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 Abstract 

The proposed study is on the partial clustering algorithms for cognitive sensor networks 

that deal with partially observed data. The proposed algorithms aim to estimate clusters in the 

presence of missing values and leverage data imputation techniques to fill in the gaps in the 

target and station device matrices. A modified loss function is introduced to shape the cluster 

centers, and robust Non-negative Matrix Factorization (NMF) algorithms are utilized to 

enhance the robustness of the clustering process. This research contributes to the field of 

cognitive sensor networks by providing insights into the challenges of partial clustering and 

presenting effective algorithms to address them. The proposed methods have the potential to 

enhance the performance of clustering tasks in various domains, including sensor networks, by 

accounting for missing data and producing accurate cluster reconstructions. 

Keywords: Comodule Estimation, Partial Clustering, Sensor Network, Partial Observed Data  

 Introduction 

Partial clustering of sensor networks is important for modern communications [1-3]. 

Partial clustering significantly reduces the overhead associated with complete clustering. In 

complete clustering, where all nodes participate in the clustering process, the exchange of 

clustering messages and the reconfiguration of clusters can consume significant network 

resources. With partial clustering, clustering is performed selectively, only when it is 
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necessary, thereby minimizing the overhead and conserving energy. Clustering helps in 

balancing the energy consumption among sensor nodes. By forming clusters, nodes can 

aggregate and merge their data at the cluster head, reducing the amount of data transmitted to 

the base station. Partial clustering further enhances energy efficiency by ensuring that 

clustering is initiated only when the cluster head has consumed a certain portion of its 

energy.This approach helps in prolonging the network's lifetime by efficiently utilizing the 

limited energy resources of sensor nodes. Sensor networks are often deployed on a large scale, 

consisting of hundreds or thousands of nodes. Partial clustering enables scalability by allowing 

the network to handle a large number of nodes. Instead of all nodes participating in the 

clustering process simultaneously, only a subset of nodes needs to be involved in each round 

of clustering. This reduces the computational and communication requirements, making it 

feasible to deploy and manage large-scale sensor networks [4]. Partial clustering allows for 

dynamic network reconfiguration based on changing conditions and requirements. As the 

network evolves over time, the clustering structure can be adjusted to accommodate new nodes, 

node failures, or changes in network topology. By continuously evaluating the energy levels 

and scores of nodes, the partial clustering algorithm can adaptively select new cluster heads 

and members, ensuring efficient utilization of resources and maximizing network performance. 

Partial clustering of sensor networks presents several challenges that need to be addressed. One 

of the key challenges in partial clustering is selecting appropriate cluster heads. The algorithm 

needs to consider factors such as residual energy, node scores, and network topology to identify 

the most suitable nodes to act as cluster heads. Designing an efficient and effective cluster head 

selection mechanism is crucial to ensure optimal cluster formation and energy balancing. 

Partial clustering algorithms operate in a distributed manner, where each sensor node 

independently decides whether to become a cluster head or join an existing cluster. Achieving 

consensus among nodes without global information or centralized control is challenging. The 

algorithm must incorporate mechanisms for nodes to exchange local information, make 

decisions based on that information, and coordinate their actions to form clusters in a 

decentralized manner. Sensor networks are dynamic in nature, with nodes joining or leaving 

the network over time. This poses a challenge for partial clustering algorithms, as the clustering 

structure needs to adapt to changes in node availability and network topology. Ensuring smooth 

transitions during cluster reformation and maintaining network stability in the face of dynamic 

events require careful algorithm design and coordination among nodes. Partial clustering aims 
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to reduce the overhead associated with complete clustering, but finding the right balance 

between overhead reduction and network efficiency is challenging. The algorithm should 

determine the optimal conditions for initiating partial clustering to minimize overhead while 

still maintaining efficient energy utilization and network performance. Striking the right trade-

off is crucial to achieve energy savings without sacrificing data collection, communication 

