
Journal of Information Technology and Digital World (ISSN: 2582-418X)
www.irojournals.com/itdw/

Journal of Information Technology and Digital World, December 2024, Volume 6, Issue 4, Pages 388-400 388
DOI: https://doi.org/10.36548/jitdw.2024.4.006

Received: 18-12-2024. received in revised form: 04-01-2025, accepted: 22-01-2025, published: 03-02-2025
© 2024 Inventive Research Organization. This is an open access article under the Creative Commons Attribution-NonCommercial International (CC BY-NC 4.0) License

Investigating Process Scheduling

Techniques for Optimal Performance and

Energy Efficiency in Operating Systems

Samrrutha R S.1, Stephi Jacob2, Akalya A.3, Karthika L.4,

Anisha C. D.5

1-4ME Student, 5Assistant Professor Department of Computer Science and Engineering, PSG

College of Technology, Coimbatore, Tamil Nadu, India

E-mail: 124mz37@psgtech.ac.in, 224mz39@psgtech.ac.in, 324mz31@psgtech.ac.in, 424mz03@psgtech.ac.in,

5ani.c.dass@gmail.com

Abstract

Process scheduling is a critical component of operating systems, determining the order

in which processes are allocated CPU time. Traditionally, scheduling algorithms have aimed

to optimize performance metrics such as throughput, latency, and CPU utilization. However,

with increasing emphasis on energy efficiency in modern computing, particularly in mobile

devices and data centers, energy consumption has become a key factor in evaluating scheduling

strategies. This survey explores various process scheduling algorithms, focusing on their

impact on energy efficiency. A comparative analysis is provided between traditional

algorithms, like the Linux Completely Fair Scheduler (CFS), and energy-aware alternatives

such as the Energy Fair Scheduler (EFS), which extends CFS by incorporating energy

considerations in the scheduling process. Trade-offs in performance, including run-time and

waiting time, are discussed, with case studies evaluating the effectiveness of energy-efficient

schedulers. Performance metrics such as total energy consumption and CPU utilization are

analyzed to highlight EFS's potential in reducing energy overheads while maintaining system

throughput. Findings suggest that energy-aware scheduling algorithms, like EFS, can

significantly improve energy efficiency without compromising performance, providing

promising solutions for both battery-powered devices and energy-intensive server

 Samrrutha R S., Stephi Jacob, Akalya A., Karthika L., Anisha C. D.

Journal of Information Technology and Digital World, December 2024, Volume 6, Issue 4 389

environments. Future directions in energy-efficient process scheduling research emphasize the

need for dynamic energy management in modern operating systems.

Keywords: Process Scheduling, Linux Completely Fair Scheduler, Energy-aware Scheduling,

Battery-powered Devices, Energy-intensive Server Environments.

 Introduction

Process scheduling is a critical function of operating systems, ensuring the efficient

allocation of CPU resources among competing processes [11]. It significantly influences

system performance and user responsiveness by determining the order and duration of process

execution. Traditional scheduling algorithms focus primarily on optimizing performance

metrics such as throughput, response time, and CPU utilization. However, with the increasing

emphasis on sustainable computing, energy efficiency has emerged as a vital consideration in

scheduler design. Conventional schedulers, such as the Linux Completely Fair Scheduler

(CFS), prioritize fairness in CPU access by balancing process demands with overall system

load. While CFS effectively maximizes CPU utilization and maintains load balance, it largely

neglects the energy implications of scheduling decisions [12]This oversight is especially

problematic in contexts ranging from battery-dependent mobile devices to energy-intensive

data centers, where energy efficiency has become an operational imperative.

Despite advancements in energy-aware scheduling, significant challenges remain.

Current energy-aware schedulers often face trade-offs between reducing power consumption

and maintaining acceptable system performance. These challenges include balancing energy

savings with throughput, managing overhead from real-time energy monitoring, and

dynamically adapting to diverse workload characteristics. Additionally, many energy-aware

approaches rely on complex models, which can increase implementation overhead and limit

scalability. This research investigates advancements in process scheduling, emphasizing

energy-awareness integration into scheduling mechanisms. It evaluates existing algorithms,

analyzes their contributions and limitations concerning energy efficiency, and explores a case

study to demonstrate the practical application of energy-aware scheduling. This study aims to

advance adaptable and efficient scheduling solutions for diverse computing environments by

addressing the dual objectives of performance optimization and energy efficiency. The

objectives of the research are:

Investigating Process Scheduling Techniques for Optimal Performance and Energy Efficiency in Operating Systems

ISSN: 2582-418X 390

• Analyze traditional and modern scheduling approaches to assess their effectiveness in

addressing energy efficiency alongside performance metrics.

