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Abstract

The earlier diagnosis of brain tumors is a critical challenge that influences treatment
and facilitates prompt detection of the disease. Conventional MRI provides a structural and
functional view of the tumors. On the other hand, recent deep learning-based algorithms,
particularly single-stage convolutional neural network-based models, face challenges in
providing the exact location of the tumor as well as in enhancing detection and classification
accuracy. This is due to a lack of global-local integration of features, lack of spatial consistency,
and low resistance to intensity variation, which are typical of clinical MRI scans. In order to
address these gaps, the proposed research uses the DSC-SwinNet algorithm, which consists of
a dual-stage transformer structure primarily utilized for tumor segmentation and classification.
The first step employs a Swin Transformer-based encoder-decoder that uses window-based
multi-head self-attention to simultaneously obtain local lesion features and long-range global
contextual features of multi-modal MRI volumes. The next stage, known as Dual-stage
Classification (DSC), is responsible for incorporating the ROI characteristics with conceptual
representations of the tumor to identify the type of tumor. The proposed DSC-SwinNet has a
Dice score 0f 0.934, an IoU 0of 0.891, an HD95 of 3.70 mm, achieving a classification accuracy
of 97.8%, an Fl-score of 97.9%, and an AUC of 0.99 on the BraTS multi-modal MRI data,
demonstrating the potential of DSC-SwinNet as a clinically reliable brain tumor analyzer.

Keywords: DSC-SwinNet, Transformer Framework, Dual-Stage Classification, Brain Tumor,
Multi Modal MRI, Convolutional Neural Network, Global-Local Feature, Disease
Classification.

1. Introduction

Brain tumors are among the most threatening neurological conditions that can cause
irreversible cognitive loss, disability, and death if not diagnosed at an early stage [1]. Proper
tumor delineation, classification, and detection are critical in the decision-making process of
treatment, surgical planning, radiation therapy dose assessment, and monitoring disease
progression. MRI is the most effective non-invasive technique to evaluate brain tumors because
it provides the best soft-tissue contrast, radiation-free imaging, and multi-modal sequences like
T1, Tlce, T2, and FLAIR. Such complementary modalities assist in visualizing various tumor
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morphology components, such as edema, necrotic and enhancing areas, making MRI essential
in neuro-oncology [2].

Brain tumors are one of the most complicated diseases in the neurological spectrum that
require prompt treatment after diagnosis. The morphology and structure of brain tumors, their
heterogeneity, and irregularities are not homogeneous, which makes this task challenging for
even experienced radiologists to segment tumors based on MRI scans. Additionally,
inconsistencies in imaging modalities and types of tumors make manual annotations difficult
to implement, leading to inconsistencies in the output. Since timely diagnosis is essential in
enhancing survival chances, there is an increasing need for automated, accurate, and efficient
segmentation tools in the medical sector [3].

Magnetic resonance imaging (MRI) is a non-invasive technique for visualizing soft
tissues in high resolution; it is a critical diagnostic tool for identifying and determining brain
tumors. Nevertheless, interpreting MRI data is highly skilled and labor-intensive, particularly
in hospitals with overburdened radiologists. This problem can be alleviated with automated
image segmentation systems, which reduce human error and expedite diagnosis. Although deep
learning has played a critical role in the development of segmentation, models using only
convolutional operations have a limited range of contextual fields of view, making it difficult
to outline diffuse or overlapping tumors [4].

Gliomas are the most prevalent primary brain tumors, often referenced in discussions
about brain tumors. They originate in the cells that constitute the support tissue of the brain,
known as glial cells. The interplay between high-risk genetic factors (congenital) and
environmental carcinogenic factors contributes to the development of gliomas. Clinically,
gliomas are threatening and fatal tumors of the brain, characterized by high malignancy and
aggressiveness, leading to various symptoms, including seizures, headaches, visual
disturbances, and alterations in behavior and speech. Generally, the localization, shape, and
size of brain tumors have significant implications for the extent and nature of these symptoms,
as identified by physicians, and influence the development of treatment and surgical strategies

[5].

Thus, brain tumor segmentation can facilitate the precise and efficient localization and
identification of gliomas, which would, in turn, assist physicians in enhancing the diagnosis
and prognosis in clinical practice [6]. Over the past decades, scholars have conducted extensive
basic research on brain tumors. Initial studies aimed to understand the biological characteristics
of glial cells and how they become malignant. Gradually, scientists have gained insights into
the genetic and molecular alterations that occur in gliomas. This research has facilitated the
development of improved diagnosis and treatment for brain tumors, including the identification
of brain tumor grading, heredity, and targeted therapy using genomic information [7].

As MRI technology has advanced, multi-modal MRI images have become increasingly
popular in the process of brain tumor segmentation, providing a more detailed view of the
tumors and surrounding brain tissues. Practically, MRI has four modalities—T1, T2, T1ce, and
FLAIR—that serve as complementary imaging modalities in the diagnosis and monitoring of
brain tumors. Different MRI modalities can complement each other regarding the appearance
and characteristics of tumors [8],[9].

Medical image segmentation is a task that is significant in the diagnosis of clinical
imaging. Physicians tend to use alternative treatments, including surgery, radiotherapy, or
chemotherapy, depending on the type, size, and position of the tumor. It is not a simple task to
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view different states of brain tumors directly using computer equipment, and it is even more
challenging when it comes to identifying the type of tumor, its size, and location. Thus, studies
on brain tumor segmentation algorithms attempt to provide a more objective assessment and
explanation of the development, pathology, clinical phenotypes, and prognostic factors related
to brain tumors [10].

In the last several years, the rapid advancement of deep learning systems has succeeded
in enhancing the output of computer-aided diagnosis. Multi-modal brain tumor segmentation
has seen significant technical progress, resulting in an increasing number of techniques that can
perform this task with acceptable accuracy and speed. The first and most basic approaches to
brain tumor segmentation include manual tracing, in which a skilled clinical practitioner
outlines the tumor in the images. Manual tracing, however, is time-consuming and may be
prone to inter- and intra-observer variation. Due to the introduction of computer vision and
machine learning algorithms, numerous automatic approaches have been developed to segment
brain tumors. These techniques can be broadly divided into two groups: traditional techniques
and deep learning techniques [11].