reliability, or network lifetime. As sensor networks scale up in size, the challenges of partial 

clustering become more pronounced. The algorithm should be scalable to handle large numbers 

of nodes and should not be overly complex in terms of computational requirements or 

communication overhead. Ensuring scalability while maintaining the benefits of partial 

clustering, such as energy efficiency and adaptability, is a significant challenge in the design 

and implementation of clustering algorithms. Addressing these challenges requires a thorough 

understanding of the network characteristics, careful algorithm design, and performance 

evaluation. Researchers and engineers need to consider these challenges to develop robust and 

efficient partial clustering algorithms that can effectively support the requirements of diverse 

sensor network applications. To address the challenges of partial clustering in sensor networks, 

several solutions can be considered. Develop sophisticated algorithms for cluster head selection 

that take into account multiple factors such as residual energy, node scores, communication 

costs, and network topology. Machine learning techniques, optimization algorithms, or hybrid 

approaches can be employed to improve the accuracy and efficiency of cluster head selection. 

These advanced methods can provide better cluster formation and energy balancing. Design 

algorithms that adapt to changes in network dynamics, such as node mobility, failures, or 

additions. Introduce mechanisms for periodic re-evaluation of cluster formation to 

accommodate new nodes or changes in node characteristics. Incorporate dynamic decision-

making processes that consider real-time information to adjust cluster configurations, ensuring 

the algorithm remains effective and efficient in dynamic environments. Develop efficient 

communication protocols to minimize the overhead associated with clustering messages. 

Utilize techniques such as data aggregation, compression, or hierarchical communication 

structures to reduce the amount of data transmission and clustering-related signalling. Efficient 

communication protocols can reduce energy consumption and improve network scalability. 

Combine partial clustering with other techniques such as data-driven approaches, machine 

learning, or mobility-aware algorithms [5]. Hybrid approaches can enhance the clustering 

process by leveraging additional information or context-specific factors. For example, 
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incorporating data similarity metrics or location-based information can improve the accuracy 

of cluster formation and enable better utilization of sensor resources. Implement energy-aware 

scheduling mechanisms that optimize the active and sleep periods of sensor nodes. Design 

protocols that allow nodes to coordinate their active periods to ensure data collection and 

communication while maximizing energy conservation. By synchronizing the active periods, 

nodes can effectively utilize available resources and reduce energy wastage. Conduct extensive 

simulations and performance evaluations to assess the efficiency and effectiveness of partial 

clustering algorithms. Consider various network scenarios, such as different network sizes, 

node densities, and traffic patterns, to evaluate the scalability, energy efficiency, network 

lifetime, and data reliability of the algorithms. This iterative process helps refine and optimize 

the algorithm design. Foster collaboration among researchers, practitioners, and 

standardization bodies to establish common guidelines and benchmarks for partial clustering 

algorithms. Encouraging the exchange of ideas, sharing of datasets, and promoting open 

research can accelerate advancements in partial clustering techniques and facilitate the 

adoption of standardized solutions. By exploring these possible solutions and continuously 

advancing research and development in partial clustering, it is possible to overcome the 

challenges and achieve more efficient and scalable sensor networks with prolonged network 

lifetime and improved energy utilization. 

In summary, the scope of the proposed work is to estimate clusters in the presence of 

missing values and leverage data imputation techniques to fill in the gaps in the target and 

station device matrices. Therefore, clustering models can be performed. 

The rest of this study is organized as follows. Section 2 shows related works. Section 3 

is the proposed method with the experiment in Section 4. Section 5 is the conclusion. 