• Investigate methods for incorporating energy consumption optimization into

scheduling policies without compromising system performance.

• Present a case study to illustrate the implementation and benefits of energy-aware

scheduling in real-world computing environments.

 Related Work

The existing literature describes the role of real-time operating systems in ensuring

timely and predictable resource allocation to meet process deadlines. Scheduling, a key

innovation in RTOS, is classified by deadlines: soft deadlines offering flexibility, firm

deadlines allowing occasional misses, and hard deadlines requiring strict adherence to avoid

catastrophic failures, such as in air traffic control. Advanced scheduling algorithms optimize

metrics like CPU usage, turnaround time, waiting time, and load average, ensuring efficient

process management even under heavy workloads. The researchers emphasizes on innovations

like low jitter in hard RTOS for predictability and fast dispatch latency to minimize delays

between task readiness and execution. Symmetric Multiprocessing (SMP) enables parallel task

processing, improving performance. Robust memory management ensures reliable task

execution. Scalability, stability, and security are essential in RTOS, maintaining performance

under increased load or feature integration while preventing crashes. Components like the

function library facilitate seamless communication between applications and the kernel. These

scheduling innovations are vital in mission-critical applications such as industrial automation,

where precise timing and reliability are crucial. They enhance efficiency, dependability, and

performance in real-time systems, making RTOS indispensable for applications requiring high

precision and low latency.The role of process scheduling plays a major part in optimizing the

performance of parallel applications on high-performance computing (HPC) systems. It

explores the interaction between the Linux OS scheduler and OpenMP application-level

scheduling techniques during the execution of multithreaded codes. The study highlights how

OS-level scheduling decisions, such as context switches and thread migrations, can interfere

with the performance of compute-bound applications, especially when threads are not pinned.

It finds that while the Linux scheduler attempts to balance system load, it can inadvertently

degrade performance by introducing additional overhead and imbalances. The research

 Samrrutha R S., Stephi Jacob, Akalya A., Karthika L., Anisha C. D.

Journal of Information Technology and Digital World, December 2024, Volume 6, Issue 4 391

emphasizes the importance of coordinating scheduling decisions at both the OS and application

levels to minimize these negative effects. This coordination improves load balancing and

reduces performance degradation in concurrently executing applications. The findings

underscore the need for further research into integrating OS and application-level scheduling

techniques for more efficient execution of multithreaded applications [6,7].

Kaur et al.[8] examines the effectiveness of various task scheduling algorithms in cloud

computing, specifically focusing on minimizing makespan, which represents the total time

needed to complete all tasks. A lower makespan indicates better performance for a task-

scheduling algorithm. Based on the results, FCFS (First Come First Serve) exhibited the highest

makespan of 5150.73, indicating the lowest performance among the algorithms tested. PSO

(Particle Swarm Optimization), with the lowest makespan of 2778.76, demonstrated the best

performance, showing its efficiency in dynamic resource allocation. Between these two

extremes, SJF (Shortest Job First) and RR (Round Robin) ranked in terms of makespan and

performance, with SJF achieving a lower makespan of 4291.14 compared to RR’s 4825.69.

This ranking implies that SJF performs better than RR and significantly outperforms FCFS.

Overall, PSO leads in performance, followed by SJF, then RR, and finally FCFS. The results

confirm that PSO is the most effective algorithm in minimizing makespan, making it the

optimal choice for enhancing cloud computing efficiency.

Orhean et al., 2018[9] describes a reinforcement learning-based framework for solving

the task scheduling problem in distributed systems. The system architecture includes three main

components: the World Model, Task Classifier, and Reinforcement Learning Agent. The

World Model dynamically tracks the state of nodes, capturing details such as load levels, task

relationships (parent, sibling), and other status parameters. Tasks are classified by the Task

Classifier based on their type, enabling better prioritization and organization. The

Reinforcement Learning Agent develops a scheduling policy (π\piπ) by learning from

interactions with the system. It allocates tasks to output queues while considering the

heterogeneity of nodes and the task dependencies represented in a directed acyclic graph.The

proposed solution improves execution time and optimizes resource utilization by tailoring

scheduling policies to the characteristics of the distributed environment. Additionally, the

work introduces a platform that implements this reinforcement learning algorithm, providing

scheduling as a service to distributed systems. This approach addresses challenges like varying

Investigating Process Scheduling Techniques for Optimal Performance and Energy Efficiency in Operating Systems

ISSN: 2582-418X 392

node capabilities and inter-task dependencies, aiming to improve productivity, fault tolerance,

and efficiency in distributed computing architectures.

