Journal of Innovative Image Processing is accepted for inclusion in Scopus. click here
Home / Archives / Volume-2 / Issue-2 / Article-4

Volume - 2 | Issue - 2 | june 2020

Real Life Human Movement Realization in Multimodal Group Communication Using Depth Map Information and Machine Learning
Pages: 93-101
DOI
10.36548/jiip.2020.2.004
Published
06 June, 2020
Abstract

The latest advancements in the evolution of depth map information's has paved way for interesting works like object recognition sign detection and human movement detection etc. The real life human movement detection or their activity identification is very challenging and tiresome. Since the real life activities of the humans could be of much interest in almost all areas, the subject of identifying the human activities has gained significance and has become a most popular research field. Identifying the human movements /activities in the public places like airport, railways stations, hospital, home for aged become very essential due to the several benefits incurred form the human movement recognition system such as surveillance camera, monitoring devices etc. since the changes in the space and the time parameters can provide an effective way of presenting the movements, yet in the case of natural color vision, as the flatness is depicted in almost all portions of images. So the work laid out in the paper in order to identify the human movement in the real life employs the space and the time depth particulars (SpatialTemporal depth details-STDD) and the random forest in the final stage for movement classification. The technology put forth utilize the Kinect sensors to collecting the information's in the data gathering stage. The mechanism laid out to identify the human movements is test with the MATLAB using the Berkley and the Cornell datasets. The mechanism proposed through the acquired results proves to deliver a better performance compared to the human movements captured using the normal video frames.

Keywords

Space-Time Information's Machine Learning Random Forest STDD Histogram of Gradient

×
Article Processing Charges

Journal of Innovative Image Processing (jiip) is an open access journal. When a paper is accepted for publication, authors are required to pay Article Processing Charges (APCs) to cover its editorial and production costs. The APC for each submission is 400 USD. There are no additional charges based on color, length, figures, or other elements.

Category Fee
Article Access Charge 30 USD
Article Processing Charge 400 USD
Annual Subscription Fee 200 USD
Payment Gateway
Paypal: click here
Townscript: click here
Razorpay: click here
After payment,
please send an email to irojournals.contact@gmail.com / journals@iroglobal.com requesting article access.
Subscription form: click here