 Related Work 

Non-Negative Matrix Factorization (NMF) is a matrix factorization technique that has 

been successfully applied in various domains, including signal processing, image processing, 

and clustering [6-16]. While NMF may not be directly applicable to the specific problem of 

partial clustering in sensor networks, it can be leveraged as a component or an optimization 

technique within a larger clustering framework [17, 18]. NMF can be employed to extract 

meaningful features from sensor data. By decomposing the sensor data matrix into non-
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negative basis vectors, NMF can identify underlying patterns or components in the data. These 

extracted features can then be used as input for subsequent clustering algorithms. NMF can be 

used for data compression by approximating the original data matrix with a lower-rank NMF 

representation. This can help reduce the amount of data that needs to be transmitted or 

processed, leading to energy savings and improved efficiency in partial clustering algorithms. 

NMF can facilitate dimensionality reduction by identifying a reduced set of non-negative basis 

vectors that capture the most significant characteristics of the data. By reducing the 

dimensionality of the data, clustering algorithms can operate on a smaller feature space, which 

can enhance clustering performance and reduce computational complexity. NMF can be 

utilized to initialize the cluster centers or prototypes in clustering algorithms. By decomposing 

the data matrix into non-negative components, NMF can provide an initial set of representative 

patterns or cluster centers. These initial centers can then be refined and updated using 

traditional clustering algorithms to achieve better clustering results. NMF-based clustering 

algorithms can be developed by incorporating NMF directly into the clustering process. These 

algorithms aim to simultaneously cluster the data while decomposing it into non-negative 

components. By integrating NMF and clustering, it is possible to exploit the inherent non-

negativity constraints of the data and potentially improve clustering accuracy and 

interpretability.  

L2-norm NMF (Nonnegative Matrix Factorization) is a variant of the traditional NMF 

algorithm that uses the L2-norm (Euclidean norm) as the regularization term in the objective 

function [19, 20]. The objective of L2-norm NMF is to find nonnegative factor matrices that 

minimize the reconstruction error while promoting sparsity and stability in the factorization. In 

the standard NMF formulation, the objective function is typically based on the Frobenius norm, 

which is the L2-norm of the difference between the original data matrix and its approximation 

reconstructed from the factor matrices. However, L2-norm NMF extends this by adding an L2-

norm regularization term to the objective function. The L2-norm regularization term 

encourages sparsity in the factor matrices by penalizing large values and promoting small 

values. This helps in identifying a concise and meaningful set of components that contribute 

significantly to the data representation while suppressing the influence of less important or 

noisy components. By incorporating the L2-norm regularization, L2-norm NMF can help 

improve the robustness, generalization, and interpretability of the factorization results. 
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L1-norm NMF (Nonnegative Matrix Factorization) is a variant of NMF that 

incorporates the L1-norm (also known as the Manhattan norm or absolute norm) as the 

regularization term in the objective function. L1-norm NMF promotes sparsity in the factor 

matrices, resulting in a more sparse and interpretable representation of the data. In the standard 

NMF formulation, the objective function is typically based on the Frobenius norm, which is 

the L2-norm of the difference between the original data matrix and its approximation 

reconstructed from the factor matrices. However, L1-norm NMF extends this by adding an L1-

norm regularization term to the objective function. The L1-norm regularization term 

encourages sparsity by promoting coefficients or entries of the factor matrices to be exactly 

zero. This leads to a sparse representation, where only a subset of components is actively 

involved in explaining the data. By incorporating the L1-norm regularization, L1-norm NMF 

encourages sparse and concise representations, where only a few components are selected to 

explain the data, while the majority of components have zero or near-zero coefficients. This 

sparsity property can enhance interpretability, reduce overfitting, and improve the robustness 

of the factorization results. L1-norm NMF has been widely used in various applications such 

as signal processing, image analysis, text mining, and feature selection, where sparsity and 

interpretability are desired. 

L2,1-norm NMF (Nonnegative Matrix Factorization) is an extension of NMF that 

utilizes the L2,1-norm as a regularization term in the objective function [21, 22]. The L2,1-norm 

promotes structured sparsity, which encourages groups of coefficients or entries in the factor 

matrices to be simultaneously zero or small. In the standard NMF formulation, the objective 

function is typically based on the Frobenius norm, which is the L2-norm of the difference 

between the original data matrix and its approximation reconstructed from the factor matrices. 