Reuther et al., 2018[10] describes an in-depth analysis of process scheduling in

operating systems, focusing on job schedulers critical to modern big data architectures and

supercomputing systems. Job schedulers serve as the backbone of parallel processing,

allocating computing resources and controlling the execution of processes. Traditionally

designed for supercomputers handling long-running computations, schedulers now face the

challenge of managing big data workloads characterized by numerous short computations that

process massive datasets. The study emphasizes the importance of scheduler efficiency as a

fundamental factor limiting the performance of large-scale computing systems. A theoretical

model is proposed to analyze scheduler latency, identified as a key performance metric for big

data workloads. The model introduces two critical parameters: marginal latency and a

nonlinear exponent. Experimental benchmarking is conducted on four widely-used schedulers

Slurm, Son of Grid Engine, Mesos, and Hadoop YARN highlighting their performance under

varying workloads. The findings reveal that computing system utilization drops significantly

for computations lasting only a few seconds, falling below 10%. However, the study

demonstrates that multi-level schedulers, such as LLMapReduce, can enhance utilization to

over 90% by aggregating short computations, offering a practical solution to improve

scheduling efficiency for short-duration tasks.

 Survey on Various Process Scheduling Algorithms

First come first serve is one of the process scheduling algorithm which is very effective

for the processes which has less burst time. It can make the waiting time of the process to

escalate in a regular and even manner. This makes FCFS less optimal for complex processes.

SJF is able to result in least average waiting time and turnaround time, which makes SJF as

most efficient algorithm, especially in non-preemptive environment [5]. As SJF deals with

shortest job first, so if reducing turnaround time and waiting time is priority, SJF is the best

choice. Round robin is similar to FCFS and SJF where it is adjusted by quantum time. One of

the biggest advantage of RR it ensures fair CPU time for all processes. It carefully balances the

waiting time and fairness. If being fair to each process and time sharing is expected from a

process scheduling algorithm RR will be the strong contender. Priority algorithm is suitable for

the application with inconsistent resource demands, where the priority is determined by user or

 Samrrutha R S., Stephi Jacob, Akalya A., Karthika L., Anisha C. D.

Journal of Information Technology and Digital World, December 2024, Volume 6, Issue 4 393

the system. When it comes to high-load environments the challenge is to manage the dynamic

priority allocation [1].

A process can be divided into foreground and background processes. The foreground

process usually has a higher priority than the background process. Every process will have

different scheduling needs and response-time demands. In multilevel queue scheduling (MLQ)

system, the ready queue is segregated into multi-levels where the higher priority process

occupies the top position. But this is a high possibility of starvation, if the process is pushed to

the bottom of the queue. In a similar system, another idea is analyzed to solve the issue of

starvation. A multi-level feedback queue (MLFQ) tries to move the processes that don’t finish

at the top level to a lower level in the queue. The issues here are deciding the number of queues

to use, how long the time quantum should be for each queue, and the priority assignment of

each process to avoid starvation. In MLFQ, lower priority queues get longer time quantum and

higher priority queues receive shorter time quantum. The system aims to improve the

turnaround time and reduce response [2]

CPU scheduling involves several performance metrics to evaluate efficient process

execution. CPU utilization aims to keep the CPU occupied at all time. Throughput means the

number of processes completed per time unit. The time of entry of a process is arrival time.

Burst time is the total time required to complete the whole execution of the process. The

completion time marks the moment when the execution gets completed. Turnaround time is

the total time required to complete the process.

𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑡𝑖𝑚𝑒 = 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 − 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 (1)

𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑡𝑖𝑚𝑒 − 𝐵𝑢𝑟𝑠𝑡 𝑡𝑖𝑚𝑒 (2)

Waiting time is the total time a process waits to complete the task. Response time is the

duration from the submission of a request to the generation of the first response. Lastly, fairness

ensures that all processes receive a fair share of CPU time. These metrics collectively help in

evaluating the performance and efficiency of CPU scheduling algorithms [3]

Investigating Process Scheduling Techniques for Optimal Performance and Energy Efficiency in Operating Systems

ISSN: 2582-418X 394

Table 1. AT and BT of Processes

Process ID
Arrival

time(ms)

Burst Time (ms)