Convolutional Neural Networks (CNNs) have been widely used in brain tumor
detection tasks, and the application of deep learning has completely changed the field of
medical image analysis. Architectures such as VGG19, ResNet152V2, DenseNet201,
InceptionResNetV2, and EfficientNetV2L have demonstrated significant gains in quality
pattern recognition, feature extraction, and classification accuracy. However, CNNs are
formulated based on local receptive fields and thus cannot model long-range spatial
dependencies, which are needed for irregular tumor structures in 3D MRI volumes.
Consequently, CNN-based segmentation and classification models usually do not generalize
well between patients, scanners, and changes in MRI intensity [12].

New powerful alternatives have also appeared, such as Vision Transformers (ViT) and
Swin Transformers, capable of modeling long-range relationships with the help of self-attention
mechanisms (Tazeen et al., 2024). Hybrid systems like Swin-UNER have already shown
tremendous improvements in volumetric medical image segmentation as they have shown
better results on tumor delineation tasks. Regardless of these advances, the current transformer-
based models are mainly segmentation-based or classification-based and have no unified
pipeline to deliver accurate tumor boundaries and robust diagnostic classification. Furthermore,
unsupervised classification models that are not explicitly localized on tumors tend to
inappropriately distinguish irrelevant or high-noise regions of the brain, diminishing trust and
accuracy of clinical implementation [13].

To overcome these constraints, this study suggests the development of DSC-SwinNet;
a novel Dual-Stage Transformer Framework combining transformer-based multi-modal 3D
segmentation and a powerful dual-stage classification scheme specific to multi-modal MRI.
The framework employs a Swin Transformer enhanced encoder-decoder that achieves high
accuracy in the segmentation of tumor using local ROI features of regions that are segmented
and global contextual volume features. This will allow classification decisions to be based on
tumor-centric information as well as holistic brain-scale information (homogenizing the
weaknesses of single-stage traditional models) [14].

In this work, a new dual-stage transformer-based framework that closely combines
high-resolution tumor segmentation with context-aware tumor classification within a single
pipeline is proposed. Compared to the current methods that either consider segmentation and
classification as independent or sequential, the presented method applies segmentation-directed
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ROI extraction coupled with global volumetric contextual embeddings, which allows tumor-
based but global-informed diagnostic inference. This combined design is much more effective
in segmentation, classification accuracy, and probabilistic calibration to multi-modal MRI
variability, and its advancement in the state of the art in clinically robust brain tumor analysis.

The contributions of this research are of a great importance and they include:

+  Creation of an innovative architecture, which incorporates Swin Transformer-based
3D segmentation, and a two-stage 2D Classification mechanism to run end-to-end
tumor analysis.

+  Developing a DSC module that combines tumor-centered ROI characteristics with
global MRI volume characteristics to obtain excellent discrimination.

« Developing the Swin Transformer encoder has hierarchical self-attention to achieve
better localization of tumors and accurate classification.

« Introducing the T1, Tlce, T2 and FLAIR -capabilities to deal with tumor
heterogeneity and enhance generalization across different clinical conditions.

- To show performance improvement, comparative analysis to VGGI19,
ResNet152V2, DenseNet201, InceptionResNetV2, EfficientNetV2L, and
ConvNeXt was done.

- Integrating the uncertainty modeling, scores on calibration and noise-based
robustness testing to demonstrate clinical preparedness.

- Evaluation of standardized multi-modes MRI data to perform both segmentation
and classification.

The rest of this paper is structured in the following way. In Section II, a thorough
overview of the already available literature on the topic of brain tumor segmentation,
classification schemes, transformer-based medical imaging models, and performance
evaluation on the BraTS database is provided. Section III is a report on the proposed DSC-
SwinNet architecture, its Swin Transformer segmentation backbone, the dual-stage
classification pipeline, the strategy of local-global feature fusion and the overall training setup
of volumetric multi-modal MRI analysis. Section IV presents the experimental results and
performance comparison of the quantitative metrics of segmentation, diagnostic classification,
and ablation experiments, the calibration reliability, the estimation of uncertainty, the
robustness, and the statistical testing against the state-of-the-art models. Lastly, Section V is
the conclusion of the work that summarizes important contributions, thinks over the
implications of clinical considerations, and indicates possible extensions of the future research
on the use of transformers to analyze medical images and apply them in actual neuro-oncology
setting

2. Related Work

Computer-aided medical diagnostic systems have made medical image segmentation,
especially that involving MRI analysis of brain tumors, a critical component, as developments
in computational intelligence and deep neural architecture have rapidly advanced. The
conventional methods of segmentation, which were intensity similarity, atlas guidance, level-
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set models, and region-growing methods, did not prove very robust against the heterogeneous
structure, size, and texture of tumors. CNNs, FCNs, and U-Net are among the architectures that
transformed the quality of segmentation with the advancement of deep learning, as these
methods learn both discriminative and hierarchical feature representations directly on multi-
modal MRI data [15].

This development has also been further pushed by the BraTS challenges, which
established a standardized benchmark and spurred widespread architectural developments such
as skip-based residual networks, dense connectivity, nested U-Net variants, attention, and
hybrid schemes combining convolutional modules with transformer-based global dependency
modeling. The current trends in research also extend to diffusion-based segmentation models,
modality-fusion transformers, and ensemble learning frameworks, which represent an ongoing
quest to achieve greater accuracy, improved generalization, and clinically robust demarcation
of brain tumor sub-regions [16]. This has led to the field of research on medical image
segmentation becoming a growing area with the fast advancement of computer technology and
computer-aided diagnostic systems. Medical image segmentation has been made possible by
progress in the area of machine learning and deep learning [17].

