SwinNet, which has the highest Dice Score of 0.934, demonstrates 

the most appropriate boundary delineation of the tumor and volumetric overlap with clinical 

ground truth. This steady enhancement is associated with the hybrid dual-stage structure, which 

combines the localized ROI scale with the globalized volumetric context in Swin-Transformer 

attention blocks, allowing for high-quality localized representations of tumor complexities and 

morphological variations. 

The cross-entropy loss and Dice loss maintain a balance (1:1) to ensure they optimize 

both the regions and the accuracy of classification at the voxel level. Dice loss addresses the 

class imbalance problem and improves boundary delineation, whereas cross-entropy stabilizes 

probabilistic learning. A statistically significant improvement in performance was not observed 

with the different weightings in the validation experiments. This counters the notion that the 

1:1 weighting equips the optimization plan of the dispensed framework to be robust and 

reliable. 
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Figure 7. Graphical Illustration of the Comparative IoU Performance of the Proposed Framework 

The Figure.7 represents the comparative performance of the proposed DSC-SwinNet 

by the five state-of-the-art segmentation backbones were evaluated according to the IoU 

information. The worst score of 0.781 was achieved in terms of IoU using the conventional 

CNN, e.g., VGG19, as it had narrow receptive fields and lacked deep contextual information, 

creating partial instances of tumor boundary detection. InceptionResNetV2 (0.841) and 

DenseNet201 (0.815) began to improve gradually with dense skip fusion as well as residual 

feature propagation. However, on the other hand, EfficientNetV2L (0.853) and ConvNeXt 

(0.867) enhanced DenseNet by maximizing depth, width, and even expansion of resolution, 

remodelling convolutional-attention blocks. 

The proposed model achieved the highest score in the IoU metric, with a score of 0.891, 

indicating that the model would yield more spatially consistent tumor masks with minimal 

under- or over-segmentation. This can be explained by the dual-stage architecture, which 

permits more detailed spatial modeling of features as well as the ability to capture multi-modal 

MRI features. The dual-stage architecture also allows for Swin-Transformer-based feature 

encoding and ROI-based feature refinement. These results prove that the DSC-SwinNet 

achieves superior clinical segmentation compared to the currently available deep learning 

models. 

 
Figure 8. Graphical Plot of the Comparative Score Analysis of HD95 for the Proposed Model with 

Various Other Models 

The comparison of HD95 scores of the proposed DSC-SwinNet and a few baseline 

segmentation models is shown in Figure 8. An increase in HD95 values represents larger 



DSC-SwinNet: A Dual-Stage Transformer Framework for Reliable Brain Tumor Segmentation and Classification from Multi-Modal MRI 

 

 

ISSN: 2582-4252  104 

 

contour deviations and structural differences from the   ground truth tumor boundary. As 

indicated, VGG19 had the lowest HD95 of 7.10 mm indicating its low localization of 

boundaries and inability to find fine tumor edges. DenseNet201 and InceptionResNetV2 

exhibited slight progress (5.40 mm and 4.90 mm), whereas EfficientNetV2L and ConvNeXt 

made even more steps toward reducingthe numbers (4.30 mm and 4.00 mm) because of their 

more complex designs and better feature extraction capabilities.  The proposed DSC-SwinNet 

reached the highest HD95 of 3.70 mm, which indicates a superior level of depiction of tumor 

boundaries anatomically and excellent volumetric consistency.  

4.1   Ablation Study on DSC-SwinNet Architecture 

In order to confirm the architectural value added by every major module in DSC-

SwinNet, an ablation analysis was conducted on the BraTS dataset by choosing to turn off 

important elements. Figure 9 and Table 2 indicate the change in performance under a variety 

of five architectures. Empowering the ROI-aware encoding, Swin-based self-attention, and 

dual-stage global local fusion, as shown, provides consistent gains in Dice, IoU, and HD95 

metrics, which in turn leads to the enhancement of the delineation of the entire model structure. 

Table 2. Ablation Study on DSC-SwinNet Architectural Components 

Model Dice score IoU HD95 (mm) 

Baseline U-Net Encoder Only 0.902 0.835 4.90 

Without Swin-Attention (CNN Fusion Only) 0.914 0.853 4.40 

Without ROI-Stage Feature Encoder 0.921 0.862 4.12 

Without Dual-Stage Global–Local Fusion 0.926 0.875 3.98 

Full DSC-SwinNet (Proposed) 0.934 0.891 3.70 

Baseline U-Net Encoder Only 0.902 0.835 4.90 

In the study of the individual contribution of each structural element of DSC-SwinNet, 

an ablation of the BraTS dataset was conducted by disabling core modules. Operating the U-

Net encoder alone, the results were worse, with a 0.902 Dice score and a 4.90 mm HD95, 

indicating that the results lacked long-range contextual reasoning. Removing the Swin-

Transformer attention produced a mediocre increase in the Dice score (0.914), which supports 

the multi-headed self-attention markedly enhances volumetric dependency learning.  