(quantum 5)
Priority

P0 0 12 3

P1 1 2 1

P2 2 3 3

P3 3 2 4

P4 4 6 2

Table 2. Average TT and WT Calculation

Process

ID

TURNAROUND TIME (ms) WAITING TIME (ms)

FCFS SJF RR Priority FCFS SJF RR Priority

P0 12 25 25 20 0 13 13 8

P1 14 2 7 2 12 0 5 0

P2 17 7 10 23 14 4 7 20

P3 19 4 12 25 17 2 10 23

P4 25 13 23 8 19 7 17 2

AVG 17.4 10.2 15.4 15.6 12.4 5.2 10.4 10.6

The Table.2 justifies that FCFS and SJF are suitable for batch operating system because

of its simplicity and efficiency in minimizing overall process completion time. RR and Priority

algorithm are suitable for time sharing system because they aim for fairness and

responsiveness. RR promises equal time for all process while priority prioritizes tasks based

on urgency [4].

Tables 1 and 2 provide important insights into the performance of various scheduling

algorithms by presenting key metrics: Turnaround Time (TT) and Waiting Time (WT). These

 Samrrutha R S., Stephi Jacob, Akalya A., Karthika L., Anisha C. D.

Journal of Information Technology and Digital World, December 2024, Volume 6, Issue 4 395

metrics are fundamental to assessing the efficiency of process scheduling. For instance, the

Shortest Job First (SJF) algorithm achieves the lowest average TT (10.2 ms) and WT (5.2 ms),

indicating its efficiency in minimizing delays for shorter processes. However, SJF's

impracticality in real-time systems arises from its requirement for precise knowledge of job

durations.

Round Robin (RR) offers better fairness across processes due to time-slicing but results

in higher average TT (15.4 ms) and WT (10.4 ms), reflecting its overhead from frequent context

switching. The Priority scheduling algorithm exhibits a trade-off: it effectively lowers TT and

WT for high-priority tasks (e.g., P4) but increases these metrics for lower-priority ones (e.g.,

P3), as evident from its uneven distribution of results. First-Come-First-Served (FCFS)

performs reasonably well overall but struggles with fairness for longer processes, as seen in its

relatively high WT (12.4 ms) and TT (17.4 ms).

 Case Study

The development of the Energy Fair Scheduler (EFS) involved careful modifications to

the Linux Completely Fair Scheduler (CFS) to introduce energy-aware scheduling. To achieve

this, the methodology focused on enhancing CFS's load-balancing mechanism to incorporate

energy consumption as a key metric in scheduling decisions. The EFS adjusts the weight

assigned to processes, dynamically prioritizing tasks with lower energy footprints while

ensuring that CPU utilization remains high. This integrates the energy-monitoring capabilities,

to track the power consumption of processes in real-time.

Parameter tuning played a vital role in optimizing EFS's performance. Parameters such

as energy consumption thresholds, CPU load thresholds, and process weighting factors were

calibrated to achieve an optimal balance between performance and energy efficiency.

Extensive simulation experiments were conducted to evaluate EFS under diverse workloads,

including both CPU-intensive and mixed workloads. The simulations involved benchmarking

tools and synthetic workloads to measure energy usage and CPU utilization. The results were

compared to the unmodified CFS to quantify improvements in energy efficiency and

performance trade-offs. This systematic approach ensured that EFS maintained throughput and

minimized latency while reducing energy consumption, making it a practical solution for

devices ranging from battery-powered systems to high-performance servers. The advantages

Investigating Process Scheduling Techniques for Optimal Performance and Energy Efficiency in Operating Systems

ISSN: 2582-418X 396

and the disadvantages of the traditional and the energy-aware scheduler are depicted in Table

3.

Table 3. Advantages and Limitations of Traditional and Energy-Aware Schedulers

Aspect Traditional schedulers Energy-Aware Schedulers

Advantages Optimized for throughput, low

latency, and high CPU utilization.

Simple, well-established algorithms

with low computational overhead.

Effective for performance-critical

tasks and homogeneous workloads.

Reduces overall energy

consumption, enhancing

efficiency.

Prolongs battery life for

portable devices.

Balances energy efficiency with

acceptable performance.

Suitable for diverse systems,

including energy-constrained

environments.

Limitations Inefficient in energy-critical scenarios,

leading to higher power consumption.

Does not optimize for idle periods,

resulting in energy waste.

Unsuitable for systems where energy

efficiency is a priority (e.g., mobile or

IoT devices).

May introduce higher latency or

reduced throughput for certain

workloads.