However, L2,1-norm NMF extends this by adding an L2,1-norm regularization term to the 

objective function. The L2,1-norm regularization term promotes structured sparsity by 

encouraging groups of coefficients or entries in the factor matrices to be jointly zero or small. 

This means that instead of having individual coefficients set to zero independently, entire 

groups or subsets of coefficients are simultaneously set to zero. This can lead to more 

interpretable and meaningful structure in the learned representations. The L2,1-norm is 

computed as the sum of the L2-norms of the rows of a matrix. In the context of NMF, the L2,1-

norm of the right factor matrix encourages sparsity across the columns of the right factor 

matrix, promoting group sparsity in the factorization. By incorporating the L2,1-norm 



                                                                                                                                                                                                                                      Abdul bin Ismail 

 

IRO Journal on Sustainable Wireless Systems, September 2023, Volume 5, Issue 3 255 

 

 

regularization, L2,1-norm NMF encourages structured sparsity, where entire groups of 

coefficients are simultaneously set to zero or small. This can be useful in scenarios where there 

is prior knowledge or assumption about the underlying structure of the data, and can lead to 

more meaningful and interpretable factorizations. L2,1-norm NMF has been applied in various 

domains such as image processing, bioinformatics, and text mining, where structured sparsity 

and group-level interpretations are desired. 

Robust NMF (Nonnegative Matrix Factorization) is an extension or variant of the 

traditional NMF algorithm that incorporates robustness mechanisms to handle outliers, noise, 

or corrupted data [23-31]. It aims to improve the stability and reliability of the factorization 

process in the presence of disturbances in the input data. The basic NMF algorithm assumes 

that the input data can be accurately represented as a linear combination of nonnegative 

components. However, in real-world scenarios, the data may contain outliers or noise that can 

significantly impact the factorization results. Robust NMF algorithms address this issue by 

introducing robust optimization techniques or incorporating additional constraints to enhance 

the resilience of the factorization process. There are different approaches to achieving 

robustness in NMF. Some common techniques include: Robust cost functions: Instead of using 

the traditional least squares error as the objective function, robust NMF algorithms employ 

robust cost functions that are less sensitive to outliers. Examples include L1 norm, Huber loss, 

or Cauchy loss functions[32-35]. By imposing sparsity constraints on the factor matrices, 

robust NMF algorithms encourage the identification of a sparse set of meaningful components 

while suppressing the impact of outliers or noise. Robust NMF methods may include outlier 

detection and rejection mechanisms to identify and discard outliers or noisy samples before 

performing the factorization. This helps improve the accuracy of the factorization results. The 

goal of robust NMF is to achieve more reliable and interpretable factorizations, even in the 

presence of challenging data conditions. By considering the robustness aspect, these algorithms 

can be valuable in various domains, such as image processing, signal analysis, bioinformatics, 

and data mining, where data quality and integrity are critical factors. 
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 Proposed Work 

 

 

Figure 1.  Framework of the Proposed System 

The overall framework of the proposed system is illustrated in Figure 1. The inputs are target 

and station device matrices, which are analysed in the co-factorization module while 

regularization constraints are imposed. Then, the factor matrices are computed and used for 

cluster reconstruction. The details are as follows. 