Transformer-based networks were, in turn, proposed as an alternative with great
potential, as they were effective in natural language processing. Vision Transformers (ViT) and
various variants of ViT use self-attention to learn global relationships in images [18].
Transformer capabilities in learning long-range dependencies in medical segmentation
activities are emphasized. It introduces DenseTrans, a hybrid model that incorporates Swin
Transformer and UNet++, which is currently scoring high in Dice on BraTS2021 [19].

Tumor classification has been done using convolutional neural network (CNN) models,
including DeepMedic and U-Net. U-Net was popularly applied in the segmentation of brain
tumors. An improved network topology known as U-Net was introduced; it consists of several
encoders and decoders, which produce more feature points to enable accurate segmentation.
One of the recent topics in research on computer vision is the diffusion probability model
(DPM) [20].

Based on the success of Transformers in several NLP tasks, an increasing number of
Transformer-based approaches are being introduced in CV tasks. ViT is the first pure
Transformer-based architecture that has demonstrated SOTA performance in image recognition
when pre-trained on large datasets like ImageNet-22K, using data-efficient training methods
and knowledge distillation that enable ViT to be effective on the smaller ImageNet-1K dataset.
Swin Transformer is a linear model with a proposed shifted window-based self-attention
mechanism and has SOTA performance in image recognition and dense prediction tasks,
including object detection and semantic segmentation [21].

The vanilla Transformer treats every position of the image equally, but to minimize
computational costs and pay attention to specific parts of the image, a different attention
mechanism is presented whereby only portions of the key around a reference point are taken
into consideration by the self-attention mechanism. In order to segment 3D images, an
algorithm that learns representations of the input through the assistance of a Transformer as the
encoder is suggested [22].

Ensembles of U-Net-shaped architectures have yielded encouraging results in multi-
modal brain tumor segmentation in the past BraTS challenges. They suggest a strong
segmentation model by combining the results of multiple CNN-based models, including 3D U-
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Net, 3D FCN, and Deep Medic. Then, SegResNet is presented, which is a residual encoder-
decoder model with an auxiliary branch supported by a variational auto-encoder to reconstruct
the input data as a surrogate task [23].

Various factors, such as the capability to acquire long spatial dependencies, resistance
to changes in intensity between the MRI modalities, the ability to delineate irregular tumor
edges precisely, and the capacity to discriminate tumor types, are critical in determining the
choice of the proposed technique. Traditional CNN-based designs have local receptive fields,
and single-stage transformer designs typically do not have spatial resolution. Thus, a dual-
stage, segmentation-directed, hybrid transformer architecture is implemented to balance global
reasoning of the context and feature selection from a more accurate tumor-localized
perspective, ensuring robust and clinically valid performance.

The challenges of BraTS (Brain Tumor Segmentation) have been a landmark in
assessing Al-based segmentation techniques, inspiring innovation in the domain. Conventional
machine learning methods, though initially effective, struggled to keep up with the
heterogeneous appearance of tumors in multi-modal MRI datasets of BraTS, resulting in poor
Dice scores. The advent of deep learning, especially variants of U-Net, significantly enhanced
performance, as it automatically learned features that were discriminative between T1, T2,
FLAIR, and T1ce sequences. Later versions of BraTS saw transformer-based models, such as
Swin UNETR, go even further with global context modeling, while diffusion models were
employed to detect edges in tumor sub-regions even more effectively [24].

Over the last several years, there has been an increase in the use of deep learning
algorithms, especially Convolutional Neural Networks (CNNs), in brain tumor segmentation.
Large volumes of annotated data can be used to train CNNs to learn complex image features,
thus enabling them to perform better than traditional methods. Indicatively, the U-Net
architecture is one widely used deep learning architecture for segmenting brain tumors and is
based on the encoder-decoder architecture, where high-level and low-level image
characteristics are learned. Most recently, vision transformers have seen remarkable
advancements and deliver better results in the segmentation of brain tumors [25][26].

The CNN-based variants of UNet are still predominant due to their effective encoder-
decoder representation, dense skip connections, and superior spatial preservation, whereas
transformer-based variants and hybrid CNN-VIiT architectures have developed as influential
alternatives in order to surpass CNN in its limited receptive field through global self-attention.
Diffusion models, attention fusion schemes, cascaded architectures, ensemble learning, and
nnU-Net-style auto-configurations are additional examples of the type of progress provoked by
BraTS benchmarking. Although these advancements have been achieved, the key open
challenges include the improvement of boundary segmentation fidelity, enhanced data
imbalance robustness, lightweight privacy-preserving model design, and clinically
interpretable predictions. All of these research findings will encourage the development of
more robust, generalizable, and computationally efficient solutions to brain tumor segmentation
in a real-world healthcare setting.

3. Proposed Work

The proposed framework of the DSC-SwinNet model is a dual stage pipeline that not
only providing the accurate segmentation of tumor but also ensures consistency in tumor
prediction based on the MRI input images. Initially, four classifications of MRI images are

Journal of Innovative Image Processing, March 2026, Volume 8, Issue 1 93



DSC-SwinNet: A Dual-Stage Transformer Framework for Reliable Brain Tumor Segmentation and Classification from Multi-Modal MRI

considered as shown in Figure 1. The Segmentation Network processes this multi-modal input,
and a Swin Transformer-based encoder-decoder system extracts hierarchical 3D characteristics.

Dual Stage
Swin Transformer Stages Classification
Stage 1:
ROI Feature Module
Stage | RO Exiraction Encoder
Classifi-
l cation
Stage 2 Stage 2: layers
3D Feature Global
—_— Feature
Flattening Feature
Encoder

Stage 3

Class Label Prediction

Confidence
Segmentation

Multi-Modal
MRI Images

Patch

Merging Segmentation ‘

Patch Mcrging

Swin UNETR

Figure 1. Block Diagram of the Proposed Framework

The MRI modalities are all considered for the normalization process to obtain the Z-
score. The standard deviation and the mean of each mode are computed using non-background
voxels only and the intensity values are brought to the normal level. This modality-wise
normalization preserves the contrast properties of any given sequence, but removes scanner
induced changes in intensities and inter-subject variations, therefore, it is much stronger in
acquiring multi-modal features.