Requires complex energy

monitoring and scheduling

mechanisms.

Implementation is more

resource-intensive and may

reduce scalability.

4.1 Process Scheduling and Energy Efficiency

Process scheduling is an essential component of an operating system that determines

the order in which processes access the CPU. In modern computing, scheduling has primarily

aimed to optimize performance metrics like throughput, latency, and CPU utilization.

However, with the increasing importance of energy efficiency in computing from mobile

devices to large data centers schedulers are now being evaluated on their energy consumption

impact as well. Traditional schedulers, like the Linux Completely Fair Scheduler (CFS), focus

on providing equal CPU access among processes, prioritizing fair distribution based on process

needs and system load. CFS uses a load-balancing mechanism to maintain high CPU

 Samrrutha R S., Stephi Jacob, Akalya A., Karthika L., Anisha C. D.

Journal of Information Technology and Digital World, December 2024, Volume 6, Issue 4 397

utilization, making it suitable for maximizing computational performance, but it lacks

provisions for actively managing energy consumption.

This study explores energy-aware scheduling approaches, specifically focusing on

modifying the Completely Fair Scheduler (CFS) to develop an Energy Fair Scheduler (EFS).

The EFS aims to introduce energy fairness into process scheduling by adapting scheduling

policies to minimize unnecessary energy consumption while maintaining system performance.

Parameters such as total energy consumption and CPU utilization are examined to evaluate the

EFS's capability to optimize energy usage without compromising CPU performance. The

findings demonstrate the potential of the EFS as a versatile scheduling mechanism for diverse

devices, ensuring efficient CPU task handling and reducing power usage a critical factor for

both battery-powered devices and energy-intensive server environments.

4.2 The Role of Energy Fairness in Process Scheduling

Energy fairness in process scheduling involves adjusting the scheduling algorithms to

account for each process's energy impact, thereby distributing energy use more equitably across

tasks and achieving an overall reduction in system power consumption. This contrasts with

traditional schedulers that focus primarily on fairness in terms of CPU access time, often

ignoring the energy implications of different types of workloads. The Energy Fair Scheduler

(EFS) builds on the principles of the Completely Fair Scheduler (CFS) in Linux by integrating

energy-awareness into its decision-making process. The EFS scheduler seeks to prioritize

processes based not only on CPU demands but also on their energy footprints, adjusting

scheduling decisions dynamically to reduce total system energy consumption.

In evaluating EFS, two main performance metrics are considered energy consumption

and CPU utilization. By modifying the scheduling algorithm to manage power consumption

more actively, EFS aims to reduce the energy overhead of idle periods and CPU-intensive

processes without reducing CPU or system throughput. This ensures that the CPU remains busy

with minimal wasted power, achieving a balance between performance and energy efficiency.

In doing so, EFS could lead to significant energy savings across various systems, from low-

power devices to data-intensive servers, while maintaining the processing capabilities

necessary for high-performance applications.

Investigating Process Scheduling Techniques for Optimal Performance and Energy Efficiency in Operating Systems

ISSN: 2582-418X 398

Figure 1. CPU Utilization Comparison: CFS vs EFS

Figure.1 compares CPU utilization trends over time for two schedulers, CFS and EFS.

The blue dashed line represents the Completely Fair Scheduler (CFS), while the green solid

line shows the Energy Fair Scheduler (EFS). The EFS maintains consistently higher CPU

utilization, often between 75% and 90%, whereas CFS fluctuates significantly between 60%

and 80%. This demonstrates EFS’s ability to keep the CPU more active, minimizing idle

periods and enhancing energy efficiency without compromising system throughput. The

smoother trend in EFS utilization suggests improved scheduling stability, which is essential for

performance in energy-efficient systems.

Figure.1 illustrates the CPU utilization trends over time for the Completely Fair

Scheduler (CFS) and the Enhanced Fair Scheduler (EFS). The CFS exhibits pronounced

fluctuations, reflecting inconsistent workload balancing and higher variability in resource

allocation. Conversely, EFS demonstrates a significantly smoother utilization trend, indicative

of more stable and efficient scheduling. This stability arises from EFS's ability to minimize

sudden spikes and dips, ensuring more predictable CPU usage. The smoother trend directly

translates to practical advantages, including improved system responsiveness, reduced latency

under varying workloads, and enhanced energy efficiency due to the elimination of abrupt

transitions in CPU demand.

 Samrrutha R S., Stephi Jacob, Akalya A., Karthika L., Anisha C. D.

