

A Comparative Analysis of Cloud-Based Healthcare Platforms through Effective Machine Learning Approaches

Atikom Srivallop

Information Technology Dept, Stamford International University, Bangkok, Thailand

E-mail: atikom.srivallop@stamford.edu

Abstract

The integration of cloud computing and machine learning in healthcare platforms has revolutionized the delivery of medical services, offering scalable solutions for data storage, processing, and analysis. This study presents an overview of various cloud-based healthcare platforms, focusing on the effectiveness of machine learning approaches in enhancing patient care and operational efficiency, and compares the performance of different machine learning models employed in the platforms for diverse healthcare applications. The findings provide insights into the strengths and limitations of existing cloud-based healthcare solutions, guiding healthcare providers and policymakers in selecting optimal platforms for improved patient outcomes and resource utilization.

Keywords: Health care platforms, Machine Learning, Cloud platforms, patient care, operational efficiency.

1. Introduction

The healthcare industry is undergoing a significant transformation with the advancements in technology, particularly in terms of cloud computing and machine learning. Cloud-based healthcare platforms offer unprecedented opportunities for storing, managing, and analyzing vast volumes of medical data, while machine learning algorithms enable intelligent decision-making and predictive modelling [1]. This convergence has the potential to revolutionize patient care delivery, disease diagnosis, treatment planning, and healthcare

resource management. However, along with the proliferation of cloud-based solutions and machine learning techniques, there is a need for empirical research to evaluate their comparative effectiveness in real-world healthcare applications[17-21]. This research aims to address this gap by conducting a comprehensive comparative analysis of cloud-based healthcare platforms through effective machine learning approaches.

The primary objective of this research study is to compare the different cloud-based healthcare platforms utilizing machine learning algorithms.

Specific research objectives include:

- To present an over of cloud-based healthcare platforms and machine learning algorithms.
- To compare the performance of machine learning models deployed on various cloud platforms.

This research focuses on conducting a comparative analysis of cloud-based healthcare platforms, specifically exploring the effectiveness of machine learning approaches. The study compares a wide range of machine learning algorithms deployed on popular cloud platforms, utilizing diverse healthcare datasets.

2. Cloud-based Healthcare and Machine Learning (ML)

Cloud computing has gained significant traction in the healthcare industry due to its scalability, flexibility, and cost-effectiveness. Cloud-based healthcare platforms offer infrastructure-as-a-service (IaaS), platform-as-a-service (PaaS), and software-as-a-service (SaaS) solutions personalized to the unique requirements of healthcare organizations [2]. These platforms facilitate secure storage, seamless data sharing, and collaborative analytics, enabling healthcare providers to leverage large-scale computing resources without requiring any high investments. Machine learning has emerged as a powerful tool for extracting actionable insights from healthcare data, including electronic health records (EHRs), medical images, genomics, and wearable sensor data. Supervised, unsupervised, and reinforcement learning techniques have been applied to various healthcare tasks, such as disease prediction, diagnosis, personalized treatment planning, and outcome prediction. Machine learning algorithms,

including logistic regression, decision trees, random forests, support vector machines, neural networks, and deep learning models, have demonstrated remarkable performance in healthcare applications, often outperforming traditional statistical methods. The integration of cloud computing and machine learning has unlocked new opportunities for innovation in healthcare. Cloud-based machine learning platforms, such as Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform (GCP), and IBM Watson Health, provide scalable infrastructure and pre-built machine learning tools for healthcare applications. These platforms offer robust data storage, distributed computing, and advanced analytics capabilities, enabling healthcare organizations to develop and deploy machine learning models at scale. However, the selection of an appropriate cloud platform and machine learning algorithm depends on various factors, including data privacy regulations, computational requirements, model interpretability, and performance metrics.

Despite the potential of cloud-based healthcare platforms and machine learning approaches, several challenges must be addressed to realize their full potential in clinical practice. Data privacy and security concerns, interoperability issues, regulatory compliance, bias and fairness in algorithmic decision-making, and integration with existing healthcare systems are some of the key challenges facing healthcare stakeholders [3]. Moreover, the interpretability, transparency, and trustworthiness of machine learning models are critical considerations for healthcare professionals and patients. Nevertheless, with proper governance, collaboration, and continuous evaluation, cloud-based healthcare platforms and machine learning techniques offer unprecedented opportunities for improving patient outcomes, reducing healthcare costs, and advancing medical research.

3. Analysis on Cloud based Healthcare Platforms

The various researchers find key results include elements that influence cloud platform performance, the various pricing structures offered by cloud service providers, and the relevance of simple interfaces in cloud services. Performance and service comparisons between AWS, Azure, and GCP have shown that all three platforms offer reliable and efficient cloud solutions, with GCP being particularly noted for its rising popularity and diverse services [5]. The features of AWS, Azure, and GCP have been analyzed, with GCP again standing out for

its variety of services and potential to meet long-term requirements [4]. Table 1 illustrates the cloud based platforms.