The input multi modal volumes of MRI are denoted as X =
{x(D, x(T1ce) x(T2) x (FLAIR}Y for every patient in a 3D array of size H x W x D. The input
images are cropped to the size of 128 x 128 x 128 and few augmentation changes are made on
the input images before sending them for the next stage. The equation 1shown below gives the
expression of the preprocessing pipeline, which is the intensity normalization of the z-score per
volume.

X =k (1)

ax
In the equation 1, non background voxels are denoted as py and oy respectively.

During preprocessing, the data is subjected to Z-score normalization that performed on
a volume basis to normalize the distributions of the intensity and reduce inter-subject
variability, voxel intensities are normalized by subtracting the mean and dividing by the
standard deviation of non-background voxels in each volume of MRI. This normalization
increases the numerical stability of the training as well as the consistency of the magnitude of
the scaling of the samples without destroying the inherent structural information of the brain
tissues.

The segmentation module uses a four-stage Swin Transformer encoder where stage 1-
4 study contextual information on a multi-scale basis with window self-attention and shifted
window self-attention respectively. Features are extracted at a broader receptive field at each
stage, accommodating long-range spatial dependencies, which can be regarded as one of the
significant benefits of transformer architectures over conventional CNNs. The decoder
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recreates the tumor masks at the voxel level using upsampling and skip connections in each
encoder stage, ensuring that spatial lines are not dropped. This module provides the position
of the tumor in the brain, resulting in a volume tumor segmentation mask.

To cope with inter-patient variation in the size and shape of the tumor, the segmented
tumor area is cropped with a tight bounding box and resized to a constant ROI size. Owing to
this normalization, feature learning is scale-invariant, the training is stable across batches, and
classification is performed with consistent tensor dimensions, while important tumor
morphology is maintained. The method prevents size bias and allows only tumor-centric
features to be compared between subjects, resizing them only after proper segmentation.

Let us assume that the multi modal patch input is X, € RV*¢ which is implemented
after the embedding of patches. The proposed Swin Transformer blocks the operation of 3D
windowed multi head self attention with the integration of shifted windows. Equation 2 gives
the formula of attention for the set of tokens that are represented by the X, € R™ inner side
of the window. In order to effectively represent both fine-grained local tumor features and long-
range spatial features in multi-modal MRI volumes, the Swin Transformer encoder uses a
window-based multi-head self-attention mechanism with shifted windows, and has the
following mathematical formulation:

Attention (Q, K, V)=softmax ( e’ +M ) %4 (2)
Vak
In the above equation, parameter Q can be calculated as XW,, , K can be calculated as
XWyg and the V can be calculated as X}, . The head dimension is represented in equation 2 as
dj and the metric M is used to denote the shifted window mask. The multiple stages in the
encoder are merged with the patches among the stages so that the corresponding feature maps
are generated and they are denoted as E1, E2, E3 and E4 respectively.

Swin Transformer Stages Ui ! |
Stage 1 Up 2
Stage 2 Up 3 |
Stage 3 Up 4 |

Segmentation

Segmentation

Dccoder

Patch Merging

Swin UNETR

Figure 2. The Architectural Diagram of the Proposed Swin UNETR Model

In this research, the Swin-UNETR architecture was employed, combining a hierarchical
Swin Transformer encoder and a U-Net type decoder to provide precise volumetric
segmentation of brain tumors using multi-modal MRI. Figure 2 illustrates, the encoder is
initially starts with a series of Swin Transformer stages each generating successively higher
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order feature representations based on window-based multi-head self-attention and shifted-
window mechanisms.

The Swin Transformer attention window size has moderate sensitivity to the
performance of the proposed model. Smaller window sizes limit global contextual modeling,
resulting in a lack of boundary consistency and decreased segmentation precision, while larger
windows are not associated with commensurate improvements in computational complexity.
The choice of window size offers the best compromise between long-range dependency
modeling and computational efficiency, yielding stable and consistent results in both
segmentation and classification challenges.

These attention processes allow the network to learn fine-grained local and long range
spatial dependencies in the 3D MRI volume - a required property for discovering heterogeneous
tumor regions. Multi-scale semantic information is stored in feature maps obtained at various
levels of the encoder and is exploited by the decoder through skip connections. Following Stage
3, the encoded features are patch merged, i.e. reduced spatial resolution and increased depth
per channel, allowing the network to effectively encode high-level tumor morphology and
global context.

The suggested model will be able to generalize to other scanner manufacturers and
acquisition procedures by utilizing modality-wise intensity normalization, widespread data
augmentation, and transformer-based global contextual modeling. Independent normalization
of Z scores eliminates intensity variation based on the scanner and simulates protocol based
distortions like noise and contrast changes. Moreover, hierarchical self-attention in the Swin
Transformer provides the global anatomical context, which also allows the model to be resistant
to changes in resolution and contrast, along with acquisition conditions that are often present
in multi-center clinical MRI data.

At the receiver end, the architecture uses a series of upsampling steps (Up1 to Up4) and
each upsampling step restores the spatial resolution while the features of the encoder are
merged through skip connectivity. Such a combination of rich semantic content and previous
high resolution representations assists the network in maintaining anatomical boundaries, and
reinstating fine structural details that are lost due to downsampling. The last decoder layer
generates a 3D segmentation map that indicates tumor sub-regions at the voxel-scale. Swin-
UNETR offers a robust segmentation backbone as it integrates the global reasoning capabilities
of transformers with the spatial restoration ability of U-Net.

Equation 3 explains the decoding, sampling, and fusing with the respective encoder
through the skip connections. After hierarchical feature extraction by the Swin Transformer
encoder, the decoder gradually restores the spatial resolution by combining high-level semantic
features with the corresponding encoder representations via skip connections, allowing for the
precise reconstruction of tumor edges, as stated:

D; = UpConv(Dj_l) @D E._; 3)

Where the operator @ denotes the concatenation operation and the number of stages
are denoted with the parameter L.