Journal of Information Technology and Digital World, December 2024, Volume 6, Issue 4 399

 Conclusion

This research highlights the importance of integrating energy efficiency into process

scheduling to address the growing demand for sustainable computing. Traditional schedulers

like the Linux Completely Fair Scheduler excel in fairness and CPU utilization but overlook

energy implications, limiting their suitability for energy-sensitive environments. Energy-aware

scheduling bridges this gap by minimizing power consumption alongside traditional

performance metrics, offering viable solutions for power-constrained devices and sustainable

data centers. The study evaluates existing algorithms, identifying their strengths and

limitations, and demonstrates the practical benefits of energy-aware strategies through a case

study.

Future work will focus on developing adaptive scheduling mechanisms that

dynamically balance energy efficiency and performance in real-time. Incorporating machine

learning techniques to predict workload patterns and optimize energy utilization could further

enhance scheduler design. Additionally, extending energy-aware scheduling to heterogeneous

systems, such as those involving GPUs and specialized accelerators, presents a promising

avenue for achieving broader applicability and improved sustainability.

References

[1] Mehta, Shubh, and Harshad Mehta. "Detailed Analysis and Simulation of Various Process

Scheduling Algorithms." International Journal of Algorithms Design and Analysis 6, no. 2

(2020): 43-52.

[2] Harki, Naji, Abdulraheem Ahmed, and Lailan Haji. "CPU scheduling techniques: A review

on novel approaches strategy and performance assessment." Journal of Applied Science

and Technology Trends 1, no. 1 (2020): 48-55.

[3] Omar, Hoger K., Kamal H. Jihad, and Shalau F. Hussein. "Comparative analysis of the

essential CPU scheduling algorithms." Bulletin of Electrical Engineering and Informatics

10, no. 5 (2021): 2742-2750.

[4] Goel, Neetu, and R. B. Garg. "A comparative study of cpu scheduling algorithms." arXiv

preprint arXiv:1307.4165 (2013).

Investigating Process Scheduling Techniques for Optimal Performance and Energy Efficiency in Operating Systems

ISSN: 2582-418X 400

[5] Ali, Shahad M., Razan F. Alshahrani, Amjad H. Hadadi, Tahany A. Alghamdi, Fatimah H.

Almuhsin, and Enas E. El-Sharawy. "A review on the cpu scheduling algorithms:

Comparative study." International Journal of Computer Science & Network Security 21,

no. 1 (2021): 19-26.

[6] Korndörfer, Jonas H. Müller, Ahmed Eleliemy, Osman Seckin Simsek, Thomas Ilsche,

Robert Schöne, and Florina M. Ciorba. "How do os and application schedulers interact? an

investigation with multithreaded applications." In European Conference on Parallel

Processing, pp. 214-228. Cham: Springer Nature Switzerland, 2023.

[7] Ismael, G. A., Salih, A. A., AL-Zebari, A., Omar, N., Merceedi, K. J., Ahmed, A. J., ... &

Yasin, H. M. (2021). “Scheduling Algorithms Implementation for Real Time Operating

Systems: A Review.” Asian Journal of Research in Computer Science, 11(4), 35-51.

[8] Kaur, Rajbhupinder, Vijay Laxmi, and Balkrishan. "Performance evaluation of task

scheduling algorithms in virtual cloud environment to minimize makespan." International

Journal of Information Technology (2022): 1-15.

[9] Orhean, Alexandru Iulian, Florin Pop, and Ioan Raicu. "New scheduling approach using

reinforcement learning for heterogeneous distributed systems." Journal of Parallel and

Distributed Computing 117 (2018): 292-302.

[10] Reuther, Albert, Chansup Byun, William Arcand, David Bestor, Bill Bergeron,

Matthew Hubbell, Michael Jones et al. "Scalable system scheduling for HPC and big data."

Journal of Parallel and Distributed Computing 111 (2018): 76-92.

[11] Omar, Hoger K., Kamal H. Jihad, and Shalau F. Hussein. "Comparative analysis of the

essential CPU scheduling algorithms." Bulletin of Electrical Engineering and Informatics

10, no. 5 (2021): 2742-2750.

[12] Yu, Teng, Runxin Zhong, Vladimir Janjic, Pavlos Petoumenos, Jidong Zhai, Hugh

Leather, and John Thomson. "Collaborative heterogeneity-aware os scheduler for

asymmetric multicore processors." IEEE Transactions on Parallel and Distributed Systems

32, no. 5 (2020): 1224-1237