Table 1. Cloud Based Platforms

Pape	Technic Used	Main Findings	Output	Future Work
r				
[4]	AWS, Azure, and GCP	Discussed about the difficulties in choosing a cloud service provider because of the range of services available, and compared AWS, Azure, and GCP's tools to assist users in making wise choices.	A comparison and analysis of AWS, Azure, and GCP's computation, storage space management, and performance tools	Exploring the impact of different data visualization tools on decision-making processes, data interpretation, and overall outcomes in healthcare and life sciences.
[5]	GCP	Organisations are moving their workloads to the cloud in order to save money, increase scalability, and improve performance. With its many services and features, Google Cloud Platform (GCP) is included in the study's suggested model.	High performance, scalability, and cost reduction of deploying a hospital management system	Future initiatives may involve comparing various cloud computing providers, examining the influence of GCP's services on application deployment, and investigating its ongoing results on organisation success.
[6]	AWS, Azure	Public cloud market share will likely increase significantly, with AWS having the largest share, followed by Microsoft and Google.	Comparison and analysis of cloud services provided by Amazon, Microsoft, and Google in terms of storage, computing, administration tools, and other factors to assist organisations in selecting the best cloud service provider depending	Future research areas include reviewing factors for selecting CSPs based on IaaS, SaaS, and PaaS capabilities, evaluating the efficiency of employing Multi-Vendor CSPs to distribute risk, and investigating the role of Managed Service Providers

			on their individual needs. The role of Managed Service Providers (MSPs) in offering various CSPs are discussed.	in offering numerous CSPs.
[7]	Microsoft Azure and Google Cloud Platform	Key results include elements that influence cloud platform performance, the various pricing structures offered by cloud service providers, and the relevance of simple interfaces in cloud services.	The cost of employing cloud services, Interfaces are user-friendly.	Future considerations include analysing the scalability, security, and availability when selecting a cloud computing platform, in addition to aspects like regulation, reliability, and locked-in vendors.
[8]	Azure	Azure is found to be more suitable for pricing and availability, while AWS excels in providing a 12-month free trial period and preserving user data even after the trial period ends.	User satisfaction scores for several comparative metrics across a range of participant characteristics are the main research outcomes.	Future research will include studying the expanding applications of cloud computing in different fields, considering the specific factors that make platform comparison challenging, and investigating the effects of years of experience, gender, and position on various aspects of cloud computing.
[9]	AWS	The study covers the advantages of cloud computing for healthcare administration, the benefits of information technology for efficiently managing patient data, and the suggestion of Symmetric DS	Development of a platform-sharing mechanism for EHR data access, sharing, and contribution to a unified EHR system among	Future research would include strengthening security protocols in cloud-based EHR systems, looking into the usage of other data

	software	for	database	distributed	formats, such as
	replication.			healthcare	HL7, for better
				organisations that	interoperability,
				integrate Amazon	and analysing the
				Web Services'	patient approval
				cloud computing	processes to
				infrastructure	guarantee data
					protection and
					consent-based
					sharing.

4. Implementation of Machine Learning Algorithms in Healthcare Tasks

A review of benchmarks in medical machine learning for structured data found little progress in predictive performance over a 3-year period, with deep recurrent models only outperforming logistic regression on certain tasks [13]. However, supervised machine learning classifiers, such as k nearest neighbors and Random Forest, have shown high accuracy in predicting healthcare operational decisions, such as the need for caesarian section [14]. Table 2 shows the machine learning approaches.

Table 2. Machine Learning Approaches

Paper	Technic Used	Main Findings	Output
[10]	Machine learning algorithms	The study finds a subset of machine learning (ML) algorithms that perform better for timely predictions in particular healthcare scenarios.	Accuracy rates of several machine learning algorithms are compared based on the COVID-19, diabetes, heart failure, stroke, breast cancer, and renal disease prediction
[11]	Logistic regression and Random Forest	Higher accuracy and AUC values are obtained when applied to medical datasets.	Accuracy of predictions and AUC value of machine learning algorithms applied to medical datasets
[12]	DT and NB	The key conclusion is that by merging two machine learning algorithms, it was possible to predict heart issues with an accuracy of 81.1%.	Accuracy of machine learning classifiers in predicting cardiac issues
[13]	Logistic regression	Clinical prediction tasks in medical machine learning- Deep recurrent models are superior to logistic regression on certain tasks	Mortality, Length of stay, Phenotyping, and Patient decompensation