The last segmentation logit is denoted by S that uses a 1 x 1 x 1 convolution as
mentioned in equation 4.
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S(x) = Oseg (convixixg (Dfinal)) 4)

Equation 4, g, is representing the softmax classes over multiclass segmentation. To
calculate the segment loss, the integration of Dice and cross entropy is used and the formula to
calculate the Dice loss per class ¢ is given by equation 5. To achieve all of the above benefits,
a hybrid loss combining Dice loss and cross-entropy loss will be used, where the Dice score of
each class can be computed as:

2 Zipi,c gi,c+6 (5)

Dice, =
€ TiDic+Yi Gict e

And the dice loss at class 1 is calculated using the equation 6.
1 .
Lpice =1 — EZE:l Dice, (6)

In the equation 5 and 6, the probability that is predicted at i voxel for ¢ class is denoted
as p; . whereas the ground truth indicator is represented as g; ..

The Cross Entropy (CE) loss is calculated using the formula given in equation 7 as
mentioned below.

1
Leg = — N Y1 Xe=19iclogpic (7)

And the total segmentation loss is given by the equation 8 as mentioned below.
Lseg = aLpice + P Lcg (8)

Where the constants @ and S vales are equal to 1 which shows that they have been
tuned through validation.

After the creation of the tumor mask, the bounded area of the tumor is automatically cut
out to create the Region of Interest (ROI). It is a tumor-focused sub-volume that describes the
most informative spatial region for classifying this tumor. The extracted ROI is 3D feature
flattened in which high level features of segmentation are reduced to a small representation.
Simultaneously, the most profound encoder stage provides the global feature representations
that capture the structural and contextual information in the whole brain. The dual-path feature
preparation is a feature that ensures both local tumor morphology and global brain context are
taken into consideration by the model, which is essential for accurate classification.

The tight bounding box is computed from the segmentation mask which is denoted by
M(x) and they are cropped and resized to meet the ROI of fixed size h x w x d. In order to
define the prescribed Region of Interest (ROI) the following equation 9 is used. After receiving
the volumetric tumor segmentation mask a tumor-centric Region of Interest (ROI) is obtained
by tightly cropping the segmented region and resizing it to a fixed spatial dimension to ensure
consistent and scale-invariant features are represented at the next level of classification as
represented by:

Xror = CropResize (X,B) 9)

The features are extracted either by reusing the encoder features or by passing the ROI
via a specific ROI encoder in order to produce the vector which is represented as fzo; € R%.
To extract the global features on a whole volume the vector fg,,, € R% is used.
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The Global Average Pooling (GAP) is applied over the spatial dimensions to obtain the
3D feature flattening as mentioned in equation 10.

fror = GAP(Ey o), fglob = GAP(Eglob) (10)

The fusion of local ROI vector and global vector is carried out by either concatenating
or by computing the cross attention which requires the queries of the global key values as
mentioned in the following equations.

ffus = ReLU(Wf [fROI;fglob] + bf (11)
The global key values are given by Q = Wy, fror, K= Wy fgi0p and V =Wy fy0p

The ready ROI and international characteristics are then transferred into the Dual-Stage
Classification (DSC) Module.

Stage-1(ROI Feature Encoder): The stage-1 (ROI Feature Encoder) entails the tumor-
oriented ROI feature to isolate discriminatory local features depending on tumor texture,
intensity variation, shape abnormalities, and border patterns.

Stage-2 (Global Feature Encoder): It processes the global features to capture contextual
patterns which are broader, including, anatomical distortion, edema spread and structural
asymmetry.

The two encoded streams of features are integrated in the classification head. Prediction
of uncertainty adds value to measuring the reliability of the model, which is vital in the clinical

setting.
ROLI Features R%if:dagI ;

Transformer Classification
Block Head

Global Features———>»

Transformer

Global Features——» Block

Figure 3. Architectural Diagram of the Dual Stage Transformer Model

Global Average Pooling (GAP) is employed in global feature aggregation
because of its efficiency in parameters, stability, and minimal chances of overfitting. Although
attention-based pooling was also experimentally tested, it provided only a small performance
improvement and added extra parameters and sensitivity to noise in heterogeneous MRI data.
GAP guarantees the existence of uniform features globally and stable training, which is more
appropriate for ensuring consistency in classification in the analysis of multi-modes of brain
tumors. The dual stage classification module shown in Figure 3, consists of two sub encoders
and the final classifier, referred to as the ROI feature encoder and the global feature encoder as
given by equations 12 and 13 respectively.
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A smaller convolution backbone transforms the fror into the encoding vector hgy; €
R%: which is given in equation 14.

hroi = MLPgro;(fror) (14)
Whereas the encoded global features are represented by the equation 15 as given below.
hgion = MLPg10p(fgi00) (15)

The classification is calculated by using the formula given in equation 16.
Las = — Xk=1Yk logy, (16)

The calibration metrics are calculated using the formula given in the equations below
in which the bin b is assumed to have np samples with accuracy and confidence levels denoted
by acc(b) and conf(b) respectively.

The Expected Calibration Error (ECE) is computed by the following equation 17
ECE = ¥j_, =2 |lacc(b) — conf ()| (17)

3.1 Vision Transformer

The transformer is a common attention-based deep learning model. It was initially
proposed in natural language processing (NLP) for machine translation tasks. Unlike CNNs
and RNNs, which are locally connected, the transformer is able to represent and capture the
long-range dependencies between tokens, leading to a more effective modeling of global
feature relations.

v

Laver
Normalization
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Figure 4. Block Diagram of the Vision Transformer Framework

To stabilize the convergence of the model, the Adam optimizer is used with a cosine-
decay schedule for the learning rate, as shown in Figure 4. It employs a hybrid loss comprising
Dice loss and cross-entropy loss with equal weights to balance the accuracy of region overlap
and the stability of voxel-wise classification. Stratified mini-batch sampling is utilized to
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address the class imbalance, and premature termination of the process is implemented with the
help of validation loss to overcome overfitting. To augment the data, data augmentation
methods such as rotation, flipping, and intensity perturbation are applied to boost generalization
across different MRI acquisitions.