 
Figure 9.  Graphical Plot of Ablation Study of the Proposed Framework 
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By eliminating the ROI-sensitive encoder, the Dice coefficient decreased to 0.921, 

which proves that extracting local anatomical cues around the tumor core is crucial for specific 

segmentation, as shown in Table 3. 

Table 3. Brain Tumor Type Classification Performance 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC 

VGG19 86.3 85.7 84.9 85.3 0.90 

DenseNet201 89.1 87.6 88.1 87.8 0.92 

InceptionResNetV2 91.5 92.2 90.8 91.4 0.94 

EfficientNetV2L 94.5 94.9 94.1 94.4 0.97 

ConvNeXt 93.7 93.4 93.2 93.3 0.96 

DSC-SwinNet (Proposed) 97.8 98.2 97.6 97.9 0.99 

The impairment of the dual-stage global-local fusion also led to poor accuracy (0.926) 

which confirms that staged hierarchical integration enhances contour refinement and spatial 

consistency. The overall DSC-SwinNet has the highest Dice of 0.934, the least HD95 of 3.70 

mm and the greatest IoU of 0.891 which illustrates that all the architectural constituents work 

together to attain optimal boundary fidelity, volumetric overlap and clinical quality tumor 

delineation. 

 
Figure 10. Graphical Depiction of Performance Classification of the Proposed Framework Versus 

Other Models 

Figure 10 demonstrates the comparative classification output of the suggested DSC-

SwinNet alongside several other notable deep learning models by providing the accuracy and 

F1-score values. Traditional convolutional models VGG19 and DenseNet201 perform 

relatively worse due to the lack of multi-scale contextual modeling, whereas 

InceptionResNetV2 and EfficientNetV2L show relatively better performance owing to deeper 

residual mapping and scalable architecture optimization. ConvNeXt also gives the baseline an 

extra boost with re-parameterized convolutional blocks that incorporate current normalization 

systems. 
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Figure 11. Confusion Matrix Plot of the Proposed Framework for Different Classes 

The results of the proposed DSC-SwinNet model with 1,000 multi-modal MRI test 

samples in three tumor classes are represented in the confusion matrix in Figure 11, in which 

only the three types of tumor categories are considered and the no-tumor category is excluded 

for experimental purposes. The high diagonal counts of 338, 307, and 319 for Class-1, Class-

2, and Class-3, respectively, demonstrate that the classification of tumor types is highly 

accurate, whereas the off-diagonal counts are very sparse. Class-1, Class-2, and Class-3 

recorded a few cases of misclassification (8 and 4 cases), which indicates that the network 

generalizes well across intensity variations, shape distortions, and boundary distortions among 

tumor morphologies. 

The analysis of the confusion matrix shows that the majority of the misclassifications 

occur between glioma and meningioma types of tumors. This complication is caused by 

overlapping radiological features, including similar contrast enhancement, peritumoral edema, 

and abnormal boundary appearances in multi-modal MRI. In other instances, circumscribed 

gliomas resemble meningiomas, whereas infiltrative meningiomas accompanied by edema 

show intensity profiles similar to gliomas. The proposed dual-stage framework of classification 

eliminates this ambiguity through a common utilization of local tumor morphology and global 

contextual brain features to enhance inter-class discrimination.  

Though the total classification exercise includes four categories of tumors: glioma, 

meningioma, pituitary tumor, and no tumor, the confusion matrix graphical representation is 

limited to the three types of tumors. The no tumor group is not included in the confusion matrix 

to provide a better interpretation of the inter-tumor misclassification patterns, as it does not 

show any overlapping radiological appearances with the tumor groups. All of the quantitative 

measures in the rest of the Results section always take into consideration all four classes. 

Figure 12 indicates the model calibration reliability chart of the offered DSC-SwinNet 

structure, evaluated with seven probability bins and depicted with the Expected Calibration 

Error (ECE=0.357). The dashed diagonal represents a hypothetically calibrated classifier with 

predictive confidence equal to the true accuracy, whereas the blue curve represents the actual 

calibration performance. Although the DSC-SwinNet distribution is not expected to follow the 

diagonal at a variety of intervals, particularly within the low-confidence and high-confidence 

ranges, the general direction of the trend shows a definite rise in empirical accuracy with 

reference to model confidence, which indicates that higher predicted probability is associated 

with enhanced classification reliability.  
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Figure 12. Graphical Plot of Model Calibration Reliability of the Proposed Framework 

The Expected Calibration Error (ECE) is calculated based on a seven-confidence 

binning strategy using an equal-width binning approach, which provides a balance between 

calibration resolution and statistical reliability. The moderate ECE value (0.357) is, by nature, 

an error of heterogeneity and ambiguity in multi-modal MRI data, not a systematic 

overconfidence of the model. Notably, the reliability diagram shows that the confidence of 

prediction and the accuracy of the prediction remain consistent, indicating that the proposed 

model is predictable and can be clinically relied upon to maintain the same predictability in the 

future. 