[14]	k nearest neighbors and Random Forest	Predicts healthcare operational decisions with a focus on caesarian section and has achieved an accuracy of 95.00% with algorithms like k nearest neighbors and Random Forest. These findings highlight the potential of machine learning in improving decision-making in healthcare operations.	Machine learning classifiers' accuracy in forecasting healthcare operations 95.00%
[15]	Machine learning algorithms	Powerful automated systems have been successfully produced by machine learning; current developments centre on the detection and diagnosis of diseases; and problems in AI arise from optimising algorithms.	The ability of machine learning algorithms to recognise and diagnose different diseases.
[16]	Decision tree algorithm, Support vector machine method, Random Forest method	Usability and applicability of various machine learning techniques in the disease diagnosis and treatment.	Performance and accuracy of different machine learning techniques in the diagnosis and treatment of diseases are calculated.

4.1 Platform Performance

The comparative analysis revealed notable variations in the performance of different cloud-based healthcare platforms. Factors such as data processing speed, model training time, prediction accuracy, and scalability were evaluated across platforms including AWS, Azure, GCP, and IBM Watson Health.

AWS demonstrated robust scalability and a wide array of machine learning tools, making it suitable for large-scale healthcare applications. Azure excelled in seamless integration with existing Microsoft technologies and provided comprehensive security features. GCP showcased high computational efficiency and flexibility in deploying custom machine learning solutions. IBM Watson Health stood out for its advanced cognitive capabilities and extensive healthcare domain expertise.

4.2 Algorithm Performance

Machine learning algorithms exhibited varying performance across different healthcare tasks and datasets. Supervised learning algorithms such as logistic regression, random forests, and gradient boosting machines demonstrated competitive performance in predicting clinical outcomes, disease diagnoses, and treatment responses. Machine learning models such as Decision Tree (DT), Logistic Regression (LR) and its hybrid models excelled in processing medical images, natural language text, and time-series data. Unsupervised learning techniques, such as clustering and dimensionality reduction, enabled exploratory analysis and pattern detection in large-scale healthcare datasets. Figure 1 shows the performance of different machine learning models in the research literature.

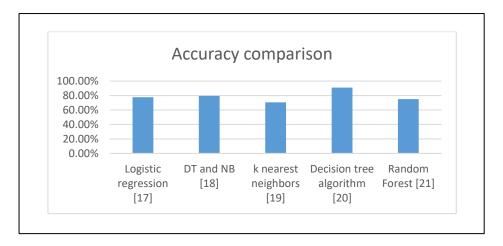


Figure 1. Accuracy Comparison of Different Machine Learning Algorithms

5. Conclusion and Future Directions

The comparative analysis of cloud-based healthcare platforms through effective machine learning approaches provided valuable insights for healthcare stakeholders. AWS, Azure, GCP, and IBM Watson Health offered scalable infrastructure and advanced analytics capabilities, each with unique strengths and limitations. Machine learning algorithms demonstrated varying performance across different healthcare tasks, with supervised, deep learning, and unsupervised techniques showing promise in improving patient care delivery and operational efficiency. By synthesizing these findings, healthcare providers and policymakers can make informed decisions regarding the selection and deployment of cloud-based healthcare

platforms and machine learning approaches to drive innovation and improve patient outcomes in the rapidly evolving healthcare landscape. On the other hand, the interpretability of machine learning models were crucial considerations in healthcare applications. Techniques such as explainable AI (XAI), feature importance analysis, SHAP values, LIME, and model-agnostic explanations can also be employed to enhance the interpretability of complex Machine Learning (ML)models.

References

- [1] Bayyapu, Sripriya, Ramesh Reddy Turpu, and Rajender Reddy Vangala. "ADVANCING HEALTHCARE DECISION-MAKING: THE FUSION OF MACHINE LEARNING, PREDICTIVE ANALYTICS, AND CLOUD TECHNOLOGY." International Journal of Computer Engineering and Technology (IJCET) Volume 10, Issue 5, September-October, 2019, pp. 157-170
- [2] Mitropoulos, Sarandis, and Alexandros Veletsos. "A categorization of cloud-based services and their security analysis in the healthcare sector." In 2020 5th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Corfu, Greece, IEEE, 2020. pp. 1-8.
- [3] Olaoye, Favour, Kaledio Potter, and Lucas Doris. Machine Learning in Healthcare: Advancements and Challenges. No. 12572. EasyChair, 2024.
- [4] Saraswat, Manish, and R. C. Tripathi. "Cloud computing: Comparison and analysis of cloud service providers-AWs, Microsoft and Google." In 2020 9th international conference system modeling and advancement in research trends (SMART), Moradabad, India. IEEE, 2020.pp. 281-285.
- [5] Gupta, Ambika, Pragati Goswami, Nishi Chaudhary, and Rashi Bansal. "Deploying an application using google cloud platform." In 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bangalore, India, IEEE, 2020.pp. 236-239.
- [6] Dutta, Pranay, and Prashant Dutta. "Comparative study of cloud services offered by Amazon, Microsoft & Google." International Journal of Trend in Scientific Research and Development 3, no. 3 (2019): 981-985.