More recently, transformer-based techniques have demonstrated state-of-the-art
performance in several NLP tasks and can successfully substitute RNNs as the most popular
architectures. Based on this, the classical transformer is implemented into computer vision,
termed Vision Transformer (ViT). In particular, the input images are initially partitioned by
ViT into non-overlapping patches, and the model of the entire relationship between patches is
subsequently developed using multi-layered standard transformers to classify images.
Transformer-based networks tend to be more computationally expensive than CNNs and
RNNs, and the non-local receptive fields of transformer-based methods overcome the
bottleneck in their performance. In medical image processing, transformer applications are
numerous and are designed to perform classification, segmentation, and detection, with
promising results and generalization.

4, Results and Discussion

The performance of the proposed DSC-SwinNet architecture was rigorously assessed
using the publicly available BraTS benchmark data, which is characterized by multimodal MRI
volumes consisting of T1, T2, FLAIR, and Tlce images. The dataset comprises images of
tumors, which can be categorized into four classes, namely glioma, meningioma, pituitary
tumor, and no tumor. The images of the diseases that do not have any tumor images next to
them will be better analyzed in another category. Figures 5(a) to 5(d) show samples of images.
All of them were pre-processed with N4 bias field correction, skull stripping, intensity
normalization, and volumetric resizing to the same resolution. To this end, the tumor sample
was partitioned into three subsets: 70% training data, 15% validation data, and 15%
independent testing data. Furthermore, the tumor sample consisted of ... Random rotation and
flipping as data augmentation used in this work improved generalization under various
acquisition conditions [27].

The tumor classification dataset has four datasets that consist of glioma, meningioma,
pituitary tumor, and no tumor. The number of classes has a slight imbalance, whereby the cases
of glioma have the highest numbers, followed closely by meningioma, pituitary tumor, and the
least counted, no-tumor cases. The utilization of stratified statistical division of data and equal
mini-batch sampling will ensure that various kinds of tumors are learned equally by a variety
of algorithms. Concisely, this will improve the deep learning algorithms.
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Figure 6 compares the Dice Score of the offered DSC-SwinNet with various popular
models of segmentation architecture: VGG19, DenseNet 201, InceptionResNetV2,
EfficientNet V2L, and ConvNeXt. The VGG19 (0.842), a classical CNN-based architecture,
shows lesser segmentation faithfulness due to its limited penetration of features and its capacity
to clarify long-range framework connections between scans in MRI.

The datasets from four categories, which include glioma, meningioma, pituitary tumor,
and no tumor, will be used to categorize the types of tumors. This could not be completely
counterbalanced by the data split in stratified sampling and balancing the mini-batches during
training, but the slight unevenness of these groups relative to their classes (glioma: N1,
meningioma: N2, pituitary: N3, no tumor: N4) is compensated for. Similar evaluative metrics
at the class level, such as precision, recall, F1-score, and AUC, are provided to ensure that the
measurement of performance for any tumor type is equal.

Table 1. Segmentation Performance Comparison on BraTS Dataset

Model Dice score IoU HDY95 (mm)
VGGI19 0.842 0.781 7.10
DenseNet201 0.883 0.815 5.40
InceptionResNetV2 0.901 0.841 4.90
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EfficientNetV2L 0.914 0.853 4.30
ConvNeXt 0.921 0.867 4.00
DSC-SwinNet (Proposed) 0.934 0.891 3.70

The results of the DenseNet201 and InceptionResNetV2 models showed moderate
improvements of 0.883 and 0.901, respectively, with the advantage of more effective skip
connections and residual learning. In addition, the EfficientNetV2L and ConvNeXt models
achieved even better gains of 0.914 and 0.921, respectively, with the help of effective scaling
and the most recent attention normalization models. The above values, in terms of relative
measures, are displayed in Table 1.
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Figure 6. Comparative Analysis of Dice Score Analysis of the Proposed Framework for the Tumor
Segmentation

The proposed DSC-SwinNet, which has the highest Dice Score of 0.934, demonstrates
the most appropriate boundary delineation of the tumor and volumetric overlap with clinical
ground truth. This steady enhancement is associated with the hybrid dual-stage structure, which
combines the localized ROI scale with the globalized volumetric context in Swin-Transformer
attention blocks, allowing for high-quality localized representations of tumor complexities and
morphological variations.

The cross-entropy loss and Dice loss maintain a balance (1:1) to ensure they optimize
both the regions and the accuracy of classification at the voxel level. Dice loss addresses the
class imbalance problem and improves boundary delineation, whereas cross-entropy stabilizes
probabilistic learning. A statistically significant improvement in performance was not observed
with the different weightings in the validation experiments. This counters the notion that the
1:1 weighting equips the optimization plan of the dispensed framework to be robust and
reliable.
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Figure 7. Graphical Illustration of the Comparative loU Performance of the Proposed Framework

The Figure.7 represents the comparative performance of the proposed DSC-SwinNet
by the five state-of-the-art segmentation backbones were evaluated according to the IoU
information. The worst score of 0.781 was achieved in terms of IoU using the conventional
CNN, e.g., VGGI19, as it had narrow receptive fields and lacked deep contextual information,
creating partial instances of tumor boundary detection. InceptionResNetV2 (0.841) and
DenseNet201 (0.815) began to improve gradually with dense skip fusion as well as residual
feature propagation. However, on the other hand, EfficientNetV2L (0.853) and ConvNeXt
(0.867) enhanced DenseNet by maximizing depth, width, and even expansion of resolution,
remodelling convolutional-attention blocks.

The proposed model achieved the highest score in the [oU metric, with a score 0of 0.891,
indicating that the model would yield more spatially consistent tumor masks with minimal
under- or over-segmentation. This can be explained by the dual-stage architecture, which
permits more detailed spatial modeling of features as well as the ability to capture multi-modal
MRI features. The dual-stage architecture also allows for Swin-Transformer-based feature
encoding and ROI-based feature refinement. These results prove that the DSC-SwinNet
achieves superior clinical segmentation compared to the currently available deep learning
models.