Let M be the number of feature dimensions, L mean the number of targets, and N signify the 

number of station devices. Target and station device matrices XT and XD are M-by-L and M-

by-N, respectively. Assume that they contain missing value entries. Data imputation algorithms 

are used to fill in the entries with substituted values and obtain estimated DX̂  and TX̂ . Then, 

the loss function is defined as (1) based on [15] with some modifications to fit the applications.  
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where W, HD, and HT are factor matrices, and their dimensions are M-by-P, P-by-N, and P-

by-L. Additionally, ||·||F, ||·||2, ||·||1, and ||·||2,1 are the Frobenius norm, L2 norm, L1 norm, and 

L2,1 norm, Tr(·) is the trace operator, ⊤ is the transpose, and ⋆ is the slicing operator. Moreover, 

α, β, γ, δ, and λ are all scalar parameters to control penalty terms. Finally, A and B are a 
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similarity matrix and a connection bipartite matrix, and P is the hidden dimension. Cluster 

centers are formed in W. To increase robustness, robust NMF algorithms are used to reshape 

cluster centers by using half quadratic loss functions ϕ(·). Then, 

 ( ) ( ) ( ) 2 2

D D T T 2 12 1

ˆ ˆmin Vol ,   − + − + + +X UV X UV U U U   (2) 

where η is a scalar parameter, and Vol(·) is the volume penalty term. Cluster centers are formed 

in M-by-P U. To fuse cluster center information, the weighted function is used. 

 ( ) ( ) ,= + + +C W W U U W U% %     (3) 

where %  is elementwise division. The algorithm 1 below illustrates the robust NMF algorithms 

used in reshaping the cluster centers by using half quadratic loss functions. 

  

 Input: Target and station device matrices XT and XD 

 Output: C 

1 Initialize W, HD, and HT 

2 Compute A and B 

3 Do While 

4 Compute W using the multiplicative update rule 

5 Compute HD using the multiplicative update rule 

6 Compute HT using the multiplicative update rule 

7 Until Convergence 

8 Reconstruct DX̂  using WHD 

9 Reconstruct TX̂  using WHT 

10 Do While 

11 Compute U using NNLS 

12 Compute VD using NNLS 

13 Compute VT using NNLS 

14 Until Convergence 

15 Compute C using W and U 

 

Algorithm .1 Cluster Centre Reshaping 

The intuition behind the proposed method was that the factor matrices and coefficient matrices 

learned from the inputs (although they were incomplete) are used. The defect parts could be 

initialized and updated in iterations (like the Expectation-Minimization strategy). Therefore, 

one could estimate the correct content inside the incomplete part. 
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Data imputation plays a crucial role. Data imputation techniques are used to address the 

issue of missing values in the collected data. Missing data can arise due to various reasons, 

such as sensor failures, transmission errors, or limitations in data collection mechanisms. The 

absence of data points can significantly impact the quality of cluster analysis, making data 

imputation a necessary step to mitigate this problem. Necessity of data imputation is as follows: 

it's common to have missing data because not all sensors or devices report information 

simultaneously. Imputing missing values ensures that data integrity is maintained and that 

clusters are formed based on as much available information as possible. Data imputation 

enhancing cluster quality. Accurate and complete data are essential for producing meaningful 

clusters. Imputing missing data allows the clustering algorithms to consider all relevant 

information, leading to more accurate cluster assignments. 

 Results and Discussion 

To evaluate the effectiveness of the proposed method, this study conducted experiments 

using real sensor networks to collect sensing data. The experiment involved a total of 10 targets 

and 20 stations, implemented on embedded systems comprising transmitter and receiver 

components. Specifically, this study used embedded systems “Raspberry Pi 4B + Waveshare 

RM502Q-AE 5G HAT” to collect data and MATLAB to simulate clustering reconstruction 

environments. Each target device transmitted labelled data to the corresponding station, with a 

total of two unique labels. It is important to note that each target device was associated with 

only one label type, ensuring clear distinctions. At lease one connection between a target and 

a station was established. To simulate real-world scenarios, this study introduced missing 

values into the collected data matrices. The missing values were randomly selected, resulting 

in a missing rate of 5.00%. Additionally, all labels were removed from the data matrices. To 

address the missing values, this study employed a data imputation algorithm, generating 

imputed matrices for further analysis. In the evaluation, this study varied the variable p, which 

represents a parameter range from two to 10, with a fixed separation of one. It is worth 

mentioning that the correct number of clusters in the data was known to be two. After the 

proposed method estimated the number of clusters, this study used accuracy rates to assess its 

effectiveness in producing accurate results. 
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The procedure for selecting favourable values of the model parameter was based on 

layers of loops, where one loop was designed for one parameter. Five parameters involved five 

layers. This study recorded the performance of the model with respect to each change in 

parameter. The step size was 0.50, and the range was within one and zero. When the loops 

ended, the system could find the best ones. 