- [7] Chauhan, Akash. "A Comparative Study of Cloud Computing Platforms." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 11, no. 1 (2020): 821-826.
- [8] Al-Sayyed, Rizik MH, Wadi'A. Hijawi, Anwar M. Bashiti, Ibrahim AlJarah, Nadim Obeid, and Omar Y. Adwan. "An Investigation of Microsoft Azure and Amazon Web Services from Users' Perspectives." International Journal of Emerging Technologies in Learning 14, no. 10 (2019).
- [9] Kacamarga, Muhamad Fitra, Arif Budiarto, and Bens Pardamean. "A Platform for Electronic Health Record Sharing in Environments with Scarce Resource Using Cloud Computing." International Journal of Online & Biomedical Engineering 16, no. 9 (2020).
- [10] Mavrogiorgou, Argyro, Athanasios Kiourtis, Spyridon Kleftakis, Konstantinos Mavrogiorgos, Nikolaos Zafeiropoulos, and Dimosthenis Kyriazis. "A catalogue of machine learning algorithms for healthcare risk predictions." Sensors 22, no. 22 (2022): 8615.
- [11] Shah, Bhavya, Dev Rajdev, Riya Salunkhe, Pooja Ramrakhiani, and Himani Deshpande.
 "Prognosis of Supervised Machine Learning Algorithms in Healthcare Sector." In 2021
 International Conference on Recent Trends on Electronics, Information, Communication
 & Technology (RTEICT), Bangalore, India. IEEE, 2021. pp. 257-261.
- [12] Juyal, Amit, Chetan Pandey, Janmejay Pant, Ankur Dumka, and Vikas Tomar. "Performance Analysis of Supervised Machine Learning Algorithms on Medical Dataset." International Journal of Recent Technology and Engineering (IJRTE) 8, no. 6 (2020): 1637-1642.
- [13] Bellamy, David, Leo Celi, and Andrew L. Beam. "Evaluating progress on machine learning for longitudinal electronic healthcare data." arXiv preprint arXiv:2010.01149 (2020).
- [14] Amin, M., and Amir Ali. "Performance evaluation of supervised machine learning classifiers for predicting healthcare operational decisions." Wavy AI Research Foundation: Lahore, Pakistan 90 (2018).

- [15] Dixit, Pooja, Manju Payal, Vishal Dutt, and Ankita Tuteja. "A review of machine learning approaches in clinical healthcare." Intelligent Healthcare: Applications of AI in eHealth (2021): 243-258.
- [16] Singh, Preeti, S. P. Singh, and D. S. Singh. "An introduction and review on machine learning applications in medicine and healthcare." In 2019 IEEE conference on information and communication technology, Jeju, Korea (South), IEEE, 2019. pp. 1-6.
- [17] Desai, Forum, Deepraj Chowdhury, Rupinder Kaur, Marloes Peeters, Rajesh Chand Arya, Gurpreet Singh Wander, Sukhpal Singh Gill, and Rajkumar Buyya. "HealthCloud: A system for monitoring health status of heart patients using machine learning and cloud computing." Internet of Things 17 (2022): 100485.
- [18] Ahmed, Md Razu, SM Hasan Mahmud, Md Altab Hossin, Hosney Jahan, and Sheak Rashed Haider Noori. "A cloud based four-tier architecture for early detection of heart disease with machine learning algorithms." In 2018 IEEE 4th International Conference on Computer and Communications (ICCC), Dorsett Grand Chengdu, China. IEEE, 2018.pp. 1951-1955.
- [19] Bansal, Malti, Apoorva Goyal, and Apoorva Choudhary. "A comparative analysis of Knearest neighbor, genetic, support vector machine, decision tree, and long short term memory algorithms in machine learning." Decision Analytics Journal 3 (2022): 100071.
- [20] Abdelaziz, Ahmed, Mohamed Elhoseny, Ahmed S. Salama, and A. M. Riad. "A machine learning model for improving healthcare services on cloud computing environment." Measurement 119 (2018): 117-128.
- [21] Rallapalli, Sreekanth, and T. Suryakanthi. "Predicting the risk of diabetes in big data electronic health Records by using scalable random forest classification algorithm." In 2016 International Conference on Advances in Computing and Communication Engineering (ICACCE), Durban, South Africa, IEEE, 2016. pp. 281-284.