HD95 (mm)
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Figure 8. Graphical Plot of the Comparative Score Analysis of HD95 for the Proposed Model with
Various Other Models

The comparison of HD95 scores of the proposed DSC-SwinNet and a few baseline
segmentation models is shown in Figure 8. An increase in HD95 values represents larger
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contour deviations and structural differences from the ground truth tumor boundary. As
indicated, VGG19 had the lowest HD95 of 7.10 mm indicating its low localization of
boundaries and inability to find fine tumor edges. DenseNet201 and InceptionResNetV2
exhibited slight progress (5.40 mm and 4.90 mm), whereas EfficientNetV2L and ConvNeXt
made even more steps toward reducingthe numbers (4.30 mm and 4.00 mm) because of their
more complex designs and better feature extraction capabilities. The proposed DSC-SwinNet
reached the highest HD95 of 3.70 mm, which indicates a superior level of depiction of tumor
boundaries anatomically and excellent volumetric consistency.

4.1 Ablation Study on DSC-SwinNet Architecture

In order to confirm the architectural value added by every major module in DSC-
SwinNet, an ablation analysis was conducted on the BraTS dataset by choosing to turn off
important elements. Figure 9 and Table 2 indicate the change in performance under a variety
of five architectures. Empowering the ROI-aware encoding, Swin-based self-attention, and
dual-stage global local fusion, as shown, provides consistent gains in Dice, IoU, and HD95
metrics, which in turn leads to the enhancement of the delineation of the entire model structure.

Table 2. Ablation Study on DSC-SwinNet Architectural Components

Model Dice score | IoU | HD9S (mm)
Baseline U-Net Encoder Only 0.902 0.835 4.90
Without Swin-Attention (CNN Fusion Only) 0.914 0.853 4.40
Without ROI-Stage Feature Encoder 0.921 0.862 4.12
Without Dual-Stage Global-Local Fusion 0.926 0.875 3.98
Full DSC-SwinNet (Proposed) 0.934 0.891 3.70
Baseline U-Net Encoder Only 0.902 0.835 4.90

In the study of the individual contribution of each structural element of DSC-SwinNet,
an ablation of the BraTS dataset was conducted by disabling core modules. Operating the U-
Net encoder alone, the results were worse, with a 0.902 Dice score and a 4.90 mm HD95,
indicating that the results lacked long-range contextual reasoning. Removing the Swin-
Transformer attention produced a mediocre increase in the Dice score (0.914), which supports
the multi-headed self-attention markedly enhances volumetric dependency learning.
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Figure 9. Graphical Plot of Ablation Study of the Proposed Framework
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By eliminating the ROI-sensitive encoder, the Dice coefficient decreased to 0.921,
which proves that extracting local anatomical cues around the tumor core is crucial for specific
segmentation, as shown in Table 3.

Table 3. Brain Tumor Type Classification Performance

Model Accuracy (%) | Precision (%) | Recall (%) | F1-score (%) AUC
VGGI19 86.3 85.7 84.9 85.3 0.90
DenseNet201 89.1 87.6 88.1 87.8 0.92
InceptionResNetV2 91.5 92.2 90.8 914 0.94
EfficientNetV2L 94.5 94.9 94.1 94.4 0.97
ConvNeXt 93.7 93.4 93.2 93.3 0.96
DSC-SwinNet (Proposed) 97.8 98.2 97.6 97.9 0.99

The impairment of the dual-stage global-local fusion also led to poor accuracy (0.926)
which confirms that staged hierarchical integration enhances contour refinement and spatial
consistency. The overall DSC-SwinNet has the highest Dice of 0.934, the least HD9S5 of 3.70
mm and the greatest loU of 0.891 which illustrates that all the architectural constituents work
together to attain optimal boundary fidelity, volumetric overlap and clinical quality tumor
delineation.
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Figure 10. Graphical Depiction of Performance Classification of the Proposed Framework Versus
Other Models

Figure 10 demonstrates the comparative classification output of the suggested DSC-
SwinNet alongside several other notable deep learning models by providing the accuracy and
Fl-score values. Traditional convolutional models VGG19 and DenseNet201 perform
relatively worse due to the lack of multi-scale contextual modeling, whereas
InceptionResNetV2 and EfficientNetV2L show relatively better performance owing to deeper
residual mapping and scalable architecture optimization. ConvNeXt also gives the baseline an
extra boost with re-parameterized convolutional blocks that incorporate current normalization
systems.
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Figure 11. Confusion Matrix Plot of the Proposed Framework for Different Classes

The results of the proposed DSC-SwinNet model with 1,000 multi-modal MRI test
samples in three tumor classes are represented in the confusion matrix in Figure 11, in which
only the three types of tumor categories are considered and the no-tumor category is excluded
for experimental purposes. The high diagonal counts of 338, 307, and 319 for Class-1, Class-
2, and Class-3, respectively, demonstrate that the classification of tumor types is highly
accurate, whereas the off-diagonal counts are very sparse. Class-1, Class-2, and Class-3
recorded a few cases of misclassification (8 and 4 cases), which indicates that the network
generalizes well across intensity variations, shape distortions, and boundary distortions among
tumor morphologies.

The analysis of the confusion matrix shows that the majority of the misclassifications
occur between glioma and meningioma types of tumors. This complication is caused by
overlapping radiological features, including similar contrast enhancement, peritumoral edema,
and abnormal boundary appearances in multi-modal MRI. In other instances, circumscribed
gliomas resemble meningiomas, whereas infiltrative meningiomas accompanied by edema
show intensity profiles similar to gliomas. The proposed dual-stage framework of classification
eliminates this ambiguity through a common utilization of local tumor morphology and global
contextual brain features to enhance inter-class discrimination.

Though the total classification exercise includes four categories of tumors: glioma,
meningioma, pituitary tumor, and no tumor, the confusion matrix graphical representation is
limited to the three types of tumors. The no tumor group is not included in the confusion matrix
to provide a better interpretation of the inter-tumor misclassification patterns, as it does not
show any overlapping radiological appearances with the tumor groups. All of the quantitative
measures in the rest of the Results section always take into consideration all four classes.