The Expected Calibration Error (ECE) is used to quantitatively test model calibration 

and measure how far the prediction confidence has been wrong or how far the model has been 

correct over a confidence bin. This is computed using an equal-width binning strategy, which 

allows for the evaluation of probabilistic reliability amid multi-modal MRI variability. 

 
Figure 13. Distribution of the Predictive Uncertainty Plot for the Proposed Framework 

Figure 13 shows the predictive uncertainty distribution of the suggested DSC-SwinNet 

model, which is measured by the predictive entropy of the test set. It is important to note that 

the histogram is skewed considerably to the right, with few instances of high entropy (0.65-

0.69), which means that most of the model's decisions are made with a great deal of certainty. 

The percentage of samples with marginally higher uncertainty is very low, proving that cases 

of uncertainty are not frequent statistically. 

Entropy based on the softmax probability distribution is used to measure predictive 

uncertainty. Empirical data has shown that when entropy values are greater than 0.65, the 
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prediction is usually unreliable or ambiguous, typically due to low tumor boundaries or non-

homogeneous intensity distributions. These high-entropy predictions are thus considered 

uncertain and might need further clinical assessment, while lower entropy values denote 

confirmed and steady model predictions. 

 
Figure 14. Graphical Plot of the Proposed Model’s Robustness Curve 

Figure 14 shows the strength of DSC-SwinNet in comparison to EfficientNetV2L at 

increasingly higher levels of Gaussian noise added to the MRI data. The degradation curves 

vividly indicate that, despite both models not increasing their classification accuracy as the 

standard deviation of added noise grows, DSC-SwinNet has much higher noise resiliency at all 

corruption levels. Particularly, when σ is 0.20, the accuracy of EfficientNetV2L declines 

drastically to 70, whereas DSC-SwinNet shows a significantly higher result of 85, which means 

an increase in the capacity to retain accuracy of closer to 15 percent in comparison. Such 

resilience is explained by the dual-stage mechanisms of the model that enable ROI-conditioned 

local descriptors to be reinforced by global contextual embeddings generated by the 

transformer-based self-attention mechanism, which allows the network to maintain 

discriminative tumor signatures even when the structures of the boundaries and contrast 

between tissues are distorted. 

 
Figure 15. Graphical Plot ROC Curve of the Proposed Model 
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The per-class ROCs versus AUCs of the suggested DSC-SwinNet classifier are shown 

in Figure 15. The three curves have consistently been located close to the upper left side, which 

is a sign that DSC-SwinNet is very sensitive and specific when applied to various types of 

tumors. The values of AUC are 0.956 in Class 1, 0.955 in Class 2, and 0.933 in Class 3; these 

show a slight difference among the classes. The sharp increase of all curves at the origin 

indicates that the model has a very high true positive rate even at an extremely low false 

acceptance rate, which is important in a clinical context where the risk of a false diagnosis may 

exist. These results show that this dual-stage architecture, which integrates ROI-centric tumor 

images with global volumetric transformer visualizations, creates robust latent representations 

that can differentiate between small radiological changes in different types of tumors. 

 
Figure 16. Graphical Plot of Bland-Altman Analysis of the Proposed Framework 

The Bland-Altman analysis of DSC-SwinNet and EfficientNetV2L in terms of 

segmentation Dice scores is shown in Figure 16, where the mean Dice of both models is taken 

as the reference scale. All data points are within the 95-percent limits of agreement, and this 

shows that there is a high level of consistency between the two architectures with no systematic 

disagreement or instability. The positive bias line (= +0.027) indicates that DSC-SwinNet has 

the same level of segmentation accuracy on all samples on average compared to 

EfficientNetV2L, which proves that the positive bias is a consistent increase in accuracy and 

not occasional gains. Moreover, the small gap between the upper and lower agreement bounds 

indicates that the enhancement that DSC-SwinNet provides is statistically consistent and is not 

affected by inter-sample variance. 

 Conclusion 

The proposed DSC-SwinNet model achieves better performance, measured by the 

accuracy of brain tumor segmentation and classification, compared to existing top-performing 

models such as CNN and Transformer models. High accuracy, as indicated by the improved 

performance parameters in terms of the Dice, IoU, HD95, and ROC AUC, along with 

calibration reliability and the presence of data agreement, as confirmed by the Bland-Altman 

test, are essential characteristics of the proposed model. Moreover, the benefit of using the two-

step encoding of the Transformer to improve boundary discrimination at a finer scale, while 

simultaneously achieving high classification accuracy and a high percentage of correctness 

across all data samples, is a strong indication that the suggested alternative model is an 

appropriate solution for the achievement of the concept of trustworthy artificial intelligence 
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aids employed in neuro-diagnosis procedures. Additionally, the DSC-SwinNet model achieves 

better performance in terms of the Dice score, classification accuracy, F1 score, and a high 

AUC value of 0.934, along with a classification accuracy of 97.8% and a classification F1 score 

of 97.9% when the model is trained on the BraTS database. 
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