Table 1. Favourable Values of the Parameters 

Parameter Favourable Value 

α 0.30 

β 0.50 

γ 0.25 

δ 0.30 

λ 0.50 

 

Experiment 1: Assessment of the Need for Data Imputation 

This study performed a test to assess the necessity of data imputation (with the use of 

Robust NMF [32], i.e., filling in missing data with initial values and iteratively updating 

replacements after matrix factorization and rebuilding as shown in Figure 2.using four distinct 

datasets collected with the devices. 

. 

 

 

 

Figure 2.  Data Imputation Flow 

The procedure followed the same protocol mentioned at the beginning of this section. The baseline was 

the proposed method without data imputation. The experimental results are presented in Figure 4. The 

vertical axis represents clustering accuracy, while the horizontal axis displays different datasets. It is 

evident that the proposed algorithm with data imputation produced superior results. The figure.3 

illustrates the accuracy comparison of the need for data imputation. 
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Figure 3.  Accuracy Comparison of the Need for Data Imputation 

Experiment 2: Assessment of Different Methods 

This study conducted a performance evaluation test comparing the proposed method 

with several existing methods, using the same datasets and parameters as before. The methods 

for comparison included Comodule Discovery (CD) [15], Cooperative Comodule Discovery 

(CCD) [5], Versatile Clustering (VC) [14], and Alternate Least Squares (ALS) [17, 18]. Figure 

4 displays the numerical results, with the horizontal axis representing different datasets and the 

vertical axis representing accuracy. As shown in the figure, this study observed that the 

proposed method improved accuracy by an average of 5.99% across all the datasets, 

demonstrating its effectiveness. The improvements were 7.24%, 4.58%, 6.05, and 6.11% for 

each dataset. 

 

Figure 4.  Accuracy Comparison of Different Methods. 



                                                                                                                                                                                                                                      Abdul bin Ismail 

 

IRO Journal on Sustainable Wireless Systems, September 2023, Volume 5, Issue 3 261 

 

 

Experiment 3: Testing of Cluster Prediction 

The experimental results are depicted in Figure 5, with accuracy represented on the 

vertical axis and the number of clusters on the horizontal axis. It is evident from the graph that 

the highest accuracy aligns with the correct number of clusters. This clear correlation indicates 

the effectiveness of the proposed method in accurately reconstructing clusters. 

 

Figure 5.  Experimental Results of Estimated the Number of Clusters 

 

 Conclusion 

This study proposes a method for estimating clusters in cognitive sensor networks with 

partially observed data. The method involves utilizing target and station device matrices with 

missing value entries, which are filled using data imputation algorithms. A loss function is 

defined based on factor matrices and penalty terms to shape the cluster centers. Robust NMF 

algorithms are employed to increase robustness. To evaluate the proposed method, experiments 

were conducted using real sensor networks. The experiment involved 10 targets and 20 stations, 

and missing values were introduced into the data matrices with a 5.00% missing rate. Labels 

were removed from the matrices, and a data imputation algorithm was used to generate imputed 

matrices. The evaluation included varying a parameter range from two to 10, with the correct 
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number of clusters known to be two. The accuracy rates were used to assess the effectiveness 

of the method. The experimental results, illustrated in Figure 5, demonstrate that the highest 

accuracy corresponds to the correct number of clusters. This indicates the effectiveness of the 

proposed method in accurately reconstructing clusters. 
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