Figure 12 indicates the model calibration reliability chart of the offered DSC-SwinNet
structure, evaluated with seven probability bins and depicted with the Expected Calibration
Error (ECE=0.357). The dashed diagonal represents a hypothetically calibrated classifier with
predictive confidence equal to the true accuracy, whereas the blue curve represents the actual
calibration performance. Although the DSC-SwinNet distribution is not expected to follow the
diagonal at a variety of intervals, particularly within the low-confidence and high-confidence
ranges, the general direction of the trend shows a definite rise in empirical accuracy with
reference to model confidence, which indicates that higher predicted probability is associated
with enhanced classification reliability.
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Figure 12. Graphical Plot of Model Calibration Reliability of the Proposed Framework

The Expected Calibration Error (ECE) is calculated based on a seven-confidence
binning strategy using an equal-width binning approach, which provides a balance between
calibration resolution and statistical reliability. The moderate ECE value (0.357) is, by nature,
an error of heterogeneity and ambiguity in multi-modal MRI data, not a systematic
overconfidence of the model. Notably, the reliability diagram shows that the confidence of
prediction and the accuracy of the prediction remain consistent, indicating that the proposed
model is predictable and can be clinically relied upon to maintain the same predictability in the
future.

The Expected Calibration Error (ECE) is used to quantitatively test model calibration
and measure how far the prediction confidence has been wrong or how far the model has been
correct over a confidence bin. This is computed using an equal-width binning strategy, which
allows for the evaluation of probabilistic reliability amid multi-modal MRI variability.
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Figure 13. Distribution of the Predictive Uncertainty Plot for the Proposed Framework

Figure 13 shows the predictive uncertainty distribution of the suggested DSC-SwinNet
model, which is measured by the predictive entropy of the test set. It is important to note that
the histogram is skewed considerably to the right, with few instances of high entropy (0.65-
0.69), which means that most of the model's decisions are made with a great deal of certainty.
The percentage of samples with marginally higher uncertainty is very low, proving that cases
of uncertainty are not frequent statistically.

Entropy based on the softmax probability distribution is used to measure predictive
uncertainty. Empirical data has shown that when entropy values are greater than 0.65, the
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prediction is usually unreliable or ambiguous, typically due to low tumor boundaries or non-
homogeneous intensity distributions. These high-entropy predictions are thus considered
uncertain and might need further clinical assessment, while lower entropy values denote
confirmed and steady model predictions.
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Figure 14. Graphical Plot of the Proposed Model’s Robustness Curve

Figure 14 shows the strength of DSC-SwinNet in comparison to EfficientNetV2L at
increasingly higher levels of Gaussian noise added to the MRI data. The degradation curves
vividly indicate that, despite both models not increasing their classification accuracy as the
standard deviation of added noise grows, DSC-SwinNet has much higher noise resiliency at all
corruption levels. Particularly, when o is 0.20, the accuracy of EfficientNetV2L declines
drastically to 70, whereas DSC-SwinNet shows a significantly higher result of 85, which means
an increase in the capacity to retain accuracy of closer to 15 percent in comparison. Such
resilience is explained by the dual-stage mechanisms of the model that enable ROI-conditioned
local descriptors to be reinforced by global contextual embeddings generated by the
transformer-based self-attention mechanism, which allows the network to maintain
discriminative tumor signatures even when the structures of the boundaries and contrast
between tissues are distorted.
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Figure 15. Graphical Plot ROC Curve of the Proposed Model
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The per-class ROCs versus AUCs of the suggested DSC-SwinNet classifier are shown
in Figure 15. The three curves have consistently been located close to the upper left side, which
is a sign that DSC-SwinNet is very sensitive and specific when applied to various types of
tumors. The values of AUC are 0.956 in Class 1, 0.955 in Class 2, and 0.933 in Class 3; these
show a slight difference among the classes. The sharp increase of all curves at the origin
indicates that the model has a very high true positive rate even at an extremely low false
acceptance rate, which is important in a clinical context where the risk of a false diagnosis may
exist. These results show that this dual-stage architecture, which integrates ROI-centric tumor
images with global volumetric transformer visualizations, creates robust latent representations
that can differentiate between small radiological changes in different types of tumors.
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Figure 16. Graphical Plot of Bland-Altman Analysis of the Proposed Framework

The Bland-Altman analysis of DSC-SwinNet and EfficientNetV2L in terms of
segmentation Dice scores is shown in Figure 16, where the mean Dice of both models is taken
as the reference scale. All data points are within the 95-percent limits of agreement, and this
shows that there is a high level of consistency between the two architectures with no systematic
disagreement or instability. The positive bias line (= +0.027) indicates that DSC-SwinNet has
the same level of segmentation accuracy on all samples on average compared to
EfficientNetV2L, which proves that the positive bias is a consistent increase in accuracy and
not occasional gains. Moreover, the small gap between the upper and lower agreement bounds
indicates that the enhancement that DSC-SwinNet provides is statistically consistent and is not
affected by inter-sample variance.

5. Conclusion

The proposed DSC-SwinNet model achieves better performance, measured by the
accuracy of brain tumor segmentation and classification, compared to existing top-performing
models such as CNN and Transformer models. High accuracy, as indicated by the improved
performance parameters in terms of the Dice, loU, HD95, and ROC AUC, along with
calibration reliability and the presence of data agreement, as confirmed by the Bland-Altman
test, are essential characteristics of the proposed model. Moreover, the benefit of using the two-
step encoding of the Transformer to improve boundary discrimination at a finer scale, while
simultaneously achieving high classification accuracy and a high percentage of correctness
across all data samples, is a strong indication that the suggested alternative model is an
appropriate solution for the achievement of the concept of trustworthy artificial intelligence
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aids employed in neuro-diagnosis procedures. Additionally, the DSC-SwinNet model achieves
better performance in terms of the Dice score, classification accuracy, F1 score, and a high
AUC value 0f 0.934, along with a classification accuracy of 97.8% and a classification F1 score
0f 97.9% when the model is trained on the BraTS database